Система карбюратора: Общее устройство карбюратора, схема и принцип работы карбюратора автомобиля

Содержание

Устройство и принцип работы карбюратора ВАЗ

Дорогие друзья, в данном мануале мы попытаемся на пальцах объяснить основные принципы работы любого карбюратора, о его устройстве, с иллюстрациями и достаточно подробными комметариями. Особенно полезной будет эта статья для новичков, которые хотят разобраться в теме. В статье мы рассмотрим следующие моменты:

Режимы работы двигателя и состав горючей смеси, систему холостого хода и переходную систему, устройство поплавковой камеры и принципы ее работы, главную дозирующую систему карбюратора, систему пуска, принцип работы эконостата и многое другое. Ведь от правильной работы всех этих узлов напрямую зависит аппетит вашего авто. Он может быть как выше так и ниже того, который указан в технических характеристиках вашей машины. К примеру расходы Ваз — 2114, 2110, 2112 можете узнать пройдя по ссылке, паспортные расходы семерки ВАЗ-2107 можете глянуть здесь, и т.д. В общем запаситесь терпением, попкорном и приготовьтесь к интересному чтиву.

Режимы работы двигателя и состав горючей смеси

СОСТАВ ГОРЮЧЕЙ СМЕСИ Для работы двигателя внутреннего сгорания необходима смесь топлива с воздухом. В карбюраторных двигателях топливо (бензин) смешивается с воздухом в определенной пропорции вне цилиндров и, частично испарившись, образует горючую смесь. Этот процесс называется карбюрацией, а прибор, приготавливающий такую смесь, — карбюратором. Смесь, пройдя по впускному трубопроводу, попадает в цилиндры двигателя, где смешивается с остатками горячих отработавших газов, образуя рабочую смесь. Частички распыленного топлива при этом испаряются. Для пуска двигателя и его работы на разных режимах, необходим различный состав горючей смеси. Поэтому карбюратор устроен так, что позволяет изменять количественное соотношение распыленного топлива и воздуха в смеси, поступающей в цилиндры двигателя. Для полного сгорания 1 кг топлива необходимо около 15 кг воздуха. Топливовоздушная смесь в такой пропорции называется нормальной. Режим работы двигателя на этой смеси имеет удовлетворительные показатели по экономичности и развиваемой мощности. Незначительное увеличение количества воздуха в топливовоздушной смеси по сравнению с его нормальным содержанием (но не более 17 кг) приводит к обеднению смеси. На обедненной смеси двигатель работает в наиболее экономичном режиме, т.е. расход топлива на единицу развиваемой мощности минимален. Полную мощность на такой смеси двигатель не разовьет. При избытке воздуха (17 кг и более) образуется бедная смесь. Двигатель на такой смеси работает неустойчиво, при этом расход топлива на единицу вырабатываемой мощности возрастает. На смеси переобедненной, содержащей более 19 кг воздуха на 1 кг топлива, работа двигателя невозможна, так как смесь не воспламеняется от искры. Небольшой недостаток воздуха в топливовоздушной смеси по сравнению с нормальным (от 15 до 13 кг) способствует образованию обогащенной смеси. Такая смесь позволяет двигателю развивать максимальную мощность при несколько повышенном расходе топлива. Если воздуха в смеси меньше 13 кг на 1 кг топлива, смесь богатая. Из-за недостатка кислорода топливо сгорает не полностью. Двигатель на богатой смеси работает в неэкономичном режиме, с перебоями и при этом не развивает полной мощности. Переобогащенная смесь, содержащая менее 5 кг воздуха на 1 кг топлива, не воспламеняется — работа двигателя на ней невозможна.

ПУСК ДВИГАТЕЛЯ При пуске холодного двигателя часть распыляемого топлива оседает на стенках впускного трубопровода, а часть испарившегося топлива, попав в цилиндры, конденсируется на стенках. К тому же при низкой температуре воздуха смесеобразование ухудшается, т. к. замедляется испарение бензина. Поэтому для пуска холодного двигателя необходимо, чтобы карбюратор приготовил переобогащенную топливовоздушную смесь. РАБОТА НА ХОЛОСТОМ ХОДУ
На холостом ходу частота вращения коленчатого вала двигателя невелика, а дроссельные заслонки карбюратора почти полностью закрыты. Из-за этого вентиляция цилиндров не столь эффективна, по сравнению с работой на средней и высокой частотах вращения коленчатого вала и мало количество горючей смеси, поступающей в двигатель. В рабочей смеси содержится большое количество отработавших (остаточных) газов. Поэтому для устойчивой работы двигателя на холостом ходу необходима обогащенная смесь. РЕЖИМ ЧАСТИЧНЫХ НАГРУЗОК На режиме частичных нагрузок от двигателя не требуется полная мощность. Дроссельные заслонки открыты не полностью, но вентиляция цилиндров хорошая. Поэтому на этом режиме достаточно обедненной горючей смеси. Соотношение развиваемой двигателем мощности к количеству потребляемого топлива позволяет считать режим частичных нагрузок самым экономичным.
РЕЖИМ ПОЛНОЙ НАГРУЗКИ
На режиме полной нагрузки от двигателя требуется максимальная или близкая к максимальной мощность. Двигатель при этом работает на высоких оборотах, а дроссельные заслонки полностью (или почти полностью) открыты. Для этого режима требуется обогащенная смесь, обладающая повышенной скоростью сгорания. РЕЖИМ РЕЗКОГО УВЕЛИЧЕНИЯ НАГРУЗКИ При работе двигателя в режиме резкого увеличения нагрузки, например при разгоне автомобиля, необходима обогащенная смесь. Но поскольку процесс смесеобразования обладает некоторой инертностью, чтобы предотвратить возникновение «провала» при наборе скорости, требуется дополнительное кратковременное обогащение горючей смеси. Для этого дополнительное топливо впрыскивается непосредственно в смесительную камеру карбюратора.

ОСНОВНЫЕ СИСТЕМЫ КАРБЮРАТОРА

Современные карбюраторы оснащены десятком различных систем и устройств, которые имеют разветвленную сеть каналов, многочисленные калиброванные отверстия, сложные рычажные передачи и пневматические камеры. Сразу разобраться в этом хитросплетении непросто. Поэтому полезно рассмотреть все основные системы по отдельности на примере упрощенных схем. И начать следует с принципа работы и устройства простейшего карбюратора.

Конструкция простейшего карбюратора

Для работы бензинового двигателя необходимо во всасываемый воздух добавлять топливо, которое затем сгорает в цилиндре при рабочем ходе поршня. Чтобы топливо надежно воспламенялось и полностью сгорало, необходимо тщательно перемешивать его с воздухом и при этом выдерживать оптимальный со-став горючей смеси на всех режимах работы двигателя. Эти функции выполняет карбюратор, соединенный впускным трубо-проводом с цилиндрами двигателя. Простейший карбюратор состоит из двух камер: поплавковой и смесительной. Процесс приготовления горючей смеси продолжается на всем пути движения топлива и воздуха по впускному тракту, вплоть до цилиндров, но начинается с распы-ления топлива в смесительной ка-мере карбюратора. Для этого в смесительной камере установлен распылитель в виде трубки. Срез трубки выведен в центр диффузора камеры. Диффузор — это участок сужения смесительной камеры. Скорость воздушного потока в диффузоре возрастает, и у распылителя возникает разрежение. Под действием этого разрежения топливо вытекает из распылителя и интенсивно перемешивается с воздухом. В распылитель топливо поступает из поплавковой камеры, с которой он связан каналом. В канале установлен жиклер — пробка со сквозным отверстием определенных размеров и формы. Жиклер ограничивает поступление топлива в рас-пылитель. Одно из условий нормальной работы карбюратора — правильная установка уровня топлива в поплавковой камере. Поддерживается уровень топлива в камере при помощи поплавкового механизма с игольчатым клапаном. Топливо подается в поплавковую камеру по топливо-проводу. По мере заполнения камеры поплавок поднимается, а игла запирает отверстие клапана, при этом вытесняемый топливом воздух выводится наружу через специальное отверстие. Поплавковая камера и распылитель представляют собой сообщающиеся сосуды. Уровень топлива в поплавковой камере устанавливается так, чтобы он находился чуть ниже среза распылителя. При повышенном уровне топливо будет выходить из распылителя, переобогащая смесь, при пониженном — поступление топлива в распылитель недостаточно, в результате чего образуется сильно обедненная горючая смесь. Для того чтобы изменять состав смеси, в смесительной камере над диффузором установлена воздушная заслонка. По мере закрывания воздушной заслонки смесь будет обогащаться. Чрезмерное прикрывание заслонки приведет к переобогащению смеси и остановке двигателя. Для регулировки количества топливовоздушной смеси, поступающей в цилиндры, в нижней части смесительной камеры установлена дроссельная заслонка. Когда воздушная и дроссельная заслонки полностью открыты, сопротивление потоку воздуха минимально. Простейший карбюратор готовит горючую смесь оптимального состава только в определенном диапазоне частот вращения коленчатого вала. Диапазон зависит от пропускной способности жиклера, сечения диффузора, уровня топлива и положения дроссельной заслонки. Автомобильный двигатель должен работать в широком диапазоне частот вращения коленчатого вала и при постоянно изменяющейся нагрузке. Для приготовления смеси оптимального состава на всех возможных режимах работы автомобильные карбюраторы оборудованы дополнительными системами.

Главная дозирующая система

Главная дозирующая система карбюратора предназначена для подачи основного количества топлива на всех режимах работы двигателя, кроме режима холостого хода. При этом на средних нагрузках она должна обеспечивать приготовление требуемого количества обедненной смеси приблизительно постоянного состава. В простейшем карбюраторе по мере открытия дроссельной заслонки увеличение расхода воздуха, проходящего через диффузор, про-водит медленнее, чем увеличение расхода топлива, вытекающего из распылителя. Горючая смесь становится богатой. Чтобы исключить переобогащение смеси, необходимо компенсировать ее состав воздухом в зависимости от степени открытия дроссельной заслонки. В карбюраторе такое возмещение осуществляет главная дозирующая система. В карбюраторах «Солекс» компенсация осуществляется пневматическим торможением: топливо в распылитель поступает не непосредственно из поплавковой камеры, а через эмульсионный колодец — вертикальный канал, в котором установлена эмульсионная трубка. Стенки трубки имеют отверстия для выхода воздуха, поступающего в нее сверху через воздушный жиклер. Поступление топлива в эмульсионный колодец определяется топливным жиклером. В эмульсионном колодце топливо смешивается с воздухом, выходящим из отверстий эмульсионной трубки. В результате в распылитель попадает топливная эмульсия, а не чистое топливо. По мере открытия дроссельной заслонки в диффузоре увеличивается разрежение и возрастает истечение эмульсии из распылителя. Одновременно растет поступление воздуха в эмульсионный колодец через воздушный жиклер, из за чего уменьшается поступление топлива из поплавковой камеры через топливный жиклер. Количество топлива, проходящего через жиклер, соответствует поступающему в диффузор количеству воздуха, что и обеспечивает компенсацию состава смеси. Требуемый состав горючей смеси задается подбором проходных сечений топливного и воздушного жиклеров, а также типом эмульсионной трубки.

СБАЛАНСИРОВАННАЯ ПОПЛАВКОВАЯ КАМЕРА

В простейшем карбюраторе поплавковая камера связана с атмосферой через отверстие в крышке. В процессе эксплуатации по мере загрязнения воздушного фильтра в диффузоре такого карбюратора будет возрастать разрежение и, следовательно, смесь начнет обогащаться. Чтобы исключить влияние загрязнения воздушного фильтра на состав горючей смеси, внутренняя полость поплавковой камеры соединена ка-налом с горловиной карбюратора.

Система холостого хода и переходная система

Для. работы двигателя на холостом ходу с минимальной частотой вращения коленчатого вала требуется малое количество горючей смеси. Следовательно, дроссельная заслонка должна быть почти полностью закрыта. При этом разрежение в диффузоре недостаточно для вступления в работу главной дозирующей системы. Поэтому карбюратор дополнительно оборудован системой холостого хода, которая готовит топливовоздушную смесь в количестве, обеспечивающем устойчивую работу двигателя при закрытой дроссельной заслонке. Каналы системы холостого хода связывают задроссельное пространство (полость впускного трубопровода) с эмульсионным ней частью смесительной камеры. При работе двигателя на холостом ходу под дроссельной заслонкой об-разуется высокое разрежение. Под действием разрежения топливо из эмульсионного колодца проходит в топливный канал холостого хода, где смешивается с воздухом, поступающим по воздушному каналу из верхней части смесительной камеры. Соотношение топлива и воздуха в эмульсии определяется пропускной способностью топливного и воздушного жиклеров, которые установлены в каналах холостого хода. Далееэмульсия поступает в задроссельное пространство, где смешивается с воздухом, проходящим через зазор между стенкой камеры и заслонкой. Зазор регулируется упорным винтом «количества»(SOLEX). Количество топливной эмульсии, проходящее по каналу в задросельное пространство, регулируется винтом с конусообразным наконечником (винтом «качества»). При заворачивании винта проходное сечение канала уменьшается. И наоборот. При плавном открытии дроссельной заслонки расход воздуха через смесительную камеру увеличивается, а количество поступающей эмульсии остается на прежнем уровне. Разрежение в диффузоре при этом еще недостаточно для вступления в работу главной дозирующей системы. В результате смесь обедняется и в работе двигателя наблюдается «провал». Для обеспечения плавного перехода от холостого хода к режиму средней нагрузки служит переходная система, которая объединена с системой холостого хода. Канал переходной системы соединяет эмульсионный канал системы холостого хода снаддроссельным пространством смесительной камеры. Выходное отверстие канала расположено таким образом, что, после приоткрытия дроссельной заслонки, оно оказывается в зоне разрежения; через него поступает дополнительное количество эмульсии в смесительную камеру, сглаживая переход от одного режима работы двигателя к другому. На холостом ходу, когда дроссельная заслонка закрыта, часть воздуха через канал переходной системы подмешивается к топливной эмульсии. Изменение состава смеси компенсируется подбором жиклеров. При заворачивании винта «количества» дроссельная заслонка приоткрывается. В результате расход воздуха через канал переход ной системы уменьшается, а через зазор между стенками смесительной камеры и заслонкой увеличивается. Количество горючей смеси, поступающей в двигатель, увеличивается, и частота вращения коленчатого вала возрастает. При отворачивании винта заслонка закрывается и частота вращения коленчатого вала снижается.

Ускорительный насос

Главная дозирующая система обеспечивает бесперебойную работу двигателя только при очень плавном открытии дроссельной заслонки. При резком открытии заслонки (например, для интенсивного разгона автомобиля) в первый момент процесс смесеобразования нарушается. Чтобы исключить «провал» в работе двигателя на этом режиме, карбюратор оснащен специальным устройством — ускорительным насосом. Он предназначен для кратковременного обогащения горючей смеси при резком открытии дроссельной заслонки. На карбюраторах широко применяется ускорительный насос диафрагменного типа с приводом от оси дроссельной заслонки. При открытии заслонки кулачок, механически связанный с ее осью, поворачивается и нажимает толкатель диафрагмы. Когда дроссельная заслонка закрывается, кулачок перестает воздействовать на толкатель. Диафрагма под действием возвратной пружины перемещается в исходное положение, создавая разрежение в полости насоса. Шарик нагнетательного клапана при этом закрывает отверстие в колодце под распылителем, шарик всасывающего клапана пропускает топливо в насос. Бензин из поплавковой камеры проходит через всасывающий клапан, заполняя полость насоса. При резком нажатии педали «газа», кулачок давит на телескопический толкатель, сжимая его пружину. При этом шарик нагнетательного клапана под давлением топлива приподнимается, открывая путь топливу из полости насоса в распылитель. Резкого перемещения диафрагмы не происходит, т.к. топливо не может быстро пройти через малое выходное отверстие распылителя. Поскольку пружина толкателя жестче возвратной пружины диафрагмы, первая, преодолевая сопротивление последней, перемещает диафрагму, вытесняя порцию топлива через нагнетательный клапан и распылитель в смесительную камеру карбюратора. Процесс впрыскивания получается растянутым по времени до нескольких секунд. Этим обеспечивается устойчивая работа двигателя при ускорении автомобиля, и, кроме того, диафрагма предохраняется от разрыва под действием давления топлива.

