Схема жидкостной системы охлаждения: Общее устройство и работа жидкостной системы охлаждения

Содержание

Система жидкостного охлаждения

Строго говоря, термин «жидкостное охлаждение» не вполне корректен, так как жидкость в системе охлаждения — всего лишь промежуточный теплоноситель, проникающий в толщу стенок блока цилиндров. Роль отводящего агента в системе играет воздух, обдувающий радиатор, поэтому охлаждение современного автомобиля правильней назвать гибридным.

Устройство жидкостной системы охлаждения

Жидкостная система охлаждения двигателя состоит из нескольких элементов. Самый сложный называется «рубашкой охлаждения». Это разветвленная сеть каналов в толще блока цилиндров и головки блока цилиндров. Кроме рубашки в систему входит радиатор системы охлаждения, расширительный бачок, водяной насос, термостат, вентилятор радиатора, металлические и резиновые соединительные патрубки, датчики и контрольные приборы.

Пропилен гликоль — основа охлаждающей жидкости (антифриза) и одобренная ветеринарными врачами пищевая добавка для рациона собак

Система построена на принципе принудительной циркуляции, которую обеспечивает водяной насос. Благодаря постоянному оттоку разогретой жидкости двигатель охлаждается равномерно. Этим и объясняется применение системы в подавляющем большинстве современных автомобилей.

Пройдя по каналам в стенках блока, жидкость нагревается и попадает в радиатор, где охлаждается потоком воздуха. Когда автомобиль движется, для охлаждения достаточно естественного обдува, а когда автомобиль стоит – обдув происходит за счет электрического вентилятора, включающегося по сигналу от датчика температуры.

Подробно о ключевых элементах водяного охлаждения

Радиатор охлаждения

Радиатор — панель из металлических трубок небольшого диаметра, покрытых для увеличения площади теплоотдачи алюминиевым или медным «оперением». В сущности, оперение, это многократно сложенная лента из металла. Общая суммарная площадь ленты достаточно велика, а значит, радиатор может отдать в атмосферу в единицу времени достаточно много тепла.

Самый уязвимый элемент конструкции двигателя — турбокомпрессор (турбина), работающая на крайне высоких оборотах. При перегреве разрушение крыльчатки и подшипников вала практически неизбежно 

Таким образом, разогретая жидкость внутри радиатора циркулирует сразу по всем многочисленным тонким трубкам и охлаждается достаточно интенсивно. В крышке заливной горловины радиатора предусмотрен предохранительный клапан, отводящий пары и избыток жидкости, расширяющейся при нагреве.

В радиаторе автомобиля с автоматической коробкой передач предусмотрен второй, независимый контур, в котором охлаждается трансмиссионная жидкость.

Расширительный бачок

Расширительный бачок служит для компенсации расширения жидкости при повышении температуры. В зависимости от конструкции системы бачок может быть «простым» или «сложным». «Простой» бачок представляет из себя емкость для сбора излишков расширившейся от нагрева жидкости. К нему через крышку подведена резиновая трубка, другим концом присоединенная к патрубку в верхнем бачке радиатора. 

В более сложном варианте бачок — полноправная часть системы охлаждения. Он находится под давлением, и отводящий клапан вмонтирован в крышку бачка. В этом случае в бачке всегда должна быть жидкость, чтобы при падении температуры двигателя в радиатор не попадал воздух. Для контроля на стенку бачка, находящегося под давлением, наносят метки Min и Max. 

Водяной насос, или помпа

Водяной насос обеспечивает циркуляцию охлаждающей жидкости в системе. Как правило, это центробежный насос, в котором давление создает расположенная внутри корпуса на центральной оси крыльчатка с лопастями сложной формы.

Термостат