Система пуска

При пуске двигателя частота вращения коленчатого вала невелика, разрежение во впускной системе мало, и бензин плохо испаряется. К тому же, как уже было отмечено ранее, на холодном двигателе, особенно при низкой температуре окружающего воздуха, большая часть образовавшихся паров топлива конденсируется во впускном тракте. Поэтому для стабильного пуска двигателя необходимо приготовить в карбюраторе заведомо переобогащенную топливовоздушную смесь. Для этого следует закрыть воздушную заслонку и приоткрыть дроссельную. Тогда в диффузоре создается разрежение, достаточное для вытекания необходимого количества топлива из распылителя даже при медленном вращении коленчатого вала. Образуется рабочая смесь, пригодная для пуска двигателя. Но как только в цилиндрах появятся первые вспышки, чтобы двигатель не заглох от пере-обогащения, необходимо приоткрыть воздушную заслонку, открывая путь воздуху в диффузор. Для выполнения этих операций карбюратор дополнен специальным пусковым устройством. На карбюраторах двигателей отечественных автомобилей широко применяется пусковое устройство с ручным управлением. Оно состоит из воздушной заслонки, автоматического устройства ее приоткрывания и элементов привода. Воздушную заслонку водитель закрывает из салона автомобиля при помощи рукоятки, которая связана тягой с приводом заслонки. Привод обеспечивает заслонке возможность слегка приоткрываться, а возвратная пружина стремится удержать ее в закрытом положении. На карбюраторе установлено устройство, автоматически приоткрывающее воздушную заслонку на необходимую величину, что предотвращает переобогащение горючей смеси сразу после пуска. Устройство состоит из камеры с диафрагмой, пружины и тяги. Камера каналом связана с задроссельным пространством карбюратора. С началом устойчивой работы двигателя за дроссельной заслонкой происходит резкое увеличение разрежения, откуда по каналу оно передается в камеру. Диафрагма, преодолевая сопротивление пружины, перемещается и через тягу приоткрывает воздушную заслонку, обедняя смесь. Благодаря тому что заслонка закреплена на оси несимметрично, под действием разрежения, в смесительной камере она стремится открыться, «помогая» пусковому устройству. Воздушная заслонка связана с дроссельной заслонкой механизмом, обеспечивающим приоткрывание дроссельной заслонки при полном закрытии воздушной. Величина приоткрывания дроссельной заслонки должна обеспечить стабильную работу холодного двигателя при прогреве. По мере прогрева двигателя водитель вручную открывает воздушную заслонку и прикрывает дроссельную, снижая частоту вращения коленчатого вала до минимально устойчивой.

Экономайзер мощностных режимов

Для получения от двигателя максимальной мощности необходима обогащенная горючая смесь. Для ее приготовления карбюратор оборудован специальной системой, называемой экономайзером мощностных режимов. Система обеспечивает поступление дополнительного топлива в распылитель, минуя главный топливный жиклер. Для включения экономайзера мощностных режимов применяется пневматический или механический привод. Пневматическийпривод срабатывает при падении разрежения в смесительной камере, а не по мере открывания дроссельной заслонки. Это дает возможность в нужной степени обогащать смесь при разгоне автомобиля, обеспечивая хорошую приемистость, и сохранять обедненную смесь при равномерном движении, обеспечивая экономичность. При прикрытой дроссельной заслонке разрежение из задроссельного пространства поступает по каналу к диафрагме экономайзера. При этом диафрагма сжимает возвратную пружину, а ее толкатель не касается шарика клапана экономайзера, и клапан закрыт. При открытии дроссельной заслонки разрежение под ней (соответственно и у диафрагмы) уменьшается. Под действием пружины диафрагма смещается, и ее толкатель, утапливая шарик клапана, открывает канал экономайзера. Дополнительное топливо из поплавковой камеры поступает в распылитель главной дозирующей системы, обогащая смесь.

Эконостат

Эконостат предназначен для дополнительного обогащения горючей смеси на режимах максимальных нагрузок при высокой частоте вращения коленчатого вала. Эконостат — это распылитель, установленный в самой верхней части смесительной камеры, над диффузором. Топливо в него подается непосредственно из поплавковой камеры по каналу, в котором установлен топливный жиклер, предотвращающий переобогащение горючей смеси. Иногда, для более тонкой настройки экономайзера, в верхнюю часть канала дополнительно устанавливается воздушный жиклер. Через него подводится воздух, который смешивается в канале с топливом. Поскольку выходное отверстие распылителя расположено в зоне низкого разрежения, экономайзер вступает в работу только при полном открывании дроссельной заслонки. При этом частота вращения коленчатого вала должна быть достаточно высокой, чтобы в зоне выходного отверстия распылителя возникло разрежение, достаточное для подъема топлива в канале до уровня распылителя. Поступающее через распылитель топливо смешивается с потоком топливо-воздушной смеси, дополнительно обогащая ее.

Двухкамерный карбюратор

Для улучшения смесеобразования и распределения горючей смеси по цилиндрам необходимо обеспечить низкое сопротивление движению воздуха через диффузор карбюратора при больших нагрузках и поддерживать достаточное разрежение в нем при малых нагрузках. Этим требованиям в наибольшей степени удовлетворяет конструкция двухкамерного карбюратора с последовательным включением камер. Первая камера — основная — обеспечивает работу двигателя на режимах холостого хода, а также при малых и средних нагрузках. Вторая — дополнительная — включается в работу при больших нагрузках. Привод дроссельной заслонки второй камеры может быть механическим или пневматическим. В первом случае начало открывания заслонки второй камеры происходит при определенном угле открытия дроссельной заслонки первой камеры. Во втором случае момент открывания зависит от величины разрежения в смесительных камерах. 

Карбюратор: устройство и принцип работы

Жидкое топливо в бензиновых двигателях не может обеспечить работу поршневой группы. Для создания крутящего момента на коленчатом валу необходима серия циклических микровзрывов в цилиндрах, в то время, как жидкий бензин просто горит. Когда топливо смешивается с воздухом (содержащим большое количество кислорода), создается смесь, способная образовывать вспышку, обладающую большой кинетической энергией.

Автомобильные карбюраторы – история развития

На заре двигателестроения применение газа стало невыгодным. Возникла необходимость создания устройства, которое могло с высокой степенью надежности и безопасности обеспечить формирование из бензина и воздуха качественной смеси. Принцип работы карбюратора первой серии основывался на испарении паров топлива. Камера нагревалась от внешнего источника тепла, бензиновые пары смешивались с воздухом за счет конвекции.

Принцип работы первых карбюраторов

Характеристики такого карбюратора не позволяли развивать большую мощность, поэтому эта конструкция не прижилась в моторостроении. Для первых экземпляров автомобилей было достаточно того, что они просто ехали, в дальнейшем потребности клиентов росли, стал развиваться автоспорт. Возникла необходимость создать карбюратор, не имеющий ограничений по мощности мотора.

Следующее поколение, изобретенное немецкими инженерами Даймлером и Майбахом, работало по принципу распыления топлива. Размеры агрегата уменьшились (не было необходимости встраивать объемную испарительную камеру с емкостью для нагрева), а производительность, напротив, выросла в разы. Фактически был создан вакуумный карбюратор, конструкция которого используется в современных моделях. Главный технический прорыв – переход топлива в газообразное состояние происходил принудительно, что давало простор для экспериментов с производительностью. Разумеется, устройство карбюратора Даймлера – Майбаха было не похоже на современные конструкции высокопроизводительных вакуумных моделей со специальным ресивером и контролем за разряжением воздуха.

Современный вакуумный карбюратор

Однако принцип работы был таким же, как на любом современном образце.

Устройство карбюратора (типовое описание для всех модификаций)

На схеме изображено взаимное расположение основных узлов:

Схема основных узлов карбюратора

  1. Трубка подачи бензина от топливного насоса;
  2. Поплавок с игольчатым клапаном, перекрывающим топливопровод;
  3. Жиклер приема топлива из поплавковой камеры;
  4. Форсунка распылителя жидкого топлива;
  5. Камера смесителя, в которой образовывается топливная смесь;
  6. Воздушная заслонка, регулирующая объем входящего потока чистого воздуха из фильтра;
  7. Диффузор, формирующий направление потока воздуха;
  8. Заслонка дросселя, регулирующая подачу смеси во впускной тракт двигателя.

Как работает карбюратор?

Рассмотрим работу каждого узла.

  1. Бензин под небольшим давлением (не путать с высокопроизводительными форсунками инжекторных систем) поступает в поплавковую камеру. Важно поддерживать уровень топлива в карбюраторе, не превышающий расположение жиклера. Иначе в смесительной камере не будет происходить аэрозольное распыление. Для каждой модели установлен верхний предел заполнения камеры, за которым механически «следит» поплавок с игольчатым клапаном. Такая конструкция выбрана потому, что небольшим усилием можно удерживать давление входящего топливопровода. При достижении предела – клапан запирает входное отверстие, при падении уровня – заполняет камеру бензином;
  2. Недостаток конструкции (к сожалению, безальтернативной) – высокая зависимость от загрязнения. Игольчатый клапан может «зависнуть» в закрытом состоянии, и работа мотора будет остановлена;
  3. Далее бензин поступает в жиклер. Диаметр этого элемента строго регламентирован, не допускаются отклонения даже в сотые доли миллиметра. В противном случае, на входе в смесительную камеру не будет происходить аэрозольное распыление, и топливовоздушная смесь не сформируется, а на жидком бензине, как уже говорилось, ДВС не работает;
  4. Из диффузора выходит аэрозоль из мельчайших капелек бензина, готовая для смешивания с воздухом;
  5. Камера смесителя (фактически – корпус карбюратора) предназначена для формирования газообразной смеси, состоящей из паров бензина и кислорода, содержащегося в воздухе. Бензин, равно как и воздух, попадает в камеру не под напором, а наоборот, за счет разряжения. При движении цилиндра вниз, возникает разница в давлении, своеобразный вакуум. За счет специально рассчитанной формы корпуса, потоки топлива и воздуха смешиваются равномерно, образуя качественную смесь;
  6. Заслонки (дроссельная и воздушная) управляемые педалью газа, дозируют интенсивность потока воздуха и скорость всасывания топлива из жиклера. Мотор работает интенсивнее, скорость вращения коленвала меняется вместе с мощностью и крутящим моментом.

Все системы карбюратора должны работать слаженно: если один из каналов (жиклеров) будет засорен, или неверно настроить положение заслонок, формирование смеси будет нарушено. Возрастет расход бензина, потеряется мощность, силовой агрегат будет работать неустойчиво, поэтому все узлы должны быть чистыми, их размер соответствовать заводским расчетам, произведена настройка регулировочных параметров. На карбюраторе есть ряд подстроечных винтов, правильные технические характеристики устанавливаются с их помощью. На иллюстрации показан пример карбюратора «Озон».

Карбюратор Озон

Хорошо настроенный карбюратор «выжимает» из мотора максимум возможностей при наименьших затратах на топливо. Разные модели карбюраторов могут иметь свои способы регулировки, но общий принцип единый.

У каждого карбюратора есть инструкция по выставлению параметров. Регулировка может производиться самостоятельно, или на профильном сервисе. При смене условий эксплуатации (количество кислорода в воздухе, регулярная нагрузка на автомобиль, включение кондиционера в летний период и пр.), следует произвести повторную настройку.

Чем отличаются карбюратор классической конструкции и устройство с электронным управлением?

Выше по тексту были описаны принципы работы механического карбюратора. Все настройки устанавливаются с помощью винтов, и не могут быть изменены динамически, в ходе работы. Схема карбюратора постоянно совершенствуется, и в новых моделях (некоторые выпускаются по сей день) достаточно много электроники. Например, электромагнитным клапаном оснащены практически все механические модели.

На этом устройстве остановимся подробнее:

Дело в том, что при полностью отпущенной педали газа, дроссельная заслонка перекрыта, и мотор по идее должен заглохнуть. Для работы ДВС без нагрузки (просто чтобы не заводить его каждый раз после остановки), внедрена система холостого хода. С ее помощью, даже при перекрытых заслонках, в корпус поступает минимальный объем бензина и воздуха. Формируемой топливной смеси достаточно для поддержания работоспособности силового агрегата без нагрузки на коленвал.

Этот параметр требует точной регулировки: если обороты холостого хода завышены, вырастет расход бензина, а если занижены – мотор будет глохнуть при остановках. При изменении условий работы (температура, наличие климатической установки с кондиционером, дополнительное оборудование, дающее нагрузку на генератор), режим холостого хода меняется, поэтому был установлен клапан холостого хода (электрический), который управляет процессом линейно, в зависимости от нагрузки.

Никакой программы управления нет, в клапан заходит лишь провод питания. В зависимости от некоторых условий работы, положение клапана меняется.

Электромагнитный клапан на карбюраторе

Это далеко не все электронные системы, которые могут быть внедрены в механику процесса. Например, все регулировки заводятся на блок управления, типа ЭБУ для инжекторных моторов. Такой микрокомпьютер постоянно отслеживает параметры нагрузки на силовой агрегат, и в реальном времени может менять настройки карбюратора. Задавая себе вопрос: «какой карбюратор лучше поставить?», можно рассматривать внедрение в машину современной конструкции. В отличие от карбюраторов традиционного исполнения, электронные системы не нуждаются в периодической настройке, но имеют более высокую стоимость, и сложнее в обслуживании и ремонте. Для обеспечения электроники исходными данными, на двигатель устанавливаются различные датчики, которые следят за параметрами мотора. На основе получаемой информации, исполнительные механизмы карбюратора приводятся в действие.

Виды карбюраторов по производителям – какой выбрать?

У всех на слуху различие т.н. китайской продукции, и карбюраторов именитых брендов (в список которых входят и ДААЗ, и Солекс, и Озон…). На самом деле, это не более, чем предрассудки. Изделие, выпущенное на заводе, с соблюдением технологии, имеющее сертификат качества, будет хорошо работать вне зависимости от географии производства. Низким качеством отличаются лишь так называемые товары «no-name», собранные крестьянами из Поднебесной буквально напильником на коленке, поэтому при подборе нового карбюратора, прежде всего ориентируйтесь на известность производителя и наличие сопроводительной документации. Разумеется, и гарантийные обязательства должны быть обеспечены сервисными центрами в пределах доступности. То есть, если вы живете в Калининграде, а ближайший сервисный центр производителя в Димитровграде – есть смысл подыскать другой экземпляр.

Итог

Не следует бояться этого на первый взгляд сложного устройства. Схема работы простая и надежная, залог нормального функционирования – чистота всех внутренних элементов и правильная настройка.

 

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Дозирующие системы карбюратора

Мы продолжаем цикл статей о карбюраторном впрыске. Двигатель автомобиля в процессе езды функционирует в различных режимах. Для отдельных рабочих режимов требуется топливовоздушная смесь с разным составом. Зачастую на таких режимах происходят постоянные и резкие изменения, связанные с количеством паров горючего.

Главной задачей карбюратора становится приготовление такой смеси, которая будет оптимальной для любого режима работы мотора. Устройство карбюратора, который имеет распылитель с постоянным сечением, включает в себя различные дозирующие устройства. Каждый из этих элементов ступенчато включается в работу карбюратора или происходит поэтапное отключение, а также возможна одновременная работа. Это будет зависеть от режимов нагрузки, оборотов силового агрегата, угла открытия заслонки дросселя и т.д. Дозирующие системы карбюраторного впрыска отвечают  за оптимальный состав рабочей топливовоздушной смеси во всех режимах и одновременно призваны обеспечить максимум мощности и наилучший показатель экономичности.

Рекомендуем дополнительно прочесть статью об устройстве карбюратора. Из этой статьи Вы сможете узнать об основных элементах конструкции и принципах работы данного устройства.

Содержание статьи

Главная система дозирования топлива

Указанная главная дозирующая система является таким элементом, который встречается в конструкции практически любого карбюратора. Актуальные версии получили пневматическую систему для компенсации состава топливовоздушной рабочей смеси. В основе системы лежит 1 главный топливный жиклер и 1 главный воздушный жиклер. Данные жиклеры выходят в колодец, который называют эмульсионным.

Эмульсионный колодец расположен вертикально или под наклоном зависимо от модели и модификации карбюратора. Поток воздуха проходит по жиклеру для подачи воздуха и попадает в эмульсионную трубку. Трубка имеет ряды отверстий, расположенных вертикально. Между эмульсионной трубкой и стенками эмульсионного колодца создается топливовоздушная эмульсия первичного типа. Дальнейшим маршрутом эмульсии становится смесительная камера, куда она движется по каналу и попадает в распылитель. Главный топливный жиклер находится в нижней части. По этой причине уровень горючего по мере расходования эмульсии из распылителя склонен к подъему. Так происходит благодаря поступлению горючего из поплавковой камеры. Количество поступающего топлива ограничивает топливный жиклер.

Снижение уровня горючего в эмульсионном колодце означает, что в эмульсию попадает большее количество воздуха, который  проходит через отверстия в эмульсионной трубке. Итогом становится возрастание доли воздуха в рабочей смеси, что и определяет большую степень компенсации. Встречаются также системы, когда бензин и воздух сразу попадают внутрь трубки. Ранние конструкции имели систему дозирования с параллельными жиклерами и диффузорами, расположенными последовательно. В таких устройствах за компенсацию практически полностью отвечала система холостого хода. Также делался упор на упругость пластин, которые открывали доступ для потока воздуха в более крупном диффузоре. Компенсационный параллельный жиклер обеспечивал подачу топлива.

Конструктивно простые карбюраторы авто с небольшим рабочим объемом мотора имели главную систему дозирования, которая состояла из компенсационного колодца и  компенсационного ограничительного жиклера. Такое решение было неспособно осуществить значительную компенсацию и обеспечить подачу должного количества топлива во всех случаях. Для гибкой эксплуатации во всех режимах работы ДВС такие карбюраторы не подходили.

Более совершенные разработки дозирующей системы карбюраторного впрыска способны обеспечивать такую гибкость рабочей топливовоздушной смеси, которая находится на отметке от 1/14 до 1/17, где первая цифра указывает на весовую часть бензина, а вторая воздуха. Главные режимы работы мотора становятся экономичными  благодаря системе дозирования. Система реализует приготовление обедненных составов около 1/16 или 1/16,5.

Горизонтальный карбюратор

Отдельное место занимает конструкция, которая применена в  устройстве главной дозирующей системы горизонтального карбюратора с регулировкой игольного типа. Такая система обеспечивает одновременное механическое изменение количества воздуха, который миновал диффузор благодаря подъему шибера, и регулировку количества попадающего в диффузор горючего, которое дозируется посредством  иглы с переменным профилем.

Игла проходит через жиклер и механическим способом изменяет проходное сечение. В таких карбюраторах четко задано соотношение как сечения диффузора, так и жиклера. Эти сечения напрямую зависят от той высоты, на которую поднимается шибер. Карбюраторы, которые имеют постоянное разрежения,  в момент времени демонстрируют изменение данной характеристики по автоматическому принципу. Задача реализована посредством демпфирующей системы, которая в основе имеет золотник, а также опирается на разрежение в области заслонки дросселя. Система функционирует благодаря определяемой  нагрузке на силовой агрегат и учету угла поворота дроссельной заслонки.

Переходная система во вторичной камере

Если говорить о переходной системе с дросселями, открывающимися последовательно во 2-й камере, то данное решение напоминает систему холостого хода, но с рядом особенностей.

Главная дозирующая система, расположенная во 2-й камере карбюратора, изначально рассчитана на то, чтобы обеспечивать «богатую» смесь для мощности. Благодаря этому камера не нуждается в возможности серьезной компенсации смеси сравнительно с первичной камерой. Результатом становится то, что переходная система подключается параллельно, а ее топливный жиклер соединен не с колодцем для эмульсии главной системы дозирования, а с поплавковой камерой.

Получается, что в работу вступает как переходная, так и главная система во вторичной камере. Включение обеих систем происходит одновременно, что и позволяет обогатить рабочую смесь до нужной степени.

Работа карбюратора при низком разрежении

Система, отвечающая за холостой ход, а также переходная система и система вентиляции картера отвечают за  обеспечение стабильной работы мотора в таких режимах, когда разрежение минимально. Этого вакуума оказывается мало для того, чтобы задействовать главную систему дозирования, так что в таких режимах работы эти системы реализуют коррекцию состава топливовоздушной смеси.

Когда мотор находится в режиме холостых оборотов, над дросселем нет того вакуума, который необходим для активации главной системы дозирования. Очевидно, что для режима работы с низким разрежением и при слабо открытой заслонке дросселя понадобилась еще одна система. Эта система отвечает за процесс образования рабочей смеси при незначительном расходе воздуха, который протекает при таких режимах в смесительной камере.

Система холостого хода

Крайне редко встречается параллельная система, чаще представлена последовательная или автономная. По типу распыла выделяют дроссельный распыл и распыл в пространстве за дросселем. Система устроена так, что в основе имеются каналы  для воздуха, горючего и эмульсии. Также присутствуют дозирующие элементы, под которыми понимаются жиклеры для работы на холостом ходу. Жиклер холостого хода, отвечающий за подачу топлива, берет эмульсию в нижней части соответствующего колодца главной дозирующей системы.

Получается, что данный жиклер представляет собой элемент в топливном канале дозирующей системы. Жиклер, отвечающий за подачу воздуха на холостом ходу, соединяется с пространством в смесительной камере. Речь идет о верхней части камеры, а такое устройство способно реализовать изменение количества подаваемого воздуха, который поступает в систему холостого хода при различных нагрузках и рабочих режимах силового агрегата.

Благодаря указанным характеристикам система холостого хода является важным участником в цепочке элементов, которые участвуют в процессе коррекции состава рабочей смеси для главной системы дозирования.

Чаще всего бывает так, что воздух попадает в устройство холостого хода по нескольким каналам (каналов бывает два или три). Такая реализация обеспечивает процесс образования эмульсии по двум или трем ступеням, что способствует получению более гомогенной рабочей смеси и одновременно улучшает равномерность ее состава по каждому отдельно взятому цилиндру ДВС.

Система холостого хода имеет выход применительно к пространству смесительной камеры. В пространстве за дроссельной заслонкой имеется достаточный вакуум при режиме холостых оборотов, которого хватает для работы системы холостого хода. В канал системы открыты переходные отверстия. Эти отверстия находятся в области кромки  слегка открытой заслонки дросселя.

Модели К 88, ДААЗ 2108 и некоторые другие получили единственное вертикальное отверстие, похожее на щель. Одна часть находится ниже кромки заслонки дросселя и отвечает за работу на холостых оборотах. Если начать открывать дроссельную заслонку, тогда щель увеличивается, способствуя работе мотора при переходных режимах.

На холостых оборотах заслонка дросселя практически полностью перекрыта. Необходимый вакуум в карбюраторе имеется сразу за заслонкой. Такое разрежение позволяет через отверстие холостого хода получить топливо из главной дозирующей системы. Это топливо идет через топливный жиклер холостого хода и смешивается с воздухом, который попадает через воздушный жиклер холостого хода и другие каналы для его подачи. Полученная топливовоздушная рабочая смесь становится обогащенной, что и нужно мотору для работы в режиме холостых оборотов.  Доля бензина и воздуха в этой смеси представлена в рамках от 1/12 до 1/14,5.

Под переходным режимом следует понимать работу ДВС с небольшим углом открытия заслонки дросселя. При указанном режиме богатая смесь из каналов системы холостого хода оказывается в зоне кромки заслонки, проходит через единое отверстие или конструктивную группу переходных отверстий, смешивается с поступающим воздухом и обедняется в определенных пределах (1/15 или 1/16,5).

Как уже говорилось, определенные модели карбюраторов в области кромки заслонки дросселя могут иметь только одно отверстие, похожее на щель. Это отверстие расположено вертикально. Конструктивно данное решение способно обеспечить эффективную компенсацию и достаточно плавно изменять состав топливовоздушной рабочей смеси во время режима перехода. Если  учесть, что форму щели можно задать, тогда уместно говорить об отличной переходной характеристике. Когда мотор работает в других  режимах система холостого хода  производит компенсацию состава рабочей смеси, которую образует главная дозирующая система. Получается, что система холостого хода играет важную роль  в общем устройстве всего карбюраторного впрыска и обеспечивает правильную его работу.

Не редки такие случаи, когда после непрофессиональной настройки холостого хода и при этом нормально выставленных для этого режима оборотах карбюратор все равно демонстрировал низкую эффективность или даже неработоспособность.

Автономный холостой ход

В ряде конструкций систему делают автономной, оснащая дополнительными устройствами для образования топливовоздушной рабочей смеси. Другими словами, получается своеобразный дополнительный карбюратор, работающий внутри основного карбюратора и приспособленный для эффективного функционирования в условиях низкого расхода воздуха. Примером может послужить автономная система холостого хода типа «Каскад». Такая система нужна для того, чтобы состав рабочей смеси оставался равномерным при распределении по цилиндрам силовой установки, а также для стабилизации ряда характеристик и самого процесса смесеобразования, согласованности с моментом зажигания и т.п.

Данная система конструктивно получила главный канал. Входное отверстие канала находится в области той кромки заслонки дросселя, которая опускается. Сама ложбинка канала имеет выход в область под дросселем. Такое расположение способно обеспечить возможность немедленно прекратить движение воздуха и горючего в канале в тот момент, когда осуществляется открытие заслонки дросселя. Данный канал становится основным путем для эмульсии, которая образовалась в системе режима работы на холостых оборотах.

Наилучшее качество распыла достигается благодаря смешиванию этой эмульсии с воздухом при помощи особых распылителей. Распылители способны в режиме малого расхода воздуха и эмульсии придать рабочей топливовоздушной  смеси высочайшую скорость движения, граничащую со звуковой скоростью.

Такая особенность автономных решений холостого хода позволяет обеспечить наиболее качественный распыл смеси, который невозможен при использовании в карбюраторном впрыске других систем. Продвинутые карбюраторы могут иметь систему автономного холостого хода, которая характеризуется эмульгированием от двукратного до четырехкратного.

Подобные  автономные системы могут быть устроены отлично друг от друга. Наиболее простую схему устройства демонстрирует карбюратор модели ДААЗ 2140. Данный карбюратор имеет конструкцию, при которой воздушный поток проходит через щель небольшого размера. В эту щель в верхней части дополнительно открыта еще одна щель из канала, по которому поступает эмульсия. Благодаря соотношению сечений этих щелей эмульсия и воздух получают скорости, приближенные к скорости звука.

Автономный холостой ход типа «Каскад» получил тип распылителя, который напоминает по своей форме кольцо и имеет отверстия, расположенные по кругу. Идущая из этих отверстий эмульсия встречается с воздушным потоком. Вся система автономного холостого хода данной конструкции сильно напоминает принципы работы смесительной камеры карбюратора. Распылитель в центре оснащен специальным регулировочным винтом с особым профилем. Этим винтом производится регулировка количества смеси в автономной системе.

Встречаются системы холостого хода, которые имеют в канале движения эмульсии распылители-сопла, направленные в центральную зону общего канала. Поток воздуха в такой конструкции подаётся через регулировочный винт, также оборудованный воздушным каналом.

Принудительный холостой ход

В таком режиме система подключает экономайзер. Указанное устройство является клапаном,  который способен отключать подачу горючего. Дополнительным элементом становится система управления экономайзером, которая может быть электронно-пневматической или только электронной.

Когда ДВС переходит в режим принудительного холостого хода, на  исполняющий клапан подается сигнал управления. В моторах, которые получили управление посредством микропроцессора, сигнал создает данная контролирующая система. Исполняющий клапан может находиться в выходном отверстии автоматической системы холостого хода и осуществлять перекрытие канала для подачи топливовоздушной рабочей смеси.

Вторым вариантом становится конструкция клапана с иглой, которая прерывает топливоподачу через жиклер. Такая конструкция приводит к росту инерционности всей системы. Особенность заключается в небольшом отрезке времени, когда в момент выхода из принудительного режима холостых оборотов в работу включается общая система холостого хода, но горючее еще не поступает по главному каналу через жиклер. Среди главных плюсов отмечается дешевизна и простота конструкции, а также меньшая склонность к потенциальным неисправностям в процессе активной эксплуатации.

Система с клапаном в канале является конструктивным решением в моделях ДААЗ 2104, 2105, 2107. Смена режимов происходит моментально, но ряд сложностей в процессе обслуживания и эксплуатации зачастую приводил к тому, что владельцы авто с подобным устройством системы вынуждены были деактивировать принудительный холостой ход.

Своеобразно система принудительного холостого хода реализована в модели К90. Устройство имеет такие каналы холостого хода в двух камерах, которые в конце получили солидные полости. В указанных полостях находятся тарелки электромагнитных клапанов. Когда на них происходит подача напряжения, тогда подача рабочей топливовоздушной смеси прекращается. Эти особенности позволяют карбюратору работать в штатном режиме тогда, когда экономайзер сломался.

Если  карбюраторный автомобиль имеет дополнительное оборудование, отнимающее мощность мотора (АКПП, климатическую установку, генератор повышенной мощности и т.п.) тогда в конструкции можно встретить управляемый упор заслонки дросселя. Задачей такого решения становится стабилизация  холостых оборотов во время включения дополнительных устройств и роста нагрузки на мотор. Дроссельная заслонка в таких режимах немного приподнимается.

Эконостат и экономайзер

Указанные устройства используются для того, чтобы обеспечить приток горючего в смесительную камеру и подать «богатую» топливовоздушную рабочую  смесь при высоком разрежении. Под этим понимаются пиковые нагрузки на мотор, при которых обедненная и экономичная смесь не способна обеспечить должной отдачи от силового агрегата.

Экономайзер может управляться принудительно, как пневматическим способом, так и механически. Эконостат является   устройством в виде трубки с различным сечением, в которой дополнительно могут быть эмульсионные каналы. Эти каналы выходят в верхнее пространство смесительной камеры над диффузором. Именно в этой области возникает разрежение во время пиковых нагрузок на ДВС.

Ранние модели карбюраторов, которые не имели эмульгирования,  получили экономайзер с жиклером, который открывался принудительно и работал в параллели с топливным жиклером главной системы дозирования. Карбюраторы с эмульгацией данную конструкцию не получили. Дешевые модели карбюраторов, которые всегда готовят относительно «богатую» смесь почти во всех режимах, лишены экономайзера и эконостата.

Система вентиляции картера и рециркуляции отработавших газов

Вентиляция картера позволяет двигателю переработать вредные картерные газы. Вентиляция картера имеет в основе два канала.  Один канал большего размера, другой меньшего. Первый канал является трубкой. В данной трубке находятся такие элементы, как пламегаситель и маслоотделитель. Картерные газы проходят через эти элементы и попадают в фильтр. Фильтр может быть инерционно-масляным перед масляной ванной или картонным воздушным фильтром, расположенным рядом с входом в первичную камеру карбюратора. Далее газы проходят процесс смешивания с воздухом и отправляются в цилиндры двигателя.

Холостой ход и переходной режим отличаются слабым разрежением над камерой. Для решения этой проблемы существует вторая трубка-канал для вентиляции. Данная трубка имеет меньший диаметр и соединяет большую трубку с пространством за заслонкой дросселя, где имеется подходящий для системы вакуум. Разные модели карбюраторов имеют золотник в малой трубке для того, чтобы перекрыть сообщение с большой трубкой в тот момент, когда открывается заслонка дросселя. Решение позволяет предотвратить проникновение воздуха под дроссель одновременно с его забором в смесительную камеру карбюратора.

Рециркуляция отработавших газов делает возможным заменить часть воздуха выхлопом. Это происходит на тех режимах, когда осуществляется торможение двигателем. Система позволяет понизить степень содержания токсичных веществ в выхлопе автомобиля. Встречается данная система не на всех типах моторов.

Устройство холодного пуска

Указанное пусковое устройство является заслонкой, которая имеет систему управления и располагается над смесительной камерой. Если эту заслонку закрыть, тогда разрежение в смесительной камере заметно возрастает. Результатом становится немедленное обогащение топливовоздушной смеси, что идеально для запуска холодного ДВС. Заслонка до конца не перекрывает подачу воздуха. Это обусловлено как расположением, так и тем, что конструктивно для нее сделан упор на пружину.

Еще одним вариантом становится установка клапана, который пропускает воздух в небольших количествах. Чтобы запустить  мотор и вывести его на рабочую температуру, нужно закрыть заслонку воздуха и немного открыть заслонку дросселя. Воздушная заслонка может быть оборудована полностью механическим, полуавтоматическим или автоматическим приводом.

Механический привод приводит в действие водитель из салона. Это делается  ручкой, которую называют манетка. В народе устройство получило более привычное название «подсос». Привод полуавтоматического типа получил большее распространение благодаря простоте и надежности. Водитель прикрывает заслонку самостоятельно, а открытие происходит автоматически. За открытие отвечает диафрагма, которая реагирует  на появившийся вакуум во впуске. Такая реализация не позволяет смеси стать сильно обогащенной и препятствует тому, чтобы двигатель немедленно заглох после холодного запуска.

Хотя автоматический холодный пуск на отечественных машинах не сильно распространен, этого нельзя сказать о европейских и японских авто. К недостаткам автоматического решения относят его ломучесть, малый ресурс и проблематичное использование в условиях температурных перепадов.

Такой тип привода оказался самым сложным по конструкции и больше годится для стран с умеренным климатом. Автомат устроен так, что заслонка прикрыта специальным термоэлементом. Элемент прогревался жидкостью из охлаждающей системы, а также мог греться отдельным электронагревателем. Чем сильнее грелся мотор, тем больше термоэлемент открывал заслонку и давал проход воздуху. Автоматические системы с электронагревателями термоэлемента имели привод, который оснащался температурным датчиком.

Ускорительный насос

Такое устройство обеспечивает подачу дополнительного топлива в моменты резкого дросселирования. В условиях моментального открытия заслонки возникает нарушение в процессе смесеобразования во впуске, а результатом становится подача карбюраторным впрыском в цилиндры мотора недостаточного количества горючего на начальной стадии интенсивного разгона.

Насос нейтрализует «провал» и отвечает за правильный состав рабочей смеси в подобном режиме. Ускорительный насос бывает двух видов: поршневой насос и диафрагменный. Первый тип ускорителя уступает второму по стабильности ряда параметров. Главным минусом является его неспособность влиять на впрыск и интенсивность подачи зависимо от  того угла, на который повернута дроссельная заслонка. Модели карбюраторов с регулировкой игольного типа или с постоянным разрежением способны готовить оптимальную по составу рабочую смесь для всех режимов работы силовой установки. Данные карбюраторы не требуют установки насоса-ускорителя.

Читайте также

  • Тюнинг и настройка карбюратора

    Доработка и модернизация карбюратора. Основные недостатки системы карбюраторного впрыска и способы их устранения, настройка. Тюнинг впускного коллектора.

Карбюратор | Системы энергообеспечения и пуска

Основными частями и деталями простейшего карбюратора являются: поплавковая камера 7 с поплавком 8 и запорной иглой 6, смесительная камера 1, диффузор 12, распылитель 11, жиклер 9 и дроссельная заслонка 2.

Необходимый уровень бензина в поплавковой камере 7 во время работы двигателя автоматически поддерживается при помощи поплавка 8 и запорной иглы 6. При пониженном уровне бензина поплавок опускается и вместе с ним опускается игла 6. Входное отверстие открывается, и бензин поступает в поплавковую камеру. Когда бензин в поплавковой камере достигнет определенного уровня, поплавок и вместе с ним игла поднимутся настолько, что игла закроет входное отверстие и поступление бензина в поплавковую камеру прекратится.

Рис. Схема простейшего карбюратора: 1 — смесительная камера; 2 — дроссельная заслонка; 3 — отверстие, сообщающее поплавковую камеру с атмосферой; 4 — гнездо игольчатого клапана; 5 — входной канал; 6 — запорная игла; 7 — поплавковая камера; 8 — поплавок; 9 — жиклер; 10 — воздушный патрубок; 11 — распылитель; 12 — диффузор

Поплавковая камера через жиклер 9 соединена с распылителем 11. В жиклере имеется калиброванное отверстие через которое в единицу времени может протекать строго определенное количество бензина.

Распылитель 11 представляет собой трубку с отверстием для выхода бензина. Бензин в распылителе и поплавковой камере находится при неработающем двигателе на одном уровне. Уровень бензина в карбюраторе регулируется так, чтобы он был ниже верхнего конца распылителя.

Поплавковая камера через отверстие 3 соединена с атмосферой. Если двигатель не работает, то в диффузоре 12 также будет атмосферное давление и бензин из распылителя вытекать не будет.

При помощи дроссельной заслонки изменяют количество горючей смеси, поступающей в цилиндры двигателя: чем больше открыта дроссельная заслонка, тем больше смеси поступает в цилиндры. Управление дроссельной заслонкой осуществляется обычно при помощи ножной педали, а также кнопкой, расположенной на щитке приборов.

Карбюратор своей смесительной камерой 1 присоединен к впускному трубопроводу.

Процесс образования горючей смеси в карбюраторе происходит следующим образом. При такте впуска поршень в цилиндре перемещается к нижней мертвой точке и засасывает воздух через впускной трубопровод и карбюратор. Проходное сечение диффузора 12 меньше сечений воздушного патрубка 10 и смесительной камеры 1, поэтому воздух через диффузор проходит с большой скоростью.

Вследствие этого в зоне наибольшего сужения диффузора, где расположен распылитель, создается разреженней бензин начинает вытекать из распылителя. Вытекающий из распылителя бензин захватывается потоком воздуха и вместе с ним проходит в смесительную камеру. При этом бензин распыляется на мельчайшие капельки, частично испаряется и смешивается с воздухом.

Испарение бензина и перемешивание его с воздухом продолжаются во впускном трубопроводе и в цилиндрах двигателя.

Автомобильный двигатель работает обычно на переменном режиме, так как мощность и число оборотов его коленчатого вала должны изменяться в зависимости от условий движения автомобиля. В соответствии с этим должны изменяться количество и состав подаваемой в цилиндры горючей смеси.

При запуске непрогретого двигателя карбюратор должен приготавливать богатую горючую смесь, так как бензин в этом случае испаряется плохо и для обеспечения запуска необходимо увеличивать подачу бензина.

При работе на средних нагрузках двигатель должен работать наиболее экономично, для чего карбюратор должен приготавливать обедненную смесь; небольшое падение мощности в этом случае не отражается на режиме движения автомобиля.

Наибольшая мощность двигателя может быть получена, если в цилиндры подается большое количество обогащенной смеси. Поэтому при полном открытии дроссельной заслонки карбюратор должен приготавливать обогащенную смесь. Обогащенная смесь необходима и для резкого увеличения числа оборотов коленчатого вала двигателя, так как она сгорает в цилиндре быстрее, чем нормальная горючая смесь.

Рассмотренный выше простейший карбюратор не обеспечивает необходимого изменения состава горючей смеси в зависимости от изменения режима работы двигателя.

В простейшем карбюраторе при малом открытии дроссельной заслонки через него проходит небольшое количество воздуха; скорость движения воздуха через диффузор настолько мала, что разрежение в диффузоре оказывается недостаточным для поступления из распылителя необходимого количества бензина, смесь получается бедной.

При переходе с малых оборотов холостого хода двигателя на режим средних нагрузок с увеличением разрежения в диффузоре расход бензина возрастает в большей мере, чем расход воздуха, и горючая смесь чрезмерно обогащается.

По мере дальнейшего открытия дроссельной заслонки расход бензина изменяется пропорционально расходу воздуха, состав смеси остается постоянным, и простейший карбюратор не обеспечивает необходимого обогащения горючей смеси при полном открытии дроссельной заслонки.

Для обеспечения необходимого состава горючей смеси на различных режимах работы двигателя современные карбюраторы имеют дополнительные устройства:

  • главную дозирующую систему
  • систему холостого хода
  • экономайзер
  • ускорительный насос
  • пусковое устройство

Главная дозирующая система

Главная дозирующая система обеспечивает постепенное обеднение горючей смеси по мере увеличения разрежения в диффузоре, в результате чего при средних нагрузках двигатель работает на экономичной горючей смеси.

Рис. Схема карбюратора с компенсационным жиклером: 1 — дроссельная заслонка; 2 — калиброванное отверстие; 3 — распылитель компенсационного жиклера; 4 — компенсационный жиклер; 5 — компенсационный колодец; 6 — главный жиклер; 7 — распылитель главного жиклера; 8 — диффузор

В современных карбюраторах применяются дозирующие системы с компенсационным жиклером, с эмульсированием бензина в распылителе и с регулированием разрежения в диффузоре. В карбюраторе с компенсационным жиклером необходимый состав горючей смеси получается при помощи двух жиклеров: главного 6 и компенсационного 4.

В таком карбюраторе изменение состава горючей смеси в зависимости от режима работы двигателя осуществляется системой компенсационного жиклера.

Распылитель 3 сообщается с дополнительным, т. е. компенсационным, колодцем 5, бензин в который поступает через компенсационный жиклер 4.

Компенсационный колодец сообщается с атмосферой, и поэтому через компенсационный жиклер в колодец поступает почти постоянное количество бензина в зависимости от разности уровней в колодце и поплавковой камере.

При работающем двигателе с увеличением открытия дроссельной заслонки расход бензина через главный жиклер увеличивается, а расход бензина через компенсационный жиклер остается почти неизменным. Общее количество бензина, вытекающего из обоих распылителей, увеличивается в меньшей степени, чем расход воздуха, и горючая смесь обедняется.

Обеднению горючей смеси способствует также приток воздуха, засасываемого через компенсационный колодец и проходящего вместе с бензином через распылитель.

Проходные сечения главного и компенсационного жиклеров выбираются такими, чтобы обеспечить экономичный состав горючей смеси при работе двигателя на средних нагрузках.

Схема дозирующей системы с эмульсированием бензина в распылителе показана на рисунке.

Бензин из поплавковой камеры через главный жиклер 8 поступает в колодец 4. Колодец сообщается с атмосферой через воздушный жиклер 3 и эмульсионную трубку 5 с несколькими отверстиями в нижней части.

При выходе бензина из колодца через распылитель 2 в колодце возникает разрежение. Вследствие этого в колодец начинают поступать бензин через главный жиклер 8 и воздух через жиклер 3. Бензин и воздух перемешиваются в колодце и выходят через распылитель в виде эмульсии. По мере увеличения разрежения в диффузоре расход бензина из колодца повышается в большей степени, чем приток его через жиклер 8. Уровень бензина в колодце понижается, увеличивается число открытых отверстий в эмульсионной трубке и количество воздуха, поступающего в колодец.

В результате расход бензина с увеличением разрежения в диффузоре возрастает медленнее, чем в простейшем карбюраторе, и горючая смесь обедняется.

Сечения главного и воздушного жиклеров выбираются такими, чтобы состав горючей смеси при работе двигателя на средних нагрузках был экономичным.

Схема карбюратора, в котором необходимый состав горючей смеси, обеспечивается дозирующей системой с автоматическим регулированием разрежения в диффузоре, показана на рисунке.

Рис. Схема дозирующей системы с эмульсированием бензина в распылителе: 1 — воздушный на трубок; 2 — распылитель; 3 — воздушный жиклер; 4 — колодец; 5 — эмульсионная трубка; о — отверстия для воздуха; 7 — поплавковая камера; 8 — главный жиклер; 9 — дроссельная заслонка; 10 — диффузор

Карбюратор данного типа имеет два или три диффузора, два жиклера и два распылителя. К нижней части большого диффузора 1 прикреплены четыре упругие пластины 4, которые нижними концами прижимаются к среднему диффузору 3 и закрывают проход между большим и средним диффузорами. В горловине малого диффузора 2 размещен распылитель 7 главного жиклера 5. Через главный жиклер проходит основное количество бензина. В горловине большого диффузора 1 размещен распылитель 8 дополнительного жиклера 6.

Количество подаваемого через жиклеры бензина зависит от разрежения в диффузорах.

Регулирование состава горючей смеси осуществляется главным жиклером 5 за счет того, что разрежение в малом диффузоре изменяется не пропорционально общему расходу воздуха.

При небольшом открытии дроссельной заслонки, когда через карбюратор проходит небольшое количество воздуха, весь воздушный поток направляется через малый и средний диффузоры. В малом диффузоре создается такое разрежение, при котором из распылителя главного жиклера выходит количество бензина, достаточное для получения обогащенной смеси.

Рис. Схема карбюратора с автоматическим регулированием разрежения в диффузоре: 1 — большой диффузор; 2 — малый диффузор; 3 — средний диффузор; 4 — упругая пластина; 5 — главный жиклер; 6 — дополнительный жиклер; 7 — распылитель главного жиклера; 8 — распылитель дополнительного жиклера

При увеличении открытия дроссельной заслонки или при увеличении числа оборотов коленчатого вала двигателя количество воздуха, проходящего через карбюратор, возрастает.

Под действием напора воздуха пластины 4 отгибаются и часть воздуха проходит мимо малого диффузора. Чем больше поток воздуха, тем больше раздвигаются пластины и тем больше воздуха проходит мимо малого диффузора. В результате разрежение в малом диффузоре не увеличивается пропорционально увеличению воздушного потока; расход бензина через главный жиклер по сравнению с общим расходом воздуха уменьшается, и горючая смесь обедняется.

При правильном подборе обоих жиклеров почти на всех режимах работы двигателя можно получить и горючую смесь нужного состава.

Система холостого хода

При работе двигателя на холостой ходу в целях экономии горючего и уменьшения износа деталей двигателя стремятся, чтобы , число оборотов коленчатого вала было минимальным. На холостом ходу двигатель работает с почти полностью прикрытой дроссельной заслонкой. Расход воздуха при этом мал, и разрежение в диффузоре недостаточно для подачи не; обходимого количества бензина из главной дозирующей системы.

Требуемый состав горючей смеси для этого режима работы двигателя обеспечивается системой холостого хода. Бензин через жиклер 2 поступает в эмульсионный канал 7, расположенный, в корпусе карбюратора. В этот же канал через жиклер 1 поступает воздух. Воздух и бензин перемешиваются и в виде эмульсии выходят из отверстия 9.

В современных карбюраторах в целях плавного перехода с оборотов холостого хода на режим средних оборотов имеются два отверстия 8 и 9 для выхода эмульсии. Отверстие 8 находится перед дроссельной заслонкой, а другое 9 — за ней. Когда дроссельная заслонка прикрыта, эмульсия выходит через отверстие 9, а через отверстие 8 в эмульсионный канал 7 дополнительно подсасывается воздух.

При плавном открытии дроссельной заслонки разрежение создается также около отверстия 8 и из него начинает выходить эмульсия, что обеспечивает необходимое количество и надлежащий состав горючей смеси.

По мере открытия дроссельной заслонки увеличивается воздушный поток; соответственно увеличиваются разрежение в диффузоре и поступление бензина из главного жиклера. Карбюратор переходит с работы системы холостого хода на работу главной дозирующей системы.

Рис. Система холостого хода: 1 — воздушный жиклер; 2 — жиклер холостого хода; 3 — главный жиклер; 4 — винт регулировки числа оборотов холостого хода; 5 — рычажок на оси дроссельной заслонки; 6 — винт регулировки состава горючей смеси; 7 — эмульсионный канал; 8 и 9 — отверстия для выхода эмульсии; 10 — дроссельная заслонка

Количество эмульсии, подаваемое системой холостого хода, регулируется винтом 6, при помощи которого изменяется проходное сечение отверстия 9. При ввертывании винта количество эмульсии уменьшается, при вывертывании — увеличивается.

Число оборотов коленчатого вала двигателя на холостом ходу регулируется изменением величины открытия дроссельной заслонки 10 при помощи винта 4.

Экономайзер

Главная дозирующая система карбюратора регулируется так, чтобы на средних нагрузках двигатель работал на экономичной смеси. При режиме максимальных нагрузок в цилиндры двигателя нужно подавать обогащенную смесь. Обогащение смеси обеспечивается дополнительным устройством карбюратора — экономайзером.

Клапан 7 экономайзера прижимается к седлу пружиной 9 и открывается под нажимом стержня 5, имеющего  на верхнем конце поршень 3. Поршень помещен в цилиндре 4, нижняя полость которого соединена с воздушным патрубком, а верхняя — каналом 8 со смесительной камерой за дроссельной заслонкой.

Поршень со стержнем под действием пружины 2 стремится занять нижнее положение. При небольшом открытии дроссельной заслонки за ней создается большое разрежение, которое передается по каналу 8 в верхнюю полость цилиндра экономайзера. Под действием разрежения поршень сжимает пружину 2 и занимает верхнее положение. Клапан 7 закрывает входное отверстие.

С увеличением открытия дроссельной заслонки разрежение в воздушном патрубке настолько уменьшается, что под действием пружины 2 поршень 3 опустится вниз, стержень 5 надавит на клапан 7, который откроет входное отверстие, из поплавковой камеры через жиклер 10 в распылитель 1 начнет поступать дополнительное количество бензина — смесь обогащается.

Ускорительный насос

Ускорительный насос предназначен для кратковременного обогащения горючей смеси при резком открытии дроссельной заслонки.

Рис. Схема экономайзера с пневматическим приводом: 1 — распылитель; 2 — пружина; 3 — поршень; 4 — цилиндр; 5 — стержень; 6 — главный жиклер; 7 — клапан экономайзера; 8 — канал; 9 — пружина клапана; 10 — жиклер экономайзера

В корпусе карбюратора имеется цилиндр 8, в котором помещен поршень 7 насоса. Цилиндр соединен с поплавковой камерой каналом, в начале которого размещен обратный клапан 9. В выходном канале имеется игольчатый клапан 10.

Поршень приводится в действие механизмом привода дроссельной заслонки посредством рычага 13, поводка 12, тяги 11 и нажимной пластины 4, которая действует на поршень через пружину 5. При плавном открытии дроссельной заслонки поршень насоса медленно опускается и постепенно выжимает бензин из цилиндра в поплавковую камеру через открытый обратный клапан 9.

При резком открытии дроссельной заслонки поршень быстро опускается и выжимает бензин из цилиндра. При этом бензин приподнимает обратный клапан, который перекрывает входное отверстие, препятствуя выходу бензина обратно в поплавковую камеру. Бензин, приподнимая игольчатый клапан 10, впрыскивается через жиклер 3 в смесительную камеру карбюратора и обогащает горючую смесь.

Пусковое устройство

Наиболее распространенным устройством для обогащения горючей смеси при запуске двигателя является воздушная заслонка 12, установленная в воздушном патрубке карбюратора.

При запуске двигателя дроссельную заслонку слегка открывают, а воздушную заслонку прикрывают. Вследствие этого при провертывании коленчатого вала двигателя в карбюраторе создается сильное разрежение и бензин вытекает изо всех жиклеров — горючая смесь обогащается.

Воздушная заслонка имеет предохранительный клапан 11, который открывается автоматически, как только двигатель начинает работать.

Управление воздушной заслонкой осуществляется при помощи кнопки, расположенной на щитке приборов и соединенной с заслонкой гибкой тягой.

Рис. Схема ускорительного насоса с механическим приводом: 1 — воздушный патрубок; 2 — воздушный канал; 3 — жиклер ускорительного насоса; 4 — нажимная пластина; 5 — пружина; 6 — стержень; 7 — поршень; 8 — цилиндр; 9 — обратный клапан; 10 — игольчатый клапан; 11 — тяга; 12 — поводок; 13 — рычаг

По мере прогрева двигателя воздушную заслонку постепенно открывают. Работа двигателя с прикрытой воздушной заслонкой должна быть по возможности кратковременной, так как сильное обогащение горючей смеси при работе холодного двигателя вызывает его повышенный износ.

Ограничитель максимального числа оборотов

Работа двигателя с числом оборотов коленчатого вала свыше максимально допустимых приводит к перерасходу горючего и усиленному износу трущихся деталей двигателя. Во избежание этого двигатели автомобилей часто снабжаются пневматическими ограничителями числа оборотов.

Дроссельная заслонка 4 имеет фигурную форму со скошенной плоскостью левой половины, а ее ось на 1,5—2 мм смещена относительно оси смесительной камеры.

К заслонке присоединена пружина 9, которая стремится удерживать заслонку в открытом положении.

При работе двигателя воздушный поток действует на дроссельную заслонку и, так как верхняя плоскость ее левой половины скошена, а ось смещена вправо, стремится прикрыть заслонку.

Когда число оборотов коленчатого вала становится больше допустимого, давление воздушного потока на левую часть заслонки настолько возрастает, что заслонка, преодолевая сопротивление пружины, прикрывается, в цилиндры подается меньшее количество горючей смеси и обороты коленчатого вала двигателя уменьшаются.

Рис. Ограничитель максимальных оборотов коленчатого вала двигателя: 1 — футорка; 2 — гайка; 3 — штуцер; 4 — дроссельная заслонка; 5 — стержень; 6 — игольчатый подшипник; 7 — ось дроссельной заслонки; 8 — серьга; 9 — пружина; 10 — прокладка; 11 — колпак; 12 — шпилька

Ограничитель числа оборотов действует независимо от педали управления дроссельной заслонкой. При отпущенной педали дроссельная заслонка прикрыта под действием возвратной пружины педали, которая значительно сильнее пружины ограничителя числа оборотов.

При нажатии на педаль дроссельная заслонка освобождается от действия возвратной пружины педали и открывается вследствие натяжения своей пружины.

Изменяя натяжение пружины 9 вращением регулировочной гайки 2, можно отрегулировать максимальное число оборотов вала двигателя.

Рассмотрим устройство и работу карбюраторов, установленных на двигателях некоторых отечественных автомобилей.

Карбюратор К-22Д

Карбюратор К-22Д, устанавливаемый на двигателе автомобиля ГАЗ-69, является трехдиффузорным карбюратором.

Главная дозирующая система карбюратора работает по принципу регулирования разрежения в диффузоре. Она состоит из главного жиклера 27, распылитель которого выходит в малый диффузор 10, дополнительного жиклера 25, распылитель которого выходит в горловину большого диффузора 14, и автоматического перепускного воздушного клапана, состоящего из четырех упругих пластин 5.

Количество бензина, проходящее через главный жиклер, может регулироваться в зависимости от условий работы двигателя игольчатым клапаном 26.

Рис. Карбюратор К-22Д: 1 — фланец; 2 — винт регулировки качества смеси на холостом ходу; 3 — отверстие для выхода эмульсин при переходе с оборотов холостого хода к средним оборотам коленчатого вала двигателя; 4 — отверстие для вакуум-регулятора; 5 — упругая пластина; 6 — жиклер холостого хода; 7 — средний диффузор; 8 — эмульсионный жиклер холостого хода; 9 — воздушные жиклеры холостого хода; 10 — малый дтффузор; 11 — предохранительный клапан воздушной заслонки; 12 — воздушная заслонка; 13 — трубка; 14 — большой диффузор; 15 — жиклер ускорительного насоса; 16 — распылители; 17 — нагнетательный клапан ускорительного насоса; 18— поршень ускорительного насоса; 19 — обратный клапан; 20 — поплавок; 21 — запорная игла; 22 — корпус поплавковой камеры; 23 — шток привода поршня ускорительного насоса; 24 — клапан экономайзера; 25 — дополнительный жиклер; 26 — игольчатый клапан главного жиклера; 27 — главный жиклер; 28 — жиклер экономайзера; 29 — дроссельная заслонка

Система холостого хода состоит из жиклера 6 холостого хода, двух воздушных жиклеров 9 и эмульсионного жиклера 5.

Экономайзер и ускорительный насос объединены в одну систему, состоящую из ускорительного насоса с поршнем 18, нагнетательного клапана 17 насоса, жиклера 15, обратного клапана 19, жиклера 28 и клапана 24 экономайзера. Привод ускорительного насоса механический, от дроссельной заслонки.

Поплавковая камера трубкой 18 сообщается с воздушным патрубком, а не с атмосферой, вследствие чего устраняется влияние сопротивления воздушного фильтра на работу карбюратора.

При работе двигателя на малых оборотах холостого хода дроссельная заслонка прикрыта. Вследствие большой скорости движения воздуха через узкую щель между заслонкой и стенками смесительной камеры в зоне дроссельной заслонки образуется разрежение.

Так как в этой зоне расположено выходное отверстие системы холостого хода, разрежение передается в систему и она работает как самостоятельный карбюратор.

Бензин из поплавковой камеры поступает к жиклеру 6 холостого хода через дополнительный жиклер 25 по каналам карбюратора. Пройдя жиклер холостого хода, бензин поднимается и, встречаясь с воздухом, поступающим через воздушный жиклер 9, перемешивается с ним и в виде эмульсии проходит через эмульсионный, жиклер 8.

Выходя из эмульсионного жиклера, бензин вновь встречается с потоком воздуха, проходящим через втброй воздушный жиклер, и перемешивается с ним. Эмульсия выходит через отверстие холостого хода за дроссельной заслонкой.

Расход эмульсии и, следовательно, качество горючей смеси на холостом ходу регулируется винтом 2.

При работе двигателя и а средних нагрузках (дроссельная заслонка открыта примерно наполовину) разрежение в диффузорах настолько возрастает, что основное количество бензина выходит из распылителей главного 27 и дополнительного 25 жиклеров.

По мере увеличения воздушного потока, проходящего через диффузор, пластины 5 перепускного воздушного клапана расходятся и воздушный поток проходит мимо малого 10 и среднего 7 диффузоров, автоматически регулируя разрежение в малом диффузоре и, следовательно, состав горючей смеси в зависимости от величины открытия дроссельной заслонки.

При работе двигателя с полной нагрузкой дроссельная заслонка полностью открыта. При этом поршень 18 ускорительного насоса находится в нижнем положении и, нажимая на клапан 24 экономайзера, открывает доступ дополнительному количеству бензина, который из поплавковой камеры проходит через жиклер 28 экономайзера к распылителю дополнительного жиклера.

При резком открытии дроссельной заслонки поршень ускорительного насоса резко опускается и выжимает бензин из цилиндра. Обратный клапан 19 закрывается, а клапан 17 ускорительного насоса открывается, и бензин через жиклер 15 струйкой выбрасывается в горловину большого диффузора 14 — горючая смесь обогащается.

Горючая смесь при запуске двигателя обогащается прикрытием воздушной заслонки 12, имеющей предохранительный клапан 11.

По схеме карбюратора К-22Д выполнен и карбюратор К-22Г, который устанавливается на двигатели автомобилей ГАЗ-63 и ГАЗ-51 А.

Карбюратор типа К-82

Рис. Карбюратор типа К-82: 1 — фланец; 2— эмульсионный канал; 3 — прокладка; 4 — канал ускорительного насоса; 5 — клапан ускорительного насоса; 6 — жиклер ускорительного насоса; 7 — малый диффузор; 8 — кольцевая щель; 9 — корпус воздушного патрубка; 10 — воздушная заслонка; 11 — предохранительный клапан; 12 — жиклер холостого хода; 13 — седло клапана экономайзера с пневматическим приводом; 14 — игла клапана экономайзера; 15 — отверстие, через которое поплавковая камера соединяется с воздушным патрубком; 16 — винт регулировки качества смеси на холостом ходу; 17 — поршень пневматического привода экономайзера; 18 — нажимная пластина; 19 — толкатель клапана экономайзера с механическим приводом; 20 — шток поршня ускорительного насоса; 21 — пружина; 22 — пробка фильтра; 23 — сетчатый фильтр; 24 — запорная игла; 25 — прокладка; 26 — корпус поплавковой камеры; 27 — поплавок: 28 — поршень ускорительного насоса; 29 — обратный клапан; 30 — шток привода поршня ускорительного насоса; 31 — поводок штока; 32— шарик клапана экономайзера; 33 — рычаг привода ускорительного насоса; 34 — пружина клапана экономайзера; 35 — гнездо клапана экономайзера; 36 — уплотнительное кольцо; 37 — пружина поршня экономайзера; 38 — главный жиклер; 39 — канал; 40 — пробка; 41 — жиклер полной мощности; 42 — дроссельная заслонка; 43 — эмульсионная трубка; 44 — воздушный жиклер; 45 — выходное отверстие

Карбюратор типа К-82 является двухдиффузорным карбюратором. Он устанавливается на двигателях автомобилей ЗИЛ-164А и ЗИЛ-164.

Главное дозирующее устройство, работающее по принципу эмульсирования горючего в распылителе, состоит из двух топливных жиклеров 38 и 41, воздушного жиклера 44 и распылителя в виде кольцевой щели 8 в малом диффузоре. В колодце главного дозирующего устройства помещена эмульсионная трубка 43 с отверстиями.

Система холостого хода состоит из жиклера 12 холостого хода, канала 2 и выходного отверстия 45 в виде щели. Качество горючей смеси на холостом ходу регулируется винтом 16, а ее количество — открытием дроссельной заслонки.

Ускорительный насос поршневого типа с механическим приводом от дроссельной заслонки подает горючее по каналу 4 к жиклеру 6.

В карбюраторе имеются два клапана экономайзера. Клапан с механическим приводом состоит из гнезда 35, шарика 32 и пружины 34, которая прижимает шарик к гнезду. Клапан с пневматическим приводом состоит из седла 13 и иглы 14, которая связана с поршнем 17 пневматического привода. Поршень при помощи пружины 37 при неработающем двигателе занимает верхнее положение. Пространство под поршнем соединено каналом 39 со смесительной камерой за дроссельной заслонкой.

При работе двигателя на холостом ходу дроссельная заслонка прикрыта. Разрежение за дроссельной заслонкой распространяется через выходное отверстие 45 по каналу 2 до жиклера 12 холостого хода. Вследствие этого бензин из колодца главного дозирующего устройства поступает к жиклеру холостого хода. Одновременно к жиклеру поступает воздух. Смесь бензина с воздухом, пройдя через жиклер холостого хода, поступает к выходному отверстию.

Работа двигателя на средних оборотах. С увеличением открытия дроссельной заслонки возрастает воздушный поток, проходящий через малый диффузор, в результате чего разрежение в диффузоре оказывается достаточным для того, чтобы в работу вступила главная дозирующая система.

Бензин из поплавковой камеры поступает через жиклеры 38 и 41 в колодец. Сюда же поступает воздух через жиклер 44 и отверстия в эмульсионной трубке 43. Смесь бензина с воздухом выходит через кольцевую щель 8 в малом диффузоре.

Сечения топливного и воздушного жиклеров подобраны так, чтобы приготавливалась смесь обедненного состава при небольших и средних величинах открытия дроссельной заслонки. В этих случаях оба клапана экономайзера закрыты. Клапан экономайзера с механическим приводом закрыт под действием пружины 34. Клапан с пневматическим приводом закрыт вследствие разрежения в цилиндре под поршнем 17. Под действием разрежения, которое передается из смесительной камеры, поршень занимает нижнее положение, сжимая пружину 37. Вместе с поршнем в нижнем положении находится игла 14, которая своим нижним концом прижимается к седлу 13 и закрывает топливный канал.

Чтобы разрежение не передавалось в поплавковую камеру, поршень 17 в иижием положении садится на уплотнительное кольцо 36.

С увеличением открытия дроссельной заслонки разрежение под поршнем пневматического экономайзера уменьшается и поршень под действием пружины 37 поднимается. Когда разрежение за дроссельной заслонкой уменьшится до определенной величины (125 мм рт. ст.), поршень и вместе с ним игла 14 поднимутся настолько, что игла откроет входное отверстие жиклера и дополнительное количество бензина из поплавковой камеры начнет поступать к жиклеру 41 полной мощности. Горючая смесь несколько обогащается, что необходимо при неустановившемся движении автомобиля (например, при разгоне, при движении автомобиля по грунтовым дорогам и местности).

Клапан экономайзера с механическим приводом открывается, когда дроссельная заслонка почти полностью открыта.

При открытии дроссельной заслонки шток 30 опускается; когда заслонка почти полностью открыта, пластина 18 на штоке 30 нажимает на толкатель 19, который, опускаясь, откроет шариковый клапан. Бензии из поплавковой камеры дополнительно поступает к жиклеру 41 полной мощности, сечение которого рассчитано на приготовление обогащенной смеси.

При резком открытии дроссельной заслонки обогащение смеси осуществляется ускорительным насосом. В этом случае поршень резко опускается и бензин выжимается из-под поршня. Обратный клапан 29 прижимается к седлу и перекрывает канал, ведущий, в поплавковую камеру. Бензин по каналу 4 подается к жиклеру 6 и вытекает из него тонкой струйкой, обогащая горючую смесь. Обогащение горючей смеси при запуске холодного двигателя осуществляется прикрытием воздушной заслонки. Воздушная и дроссельная заслонки связаны между собой приводными тягами так, что при полном закрытии воздушной заслонки дроссельная заслонка немного открыта. Это достаточно обогащает смесь и обеспечивает надежный запуск двигателя.

Вспомогательные устройства карбюратора

Вспомогательные устройства карбюратора

Для улучшения характеристик карбюратора используют следующие дополнительные устройства, обеспечивающие приготовление горючей смеси постоянного состава на различных режимах работы двигателя:


• пусковое устройство;
• систему холостого хода;
• систему компенсации горючей смеси;
• экономайзер;
• ускорительный насос.


Пусковое устройство  предназначено для значительного обогащения (а от 0,2 до 0,6) горючей смеси при пуске холодного двигателя и представляет собой воздушную заслонку с автоматическим клапаном.
Частота вращения коленчатого вала при пуске двигателя низкая, поэтому скорость воздуха, а следовательно, и разрежение в диффузоре небольшие. В смесительную камеру поступает недостаточное количество топлива и для компенсации смесь искусственно обогащают. Воздушной заслонкой перекрывают воздушный патрубок перед диффузором. При этом количество воздуха, поступающего в карбюратор, уменьшается, а разрежение значительно увеличивается, и топливо фонтанирует из распылителя главной дозирующей системы. При первых вспышках в цилиндрах открывается автоматический клапан, и воздух поступает в смесительную камеру. По мере прогрева двигателя постепенно открывается воздушная заслонка.
Система холостого хода  служит для приготовления обогащенной (а от 0,7 до 0,9) горючей смеси при работе двигателя в режиме холостого хода при малой частоте вращения коленчатого вала, когда главная дозирующая система не работает.

 

 

Элементы карбюратора

Элементы карбюратора: а — работа воздушной заслонки; б — система холостою хода: 1— распылитель; 2 — воздушная заслонка; 3 — клапан; 4 — пружина; 5 — смесительная камера; 6 — дроссельная заслонка; 7— главный жиклер; 8 — воздушный жиклер системы холостого хода;   9 — топливный жиклер системы холостого хода; 10 — канал системы холостого хода; И и 13 — отверстия системы холостого хода; 12 — регулировочный винт.

 

Система холостого хода состоит из топливного канала, в начале которого установлен топливный жиклер, затем воздушный жиклер. Заканчивается канал двумя отверстиями: одно до дроссельной заслонки, второе за ней. С помощью регулировочного винта изменяется количество и качество горючей смеси.Система компенсации горючей смеси (рис. 45) обеспечивает приготовление обедненной (а от 1,05 до 1,1) экономичной горючей смеси постоянного состава при работе двигателя на средних нагрузках. В карбюраторах применяют следующие способы компенсации горючей смеси:


• регулирование разрежения в диффузоре;
• установка двух жиклеров — главного и компенсационного;
• пневматическое торможение истечения топлива в главной дозирующей системе.

При работе двигателя в режиме холостого хода разрежение в диффузоре при небольшом расходе воздуха незначительно и главная дозирующая система не работает. При этом значительно увеличивается разрежение в полости за закрытой дроссельной заслонкой. Эта полость сообщается через отверстие с полостью под дроссельной заслонкой посредством топливного канала, вследствие чего из поплавковой камеры начинает поступать топливо через топливный жиклер системы холостого хода, а через воздушный жиклер подсасывается воздух. Пузырьки воздуха, смешиваясь с топливом, образуют топливовоздушную эмульсию, которая поступает фонтаном через отверстие под дроссельной заслонкой в смесительную камеру. Получается обогащенная горючая смесь постоянного состава, что необходимо для устойчивой работы двигателя без нагрузки. Количество поступающей эмульсии можно изменять с помощью регулировочного винта.
При открытии дроссельной заслонки расход воздуха увеличивается, а разрежение в полости за заслонкой уменьшается, но обеднения смеси не происходит, так как оба отверстия канала системы холостого хода оказываются за дроссельной заслонкой и через них поступает эмульсия, чем и поддерживается необходимый состав горючей смеси. Тем самым обеспечивается плавный переход от режима холостого хода к режимам нагрузки.

Наибольшее распространение получил способ пневматического торможения истечения топлива, где в систему компенсации входит промежуточный колодец, в котором установлена эмульсионная трубка с калиброванными отверстиями в стенках. В верхней части трубки установлен воздушный жиклер.
При работе двигателя топливо поступает из поплавковой камеры через главный жиклер и заполняет промежуточный колодец и полость эмульсионной трубки. При движении воздуха через диффузор происходит истечение топлива из колодца. Скорость истечения увеличивается. Уровень топлива в колодце падает, и обнажаются отверстия эмульсионной трубки, че-
рез которые воздух через воздушный жиклер системы поступает в колодец, смешиваясь с топливом. Образуется топливовоздушная эмульсия, которая поступает через главный распылитель в смесительную камеру, образуя обедненную горючую смесь постоянного состава, что необходимо для работы двигателя на всем диапазоне средних нагрузок.

Карбюратор, узнай больше….

Карбюратор – устройство основные неисправности, ремонт и доработка карбюратора автомобиля — Словарь автомеханика

Карбюратор, часто называемый «карб» – часть системы питания автомобильного двигателя, где образуются определенные соединения при смешивании воздуха и топлива. В дальнейшем эта топливовоздушная смесь попадает в камеру сгорания. Данный элемент в совокупности с дроссельной заслонкой – является регулировщиком топлива, благодаря чему полученная смесь может быть обогащенной либо обедненной. Стехиометрическое состояние данного топливного компонента достигается при соотношении 1 г. бензина на 14,7 г. воздуха, а для запуска холодного двигателя требуется соотношение 10 к 1.

Всего существует три вида карбюраторов:

  • Барботажный (уже не используется).
  • Мембранно-игольчатый – узел состоит из нескольких камер, разделённых мембранами и связанных штоком на конце которого находится игла закрывающая/открывающая подачу топлива.
  • Поплавковый – существует в многих модификациях современных карбюраторов и имеет широкое применение.

Составляющие карбюраторной системы автомобиля

Устройство карбюратора в тривиальном варианте:

Устройство карбюратора

  1. поплавковая и смесительная камеры
  2. поплавок с запирающим клапаном игольчатого типа
  3. распылительная и диффузная системы
  4. бензиновые и воздушные каналы с жиклерами
  5. аэро- и дроссельные заслонки

Поплавковая камера необходима для поддержки постоянного уровня бензина. Воздушной заслонкой заводится холостой двигатель автомобиля, обогащая топливовоздушную систему. Системой холостого хода обеспечивается подача бензина, когда не функционирует основная дозирующая система. Специальными винтами регулируется соотношение в карбюраторе топливо/воздух.

Ускорительный насос подает дополнительное количества топлива – резко открываются дроссельные заслонки, чтобы можно было предупредить остановку мотора и избежать сбоев в эксплуатации мотора во время разгона автомобиля.

Переходная система отвечает за переходный режим между основной дозирующей системой и автомобильным холостым ходом.

Система холостого хода обеспечивает подачу нужного количества топлива в цилиндры двигателя при работе без нагрузки (на холостом ходу).

Главная дозирующая система обеспечивает увеличения мощности двигателя за счет большей подачи топливно-воздушной смеси во время движения автомобиля.

Устройство карбюратора


Основные проблемы с карбюратором

Среди наиболее частых неисправностей в работе карбюратора отмечаются такие:

  • протечка топлива
  • нагар и запах на свечах зажигания
  • нестабильный холостой ход
  • нарушение регулировки карбюратора, загрязнение жиклеров

Протечка топлива

Для начала необходимо проверить давление бензина – оно соответствует отметке от 4 до 7 пси.

Наличие нагара и запаха на свечах зажигания

Данная неполадка указывает на то, что топливо подается в чрезмерных количествах из-за неправильного уровня бензина либо прогоревшего клапана.

Неровный холостой ход

В основном, проблемы данного характера возникают в проводке между педалью акселератора и карбюратором, то есть, не сугубо в карбюраторе.

Нарушение регулировки карбюратора, загрязнение жиклеров и каналов

Основную роль в приготовлении топливовоздушной смеси играют жиклеры – их загрязнение или повреждение ведет к нарушению работы всего узла.

При таких неисправностях двигатель не в состоянии получать горючее в необходимой концентрации и объеме. Признаками этого являются:

  • излишний расход топлива;
  • снижение мощности автомобильного двигателя;
  • из глушителя наблюдается выхлоп черного дыма и слышны хлопки;
  • двигатель начинает перегреваться;
  • снижается вязкость автомобильного масла.

Устранение неполадок в карбюраторной системе

Когда протекает бензин, а давление соответствует норме, тогда необходимо искать неполадку в поплавковой камере. В основном, ее заменяют на новую.

При наличии запаха и нагара на свечах, рекомендуется обратить внимание на поплавок. Это возникает при не отрегулированном поплавке, чрезмерном давлении бензина либо присутствует неполадка в поплавковой камере.

Когда на холостом ходу мотор автомобиля работает нестабильно, то чтобы найти поломку, необходимо проверить, нет ли в карбюраторе коррозийных изменений либо загрязнений. В последнем случае его необходимо тщательно почистить.

Ремонт, тюнинг и установка карбюратора


Как починить карбюратор

Сетчатый фильтр

Данный фильтр либо засоряется, либо повреждается. И чтобы узнать точно, что с ним, понадобится его вынимать. При сильном загрязнении достаточно хорошо промыть аккуратно в бензине, при видимых повреждения меняется на новый.

Пусковое устройство

Пусковое устройство, как и сетчатый фильтр, подвержен загрязнению и также нуждается в промывке и продувке сжатым воздухом.

Соединение в карбюраторе

Разгерметизация соединения, происходит во впускном или выпускном трубопроводах, также на корпусе ДЗ и других местах соединения карбюратора. Определить где подсасывает воздух поможет обычная мыльная пена или специальный дымо-генератор. На возникновения проблем с впускным трубопроводом могут еще указывать и следы копоти или пленка с топлива на месте неплотного соединения.

Когда сбои в работе происходят по причине не герметичного прилегания в месте соединения нижнего фланца карбюратора и впускного патрубка достаточно просто подтянуть гайки. Старайтесь подтягивать аккуратно и равномерно, чтобы не перекосился фланец карбюратора. Если подтяжка болтов проблему не решила, тогда стоит почистить место подсоса и поменять прокладку.

Ускорительный насос

Когда перестал работать ускорительный насос, тогда нужна его замена. Его детали ремонту не подлежать. В качестве профилактики насос моют и продувают. Еще желательно проверить ход перемещения рычагов и деталей диафрагмы. Отдельное внимание приделите шарику в распылителе — свободе его движения ничего мешать не должно.

Диафрагма экономайзера

В моделях карбюраторов, оснащенных экономайзером, проследите чтобы на диафрагме не было повреждений. А если стала короткая длина толкателя, то замените его вместе с диафрагмой.


Регулировка карбюратора

Карбюратор регулируют только на прогретом двигателе.

Нет смысла настраивать данную автомобильную систему на холостом двигателе. Также с дроссельной заслонки необходимо снять тягу педали газа, а затем отсоединить трубку, которая отвечает за вентиляцию картера, чтобы удостовериться, нет ли вакуумной пробки в трубке регулятора опережения.

Затем нужно закрутить по одному винты качества строго по часовой стрелке, пока не станет работа мотора достаточно жесткой. Когда двигатель начнет лихорадить, отвернуть необходимо на оборот назад каждый винт, чтобы двигатель начал работать плавно. Как регулировать карбюратор лучше смотреть на конкретном примере наглядно.


Тюнинг карбюратора

Доработка или другими словами тюнинг карбюратора производится дабы достичь максимальной мощности. На впуске, карбюратор автомобиля, должен иметь минимальное сопротивление, поскольку по-другому сложно добиться приемлемого качества смеси и наполнения цилиндров при средних и высоких оборотах двигателя. Выжимать максимум мощности на больших оборотах дает расточка второй камеры и подъем впускных клапанов выше 10,25 мм (актуально для двигателей 1.5 л с высокими распредвалами).

Доработанный карбюратор с диаметром диффузоров 24/24 дает прибавку при установке даже тюнинговый мотор. Но стоит отметить, что на малых оборотах и частичных нагрузках двигателя, обычное увеличение диаметра диффузоров приведет к ухудшению его работы, поскольку снижается разряжение в области диффузора и ухудшается распыление бензина и гомогенизации смеси.

Доводка карбюратора – это не только замена всех топливных жиклеров на другие, большего сечения, а изменение всех тарировочных данных карба и его начинки. Также в конструкцию карбюратора вводятся дополнительные дозирующие системы. С этой целью в корпусе карбюратора сверлятся дополнительные дозирующие каналы.

Связанные термины

Карбюраторный двигатель: устройство, принцип работы, характеристики

Карбюраторный двигатель — это отдельный вид двигателя внутреннего сгорания (ДВС) с наружным формированием смеси. В карбюраторном двигателе внутреннего сгорания горючая смесь по коллектору проходит в цилиндры двигателя и вырабатывается в карбюраторе.

Карбюратор — конструкция в системе питания двигателей внутреннего сгорания, которая служит для перемешивания бензина с воздухом, образовывает горючую смесь и корректирует ее потребление. На сегодняшний день карбюраторные системы заменяются инжекторными.

Смесь представляет собой пары бензина смешанные с воздухом. Когда она проходит в цилиндры двигателя происходит перемешивание с отработанными газами и образование рабочей смеси, которая в конкретный момент поджигается системой зажигания. Поджигание смеси производится благодаря тому, что бензин поступает в газообразном виде и имеется достаточное количество воздуха для горения.

Карбюратор

Карбюраторные двигатели подразделяются на четырехтактные и двухтактные. Рабочий цикл четырехтактного карбюраторного двигателя складывается из четырех тактов, они состоят из четырех полуоборотов коленчатого вала; двухтактные же состоят из двух полуоборотов коленчатого вала. Двухтактные двигатели наиболее легкие и получили свое применение в мотоциклах, мотокультиваторах, бензопилах и в других аппаратах.

Двигатели этого типа делятся на два подтипа:

  • Атмосферные, где рабочая смесь проходит благодаря разреживанию в цилиндре при вбирающем движении поршня;
  • Двигатели с наддувом. В них запуск горючей смеси в цилиндр осуществляется под воздействием давления, которое производится компрессором для расширения мощности двигателя. В различные времена использовались спирт, газ, керосин, бензин, но наиболее используемыми остались бензиновые и газовые двигатели.

Устройство карбюраторного двигателя

Общее устройство наиболее простого карбюратора заключает в себе поплавковую камеру с поплавком, жиклёр с распылителем, диффузор и дроссельную заслонку.

Если рассмотреть строение двигателя Л-12/4, то в блоке имеется четыре цилиндра. Вращение коленвала происходит на трех подшипниках. Центральный подшипник прикреплен к валу втулкой. На передней части вала прикрепляется маховик, который приводит в действие детали механизма и скапливает кинетическую энергию, она нужна для движения коленвала в период подготовительных тактов.

Карбюратор

Смазка деталей происходит благодаря разбрызгиванию, шестеренчатый насос помогает началу движения распредвала и подает масло, которое разбрызгивается черпаками, происходит зажигание. Радиатор оснащен вентилятором, который служит для охлаждения воды.

На картере установлен сапун, который снижает давление благодаря выпуску газов.

Также имеется глушитель, который уменьшает шум от выхода отработанных газов. Количество оборотов коленчатого вала в автоматическом режиме устанавливает регулятор.

У двигателей ГАЗ-МК верхний отдел картера сделан из чугуна вместе с устройством цилиндров, которые охвачены водяной рубашкой и перекрыты головкой из чугуна, где и расположены камеры сгорания. Также имеются разъемы для свечей зажигания.

Водяная рубашка подсоединена к системе охлаждения. Низ двигателя затянут стальным поддоном, который выполняет функцию емкости для масла. Также там закреплен масляный насос, который приводит в движение распредвал.

Вращение коленчатого вала происходит также на трех подшипниках. Их вкладыши заполнены баббитом, где имеются смазочные канавки.

Чугунные крышки подшипников прикрепляются к блоку двумя болтами.

Бронзовые вкладыши

Передний сальник коленвала сделан из двух частей и представляет сердечник, который окружен платиной асбеста. Поршни сделаны из алюминия и скреплены шатуном полым стальным пальцем. Маховик прикреплен к коленвалу. Распредвал вращается на трех подшипниках и приводится в движение двумя шестернями.

Клапаны двигателя находятся справа. Система питания включает в себя бензобак, бензопроводы, отстойник, карбюратор и воздушный фильтр.

Бензобак находится выше карбюратора, поэтому топливо поступает самотеком.

Уровень масла в картере определяется специальным щупом. Охлаждение двигателя водяное. Радиатор размещен с задней стороны двигателя, водяной насос — с передней стороны. Вода, которая двигается по трубкам радиатора, остывает при помощи воздушного потока от вентилятора.

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:

  • Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
  • Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
  • Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
  • Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.

Детонация топлива в камере сгорания

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

Детонация топлива в камере сгорания

Выше указан принцип работы одноцилиндрового двигателя, но он не способен создать условия непрерывного вращения с одинаковой скоростью. Расширенные газы оказывают действие на коленвал для его 1/4 части оборота, оставшиеся ¾ оборота движения поршня происходят по инерции.

Для ликвидации такой недоработки двигатели делают многоцилиндровыми, что способствует наиболее равномерному вращению и неизменному крутящему моменту.

Характеристики карбюраторного двигателя

Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.

Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.

Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.

При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.

Детонация топлива в камере сгорания

Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.

Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.

При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.

Управление карбюратором

Как правило, действиями карбюратора руководит водитель автомобиля. На отдельных моделях карбюраторов применялись вспомогательные системы, которые немного автоматизировали управление карбюратором.

Для того чтобы управлять дроссельной заслонкой наиболее часто пользуются педалью газа, которая обуславливает ее подвижность при содействии системы тяг либо тросового привода. Тяга, как правило, лучше, однако механизм привода куда сложнее и сдерживает способность механизма по компоновке подкапотной площади. Привод тягами был популярен до 1970 года, потом стали чаще использоваться тросики из металла.

Карбюратор

На старых машинах чаще предполагалась двойная система привода дроссельной заслонки карбюратора: вручную рычагом либо от ноги, при помощи педали. Если надавливать на педаль, то рычаг не двигается, а если перемещать рычаг, то педаль опускается.

Последующее открытие дросселя можно совершать педалью. Когда педаль опускается — дроссель остается в таком же положении, в котором зафиксировался при управлении рукой. К примеру, на «Волге» ГАЗ-21 на панели приборов был размещен рычаг для управления рукой, при его движении можно достичь постоянного функционирования холодного двигателя без действия воздушной заслонки либо применять «постоянный газ». На грузовиках «постоянный газ» применялся для облегчения передвижения задним ходом.

Воздушная заслонка может быть оснащена механическим либо автоматическим приводом. Если привод механический, то водитель закрывает ее при участии рычага. Автоматический привод очень популярен в других странах, а в России не «прижился» из-за своей ненадежности и недолгим сроком службы.

Регулировки карбюратора

Карбюратор — устройство, которое имеет наименьшее количество регулировок, но нуждается в хорошо отлаженной системе. Неорганизованная эксплуатация карбюратора сильно действует на функциональность двигателя в целом. При плохой регулировке карбюратора снижается экономичность двигателя и повышается токсичность отработанного газа.

Карбюратор

Подходящие виды регулирования карбюратора:

  • “Винт количества” — функционирование на холостом ходу;
  • “Винт качества” — насыщенность рабочей смеси (как результат, повышение токсичности выхлопных газов) на холостом ходу.

В период использования нужно прослеживать дееспособность нижеуказанных узлов:

  1. Действие клапана и схема холостого хода.
  2. Работа насоса (запаздывание действия, объем и время впрыска бензина).
  3. Размеренность работы, беспрепятственное движение, возврат пружиной и нужная степень открытия дроссельной заслонки.
  4. Действие холодного запуска (закрывание воздушной и степень открывания дроссельной и воздушной заслонок)
  5. Деятельность поплавковой конструкции (необходимое количество топлива в поплавковой камере, непроницаемость клапана).
  6. Пропускная возможность жиклеров.

На работоспособность карбюратора воздействуют:

  • Система регулирования карбюратора.
  • Установка пропуска воздуха (воздушный фильтр, обогрев воздуха).
  • Система подачи топлива (бензонасос, фильтры, заборники).
  • Трубка для слива излишков бензина.
  • Непроницаемость впускного канала, который расположен за карбюратором.
  • Нарушение клапанного устройства.
  • Качество топлива.

Индукционная система

Индукционная система верхний Меню
  • Индукционная система вводит воздух снаружи, смешивает его с топливом и доставляет топливно-воздушную смесь в цилиндр, где происходит сгорание.
    • Это сгорание создает тягу или мощность от силовой установки
  • Наружный воздух поступает в систему впуска через впускное отверстие в передней части капота двигателя.
  • Этот порт обычно содержит воздушный фильтр, который препятствует проникновению пыли и других посторонних предметов.
    • Альтернативный воздух поступает из капота двигателя, где он обходит потенциальный забитый воздушный фильтр
    • Некоторые альтернативные источники воздуха функционируют автоматически, в то время как другие работают вручную
  • В двигателях малой авиации обычно используются два типа индукционных систем:
    1. Карбюраторная система
    2. Система впрыска топлива
  • Карбюратор смешивает топливо и воздух перед тем, как эта смесь поступает во впускной коллектор для сгорания.
  • Карбюраторы откалиброваны на уровне моря, что означает, что при увеличении высоты воздушное давление будет снижаться, а топливо будет оставаться постоянным, что приведет к образованию богатой смеси, если не будет зафиксировано
    • Это может привести к загрязнению свечей зажигания
  • Распределение топлива не так точно, как впрыск топлива
  • Относительно просто, мало движущихся частей
  • Большие топливопроводы, которые трудно засорить
  • Дешево
  • Два типа:
    • Самый распространенный тип карбюратора [Рисунок 1]
    • При работе карбюраторной системы поплавкового типа наружный воздух сначала проходит через воздушный фильтр, обычно расположенный у воздухозаборника в передней части капота двигателя
    • .
    • Этот отфильтрованный воздух поступает в карбюратор и через трубку Вентури, узкое горло в карбюраторе.
    • Когда воздух проходит через трубку Вентури, создается область низкого давления, которая заставляет топливо течь через основную топливную струю, расположенную в горле
    • Топливно-воздушная смесь затем подается через впускной коллектор в камеры сгорания, где она зажигается.
    • Карбюратор поплавкового типа получил свое название от поплавка, который опирается на топливо в поплавковой камере
    • Игла, прикрепленная к поплавку, открывает и закрывает отверстие в нижней части чаши карбюратора.
    • Это измеряет правильное количество топлива в карбюраторе, в зависимости от положения поплавка, который контролируется уровнем топлива в поплавковой камере
    • Когда уровень топлива заставляет поплавок подняться, игольчатый клапан закрывает отверстие для топлива и перекрывает поток топлива в карбюратор
    • Игольчатый клапан открывается снова, когда двигатель требует дополнительного топлива
    • Поток топливно-воздушной смеси в камеры сгорания регулируется дроссельным клапаном, который управляется дросселем в кабине экипажа.
    • Недостатки:
      • Резкие маневры разрушают поплавок
      • Топливо должно сливаться при низком давлении, что приводит к неполному испарению и затрудняет сброс топлива в некоторые системы наддува.
      • Наиболее важно, что у этого есть тенденция обледенения, обсужденная ниже
    • Руководство по летанию самолета, карбюратор поплавкового типа
    • Давления типа карбюратор разряжает топлива в воздушный поток при давлении выше атмосферного и с помощью топливного насоса
    • Это приводит к лучшему испарению и позволяет сливать топливо в воздушный поток на стороне двигателя дроссельной заслонки
    • При выпускном патрубке, расположенном в этой точке, падение температуры из-за испарения топлива происходит после того, как воздух прошел дроссельный клапан, и в точке, где тепло двигателя стремится компенсировать его.
    • Опасность обледенения при испарении топлива практически исключена
    • Последствие быстрых маневров и шероховатого воздуха на карбюраторах давления типа пренебрежимо мало, так как их топливные камеры остаются заполненными при любых условиях эксплуатации
  • Карбюраторы обычно калибруются при давлении на уровне моря, где правильное соотношение топливовоздушной смеси устанавливается с помощью регулятора смеси, установленного в ПОЛНОЦЕННОЕ положение
  • .
  • Однако с увеличением высоты плотность воздуха, поступающего в карбюратор, уменьшается, а плотность топлива остается той же
  • Это создает все более богатую смесь, которая может привести к неровностям двигателя и значительной потере мощности.
  • Шероховатость обычно возникает из-за загрязнения свечей зажигания из-за чрезмерного накопления углерода в свечах
  • Накопление углерода происходит из-за того, что богатая смесь понижает температуру внутри цилиндра, препятствуя полному сгоранию топлива
  • Это условие может возникать во время подготовки к взлету в высотных аэропортах, а также во время подъемов или круизного полета на больших высотах.
  • Для поддержания правильной топливно-воздушной смеси, смесь должна быть наклонена с использованием контроля смеси
  • Наклонение смеси уменьшает расход топлива, что компенсирует снижение плотности воздуха на большой высоте

  • При спуске с большой высоты смесь должна быть обогащена, иначе она может стать слишком сухой
  • Чрезмерно обедненная смесь вызывает детонацию, которая может привести к неработающей работе двигателя, перегреву и потере мощности.
  • Лучший способ поддерживать правильную смесь — это контролировать температуру двигателя и обогащать смесь по мере необходимости.
  • Правильный контроль смеси и лучшая экономия топлива для двигателей с впрыском топлива могут быть достигнуты с помощью датчика температуры выхлопных газов (EGT)
  • Поскольку процесс регулировки смеси может варьироваться от одного самолета к другому, важно обратиться к руководству по летной эксплуатации самолета (AFM) или руководству по эксплуатации пилота (POH), чтобы определить конкретные процедуры для данного самолета
  • Самолет Летающий Справочник, Карбюратор Лед
  • Руководство по летанию самолета, карбюраторный лед, риск
  • Как упоминалось ранее, карбюраторный лед является самым большим недостатком карбюраторной системы [Рисунок 2]
  • Лед карбюратора возникает из-за резкого падения температуры внутри карбюратора и испарения топлива
    • Это происходит из-за эффекта испарения топлива и снижения давления воздуха в трубке Вентури
    • В частности, это проблема в карбюраторной системе поплавкового типа
  • Лед карбюратора может образовываться даже при температуре до 100 ° F (38 ° C) и влажности до 50% [Рис. 3]
    • Лед карбюратора чаще всего возникает, когда температура ниже 70 ° по Фаренгейту (° F) или 21 ° по Цельсию (° C), а относительная влажность выше 80%.
    • Это падение температуры может составлять от 60 до 70 ° F (от 15 до 21 ° C)
    • Следовательно, при температуре наружного воздуха 100 ° F (37 ° C) падение температуры на 70 ° F (21 ° C) приводит к температуре воздуха в карбюраторе 30 ° F (-1 ° C).
  • Обледенение карбюратора приведет к потере оборотов (винт с фиксированным шагом) или сдвигу давления в коллекторе (винт с постоянной скоростью)
  • По мере образования льда в трубке Вентури обороты уменьшаются, и поэтому для поддержания оборотов карбюратор увеличивает поток топлива, который ничего не делает, поскольку воздушный поток является проблемой
    • Поэтому неожиданный рост расхода топлива является лучшим показателем карбюраторного льда
    • Кроме того, если это достаточно плохо, первым признаком может быть внезапное падение оборотов, за которым следует останов двигателя
    • .
  • Если пары воды в воздухе конденсируются, когда температура карбюратора равна или ниже точки замерзания, на внутренних поверхностях карбюратора, включая дроссельный клапан, может образоваться лед
  • Пониженное давление воздуха, а также испарение топлива способствует снижению температуры в карбюраторе
  • Лед обычно образуется вблизи дроссельной заслонки и в горловине Вентури
  • Это ограничивает поток топливовоздушной смеси и снижает мощность
  • Если накопится достаточно льда, двигатель может перестать работать
  • Первым признаком обледенения карбюратора в самолете с винтом с фиксированным шагом является снижение оборотов двигателя, которое может сопровождаться неровностями двигателя
  • В самолете с пропеллером с постоянной скоростью обледенение карбюратора обычно указывается снижением давления в коллекторе, но не снижением об / мин.
  • Шаг пропеллера автоматически регулируется для компенсации потери мощности
  • Таким образом, поддерживается постоянная скорость вращения
  • Хотя карбюраторный лед может возникать во время любой фазы полета, он особенно опасен при использовании пониженной мощности во время снижения
  • При определенных условиях лед карбюратора может незаметно расти до тех пор, пока не будет добавлена ​​мощность
  • Тепловая система карбюратора используется для снижения риска обледенения с помощью поплавкового карбюратора
  • Важно отметить, что карбюраторный лед не имеет абсолютно никакого отношения к структурному обледенению и не является показателем другого
  • Самолет Летающий Справочник, Карбюратор Лед
  • Руководство по летанию самолета, карбюраторный лед, риск
  • Нагрев карбюратора — это антиобледенительная система, которая подогревает воздух до того, как он достигнет карбюратора, и предназначена для поддержания топливовоздушной смеси выше температуры замерзания, чтобы предотвратить образование льда в карбюраторе.
    • Обратите внимание, что теплый воздух менее плотный, что приведет к снижению производительности двигателя.
  • Тепло карбюратора можно использовать для таяния льда, который уже образовался в карбюраторе, если накопление не слишком велико, но лучше всего использовать тепло карбюратора в качестве профилактической меры.
  • Кроме того, использование тепла карбюратора в качестве альтернативного источника воздуха может быть использовано, если впускной фильтр засоряется, например, при внезапном или неожиданном обледенении планера самолета
  • .
  • Температура карбюратора должна проверяться при запуске двигателя
    • Как упомянуто выше, этот менее плотный воздух вызывает потерю мощности, которая наблюдается во время проверки как падение оборотов

  • Если условия, благоприятствующие обледенению карбюратора во время полета, следует периодически проверять его наличие
  • Если обнаружено, полный нагрев карбюратора должен быть применен немедленно, и его следует оставить в положении ВКЛ, пока пилот не убедится, что весь лед был удален.
  • При наличии льда частичное нагревание или оставление тепла на недостаточное время может ухудшить ситуацию.
  • В крайних случаях обледенения карбюратора, даже после того, как лед был удален, следует использовать полный нагрев карбюратора для предотвращения дальнейшего образования льда
  • Если установлен, датчик температуры карбюратора полезен при определении, когда использовать нагрев карбюратора.

  • Всякий раз, когда дроссель закрыт во время полета, двигатель быстро охлаждается, и испарение топлива менее завершено, чем если двигатель теплый
  • Также в этом состоянии двигатель более подвержен обледенению карбюратора
  • Если предполагается наличие обледенения карбюратора и ожидается работа с закрытым дросселем, отрегулируйте нагрев карбюратора до положения полного включения, прежде чем закрывать дроссель, и оставьте его включенным во время работы с закрытым дросселем
  • Тепло способствует испарению топлива и предотвращает образование льда карбюратора.
  • Периодически плавно открывать дроссель в течение нескольких секунд, чтобы двигатель оставался теплым; в противном случае нагреватель карбюратора может не обеспечить достаточно тепла для предотвращения обледенения.

  • Использование тепла карбюратора приводит к снижению мощности двигателя, иногда до 15%, поскольку нагретый воздух менее плотный, чем наружный воздух, поступающий в двигатель
  • Использование тепла карбюратора приведет к увеличению высоты плотности, что приведет к чрезмерной его насыщенности, соответственно увеличивая расход топлива.
  • Когда в самолете с пропеллером с фиксированным шагом используется лед и используется карбюраторное тепло, происходит снижение оборотов, после чего происходит постепенное увеличение оборотов по мере таяния льда
  • Двигатель также должен работать более плавно после удаления льда.
  • Если льда нет, обороты уменьшатся и останутся постоянными
  • При использовании тепла карбюратора на воздушном судне с винтом с постоянной скоростью и наличием льда наблюдается заметное снижение давления в коллекторе, за которым следует постепенное увеличение
  • Если обледенение карбюратора отсутствует, постепенное увеличение давления в коллекторе не будет заметно до тех пор, пока нагрев карбюратора не будет отключен.
  • Крайне важно, чтобы пилот распознал лед карбюратора, когда он образуется во время полета, потому что произойдет потеря мощности, высоты и / или воздушной скорости
  • Эти симптомы могут иногда сопровождаться вибрацией или неровностями двигателя.
  • После обнаружения потери мощности необходимо принять немедленные меры для устранения льда, уже образовавшегося в карбюраторе, и для предотвращения дальнейшего образования льда
  • Это достигается применением полного нагрева карбюратора, что приведет к дальнейшему снижению мощности и, возможно, неровности двигателя при прохождении растопленного льда через двигатель
  • .
  • Эти симптомы могут длиться от 30 секунд до нескольких минут, в зависимости от степени обледенения.В течение этого периода пилот должен удержаться от соблазна снизить потребление тепла карбюратором
  • Нагрев карбюратора должен оставаться в полностью нагретом положении, пока нормальная мощность не вернется.

  • Поскольку использование тепла карбюратора приводит к снижению мощности двигателя и повышению рабочей температуры, нагрев карбюратора не следует использовать, когда требуется полная мощность (например, во время взлета) или во время нормальной работы двигателя, за исключением проверки на работоспособность двигателя. наличие или удаление карбюраторного льда
  • Нагрев карбюратора используется для плавления или предотвращения обледенения карбюратора.
  • Тепло карбюратора использует нефильтрованный воздух
  • Воздух проходит через вытяжной кожух для нагрева, а затем направляется через карбюратор
  • Может использоваться для преодоления забитых приемов, минуя их
  • Некоторые самолеты оснащены карбюраторным датчиком температуры воздуха, который полезен при обнаружении возможных условий обледенения.
  • Обычно поверхность датчика калибруется в градусах Цельсия, с желтой дугой, указывающей температуру воздуха карбюратора, где может произойти обледенение
  • Эта желтая дуга обычно находится в диапазоне от -15 ° C до + 5 ° C (5 ° F и 41 ° F)
  • Если температура воздуха и влажность воздуха таковы, что обледенение карбюратора маловероятно, двигатель может работать с индикатором желтого диапазона без каких-либо неблагоприятных воздействий.
  • Если атмосферные условия способствуют обледенению карбюратора, индикатор должен находиться вне желтой дуги путем подачи тепла от карбюратора
  • Некоторые датчики температуры воздуха в карбюраторе имеют красный радиус, который указывает максимально допустимую температуру воздуха на входе в карбюратор, рекомендованную производителем двигателя
  • Если присутствует, зеленая дуга указывает на нормальный рабочий диапазон
  • Большинство самолетов также оснащено датчиком температуры наружного воздуха (OAT), откалиброванным в градусах Цельсия и Фаренгейта
  • Он обеспечивает температуру наружного или окружающего воздуха для расчета истинной воздушной скорости, а также полезен для определения условий обледенения.
  • Для обеспечения бесперебойной подачи топлива карбюратор имеет «поплавковую камеру» (или «чашу»), которая содержит некоторое количество топлива при давлении, близком к атмосферному, готовому к использованию.
  • Этот резервуар постоянно пополняется топливом, подаваемым топливным насосом
  • Правильный уровень топлива в баке поддерживается с помощью поплавка, управляющего впускным клапаном
  • Когда топливо израсходовано, поплавок падает, открывая впускной клапан и впуская топливо.По мере повышения уровня топлива поплавок поднимается и закрывает впускной клапан
  • Из-за низкого давления топливо выталкивается из нагнетательного патрубка в трубку Вентури.
  • Уровень топлива, поддерживаемый в чаше для поплавка, обычно можно регулировать с помощью установочного винта или чего-то грубого, например, сгибая рычаг, к которому подключен поплавок.
  • Поплавки могут быть изготовлены из различных материалов, таких как листовая латунь, впаянная в полую форму, или из пластика
  • .
  • Полые поплавки могут вызывать небольшие утечки, а пластиковые поплавки могут в конечном итоге стать пористыми и потерять свое плавание; поплавок не сможет плавать, уровень топлива будет слишком высоким, и двигатель не будет работать нормально, если поплавок не будет заменен
  • Специальные вентиляционные трубки позволяют воздуху выходить из камеры по мере ее заполнения или поступать по мере ее опустошения, поддерживая атмосферное давление внутри поплавковой камеры; они обычно распространяются в горло карбюратора
  • Должен быть установлен в вертикальном положении
  • Мембранный карбюратор
  • использует гибкую диафрагму, как поплавок
  • Когда топливо пополняется, мембрана выходит из-за давления топлива и небольшой пружины, закрывая игольчатый клапан
  • .
  • Достигнуто сбалансированное состояние, которое создает устойчивый уровень топливного бака, который остается постоянным в любой ориентации.
  • Топливные форсунки смешивают топливо и воздух непосредственно перед поступлением в каждый цилиндр или впрыскивают топливо непосредственно в каждый цилиндр [Рисунок 4]
  • В системе впрыска топлива топливо впрыскивается непосредственно в цилиндры или непосредственно перед впускным клапаном
  • Воздухозаборник для системы впрыска топлива аналогичен тому, который используется в карбюраторной системе, с альтернативным источником воздуха, расположенным внутри капота двигателя
  • Этот источник используется, если внешний источник воздуха закрыт.
  • Альтернативный источник воздуха обычно работает автоматически, с резервной ручной системой, которая может быть использована в случае неисправности автоматической функции
  • Система впрыска топлива обычно включает шесть основных компонентов: топливный насос с приводом от двигателя, блок управления топливом / воздухом, топливный коллектор (распределитель топлива), выпускные форсунки, вспомогательный топливный насос и индикаторы давления / расхода топлива

  • Вспомогательный топливный насос подает топливо под давлением в блок управления топливом / воздухом для запуска двигателя и / или аварийного использования.
  • После запуска топливный насос с приводом от двигателя подает топливо под давлением из топливного бака в блок управления топливом / воздухом
  • Этот блок управления, который по существу заменяет карбюратор, измеряет расход топлива на основе настройки управления смесью и отправляет его на клапан топливного коллектора со скоростью, регулируемой дросселем
  • После достижения клапана топливного коллектора топливо распределяется по отдельным форсункам для слива топлива
  • Выпускные форсунки, расположенные в каждой головке цилиндров, впрыскивают топливно-воздушную смесь непосредственно в каждое впускное отверстие цилиндра.

  • Считается, что система впрыска топлива менее подвержена обледенению, чем карбюраторная система, но ударное обледенение на воздухозаборнике возможно в любой из систем
  • .
  • Воздействие обледенения происходит, когда на внешней поверхности самолета образуется лед, и блокирует отверстия, такие как воздухозаборник для системы впрыска
    • Сокращение испарительного обледенения
    • Лучший расход топлива
    • Ускоренная реакция дроссельной заслонки
    • Точный контроль смеси
    • Лучшее распределение топлива
    • Легкая холодная погода начинается
    • Трудности при запуске горячего двигателя
    • Паровые затворы при наземных операциях в жаркие дни
    • Проблемы, связанные с перезапуском двигателя, который выходит из-за недостатка топлива
  • Руководство по полету на самолете, впрыск топлива
  • Карбюраторы — редкое зрелище с новыми самолетами, но они очень распространены на средней линии полета
    • Обратите внимание, что добавление тепла карбюратора действительно влияет на двигатель, так как более горячий, менее плотный воздух затем смешивается с топливом
    • Неудача приведет к богаче, чем предыдущая смесь
  • Не нашли что-то, что вы ищете? Продолжить поиск:

,
Завод карбюраторной системы, Изготовленная на заказ карбюраторная система OEM / ODM Производственная компания Всего найдено 90 заводов и компаний карбюраторной системы с 270 продуктами. Источник высококачественной карбюраторной системы из нашего большого выбора надежных заводов по производству карбюраторной системы. Diamond Member
Тип бизнеса: Производитель / Factory
Основная продукция: Ультразвуковой очиститель
Mgmt.Сертификация:

ISO9001: 2015, ISO 13485: 2016

владение фабрикой: Общество с ограниченной ответственностью
R & D Емкость: Собственная марка, ODM, OEM
Расположение: Шэньчжэнь, Гуандун
Золотой участник
Тип бизнеса: Производитель / Factory , Торговая компания
Основная продукция: Автохимия, Смазка, Хладагент, Антифриз, Тормозная жидкость
Mgmt.Сертификация:

ISO9001: 2008

Форма собственности: Общество с ограниченной ответственностью
R & D Емкость: Собственный бренд, OEM
Расположение: Гуанчжоу, Гуандун
Золотой участник
Тип бизнеса: Торговая компания
Основная продукция: Аксессуары для мотоциклов, Запчасти для мотоциклов, Мотоцикл Карбюратор
Mgmt.Сертификация:

ISO 9001, ISO 9000, ISO 20000, QHSE

владение фабрикой: Частный владелец
R & D Емкость: OEM, собственный бренд
Расположение: Гуанчжоу, Гуандун
Diamond Member
Тип бизнеса: Производитель / Factory , Торговая компания
Основная продукция: Карбюратор
Mgmt.Сертификация:

ISO 9001

владение фабрикой: Общество с ограниченной ответственностью
R & D Емкость: Собственная марка, ODM, OEM
Расположение: Вэньчжоу, Чжэцзян
Золотой участник
Тип бизнеса: Производитель / Factory
Основная продукция: Бензопила Карбюратор , Кусторез Карбюратор , Диафрагма Карбюратор , Двигатель Aeromodel Карбюратор
Mgmt.Сертификация:

ISO 9001

Форма собственности: Общество с ограниченной ответственностью
R & D Емкость: OEM, собственный бренд
Расположение: Тяньцзинь, Тяньцзинь
Золотой участник
Тип бизнеса: Производитель / Factory , Торговая компания
Основная продукция: Запчасти для сельскохозяйственной и садовой техники, Ткацкое оборудование, Пластмассовая техника
Mgmt.Сертификация:

ISO 9000, ISO 14001, ISO 14000, ISO 10012, ISO 17025

владение фабрикой: Общество с ограниченной ответственностью
R & D Емкость: ODM, OEM
Расположение: Нинбо, Чжэцзян
Diamond Member
Тип бизнеса: Производитель / Factory , Торговая компания
Основная продукция: Мотоцикл часть
Mgmt.Сертификация:

ISO9001: 2015

владение фабрикой: Общество с ограниченной ответственностью
R & D Емкость: ODM, OEM
Расположение: Ниндэ, Фуцзянь
,

»Проблемы с карбюратором и решения

Ниже приведена таблица возможных проблем с карбюратором и возможных способов их устранения. Эта таблица предназначена для помощи в устранении неполадок карбюратора. Каждый инцидент варьируется в зависимости от индивидуального использования. Рекомендуется регулярный осмотр деталей карбюратора.

Всегда консультируйтесь с руководством своего владельца для определенной настройки карбюратора и рекомендаций.

ПРОБЛЕМА ВОЗМОЖНОЕ РЕШЕНИЕ
  • Двигатель охотится (на холостом ходу или на высокой скорости)
  • Утечки карбюратора

Осмотреть винты регулировки холостого хода и основной смеси, а также уплотнительные кольца на наличие трещин и повреждений.

  • Карбюратор вне регулировки
  • Двигатель не запустится
  • двигатель не разгоняется
  • Двигатель охотится (на холостом ходу или на высокой скорости)
  • Двигатель не будет работать на холостом ходу
  • Двигателю не хватает мощности на высокой скорости
  • Превышение скорости двигателя
  • Двигатель не хватает топлива на высокой скорости (высовывается)

Отрегулировать винт регулировки основной смеси; некоторые модели требуют регулировки затяжки

  • Карбюратор вне регулировки
  • Двигатель не запустится
  • двигатель не разгоняется
  • Двигатель охотится (на холостом ходу или на высокой скорости)
  • Двигатель не будет работать на холостом ходу
  • Двигателю не хватает мощности на высокой скорости
  • Скорость холостого хода чрезмерна

Отрегулировать винт смеси холостого хода

  • Карбюратор вне регулировки
  • Двигатель не будет работать на холостом ходу
  • Скорость холостого хода чрезмерна

Проверка наличия изогнутых заслонок и дроссельных заслонок

  • Двигатель не запустится
  • Двигатель охотится (на холостом ходу или на высокой скорости)
  • Двигатель не будет работать на холостом ходу
  • Превышение скорости двигателя
  • Скорость холостого хода чрезмерна
  • Двигатель не хватает топлива на высокой скорости (высовывается)

Отрегулируйте трос управления или линию, чтобы обеспечить полное управление воздушной заслонкой и карбюратором.

  • Карбюратор вне регулировки
  • Двигатель не запустится
  • Превышение скорости двигателя

Очистите карбюратор после удаления всех неметаллических деталей, которые подлежат ремонту.

  • Карбюраторные разливы
  • Двигатель не хватает топлива на высокой скорости (высовывается)

Проверьте иглу на входе и седло на предмет исправности и правильности установки.

  • Утечки в карбюраторе
  • Превышение скорости двигателя
  • Скорость холостого хода чрезмерна

Проверить герметичность пробок, колпачков, пробок и прокладок Welch

  • Карбюратор вне регулировки
  • Двигатель не будет работать на холостом ходу
  • Двигателю не хватает мощности на высокой скорости
  • Утечки карбюратора
  • Превышение скорости двигателя

Отрегулировать тягу регулятора

  • Двигатель охотится (на холостом ходу или на высокой скорости)
  • Двигатель не будет работать на холостом ходу
  • Двигателю не хватает мощности на высокой скорости
  • разливов карбюратора
  • Двигатель не хватает топлива на высокой скорости (высовывается)

Отрегулируйте настройки поплавка, если карбюратор поплавкового типа

  • Двигатель охотится (на холостом ходу или на высокой скорости)
  • Двигатель не будет работать на холостом ходу
  • Карбюраторные разливы

Проверить поплавковый вал на предмет износа и поплавковый на предмет утечек или вмятин.

  • Двигатель не запустится
  • Двигатель не будет работать на холостом ходу
  • Двигателю не хватает мощности на высокой скорости
  • Карбюраторные разливы
  • Скорость холостого хода чрезмерна

Проверить мембрану на наличие трещин или деформаций и проверить нейлоновый шарик для проверки работоспособности, если таковой имеется

  • Двигатель охотится (на холостом ходу или на высокой скорости)
  • Двигателю не хватает мощности на высокой скорости
  • Карбюраторные разливы
  • Скорость холостого хода чрезмерна
  • Двигатель не хватает топлива на высокой скорости (высовывается)

Проверить последовательность прокладок и мембран для конкретного ремонтируемого карбюратора


Советы по безопасности для домкрата: Перед обслуживанием или ремонтом любого силового оборудования отсоедините свечу зажигания и кабели аккумулятора.
Не забудьте надеть соответствующие защитные очки и перчатки для защиты от вредных химических веществ и мусора. Посмотрите наш отказ от ответственности.

Избранные запчасти и изделия:

Метки: карбюратор , малый двигатель


Об авторе

Jacks Малые двигатели Jack поставляет запчасти для силового наружного оборудования онлайн с 1997 года. У нас также есть сервисный центр для силового наружного оборудования, такого как косилки, снегоуборщики, генераторы, бензопилы и почти все остальное.



,
заводов системы карбюратора Cng, изготовленная на заказ компания OEM / ODM системы карбюратора Cng Всего найдено 11 заводов & компаний по производству карбюраторной системы с 33 продуктами. Поставка высококачественной системы карбюраторного двигателя из нашего большого выбора надежных заводов по производству карбюраторного двигателя.
Тип бизнеса: Производитель / Factory , Торговая компания
Основная продукция: CNG LPG Редукторный регулятор, CNG LPG Преобразовательные комплекты, CNG LPG Форсунка, CNG LPG Трубка высокого давления, регулятор давления газа
Mgmt.Сертификация:

ISO 9001, ISO 9000, ISO 20000, IATF16949, HACCP

владение фабрикой: Общество с ограниченной ответственностью
R & D Емкость: OEM, ODM, собственный бренд
Расположение: Чэнду, Сычуань
Diamond Member
Тип бизнеса: Торговая компания
Основная продукция: Кислородный баллон, Газовый баллон, Кислородный газовый баллон, Стальной бесшовный баллон, CO2 газовый баллон
Mgmt.Сертификация:

ISO 9001, ISO 9000

владение фабрикой: Общество с ограниченной ответственностью
R & D Емкость: OEM, ODM, собственный бренд
Расположение: Нинбо, Чжэцзян
Золотой участник
Тип бизнеса: Производитель / Factory , Торговая компания Корпорация Групп
Основная продукция: Установка разделения воздуха, резервуар для хранения жидкости, газовые баллоны, криогенный насос, криогенные клапаны
Mgmt.Сертификация:

ISO 9001, ISO 9000, ANSI / ESD

владение фабрикой: Общество с ограниченной ответственностью
R & D Емкость: OEM, собственный бренд
Расположение: Ханчжоу, Чжэцзян
Тип бизнеса: Производитель / Factory , Торговая компания
Основная продукция: CNG Комплект ЭБУ редуктора СНГ, CNG Комплект топливных форсунок LPG, CNG Комплект ЭБУ СНГ, CNG Редуктор СНГ, CNG Комплект для переоборудования СНГ
Mgmt.Сертификация:

IATF16949

Форма собственности: Общество с ограниченной ответственностью
R & D Емкость: OEM, ODM, собственный бренд
Расположение: Чэнду, Сычуань
Тип бизнеса: Производитель / Factory , Торговая компания
Основная продукция: Клапан двигателя, головка цилиндра, направляющая клапана, коленчатый вал, распределительный вал
Mgmt.Сертификация:

ISO 9001, IATF16949

владение фабрикой: Частный владелец
R & D Емкость: OEM, ODM
Расположение: Аньцин, Аньхой
  • Цена за единицу: 4 доллара США.99-15,99 / шт

    Минимум Заказ: 1 шт.

  • Цена за единицу: 4 доллара США.99-15,99 / шт

    Минимум Заказ: 1 шт.

  • Цена за единицу: 4 доллара США.99-15,99 / шт

    Минимум Заказ: 1 шт.

Тип бизнеса: Производитель / Factory , Торговая компания
Основная продукция: CNG Регулятор, последовательный редуктор, CNG / Комплект для переоборудования LPG, последовательные комплекты, CNG Оборудование для переоборудования
Расположение: Чэнду, Сычуань
Diamond Member
Тип бизнеса: Торговая компания
Основная продукция: Маслопресс, Нефтеперерабатывающая машина, Линия по производству масла, Оборудование для дистилляции эфирных масел, Мобильный канал дезинфекции
Mgmt.Сертификация:

ISO 9001

владение фабрикой: Общество с ограниченной ответственностью
R & D Емкость: OEM
Расположение: Ухань, Хубэй
Тип бизнеса: Производитель / Factory
Основная продукция: Автозапчасти, LPG / CNG , Редуктор, Комплекты для преобразования ECU, Роль инжектора
Mgmt.Сертификация:

ISO 20000

Расположение: Чэнду, Сычуань
Тип бизнеса: Производитель / Factory
Основная продукция: CNG , LPG, Комплекты, Жгут, Ecu
Расположение: Цзясин, Чжэцзян
Тип бизнеса: Производитель / Factory , Другой
Основная продукция: Комплекты для впрыска LPG, последовательные комплекты CNG , комплект Diesel CNG , преобразователь Diesel CNG , комплект дизельного LPG
Расположение: Шэньчжэнь, Гуандун
  • CNG Mixer System C
.

Ваш электронный адрес не будет опубликован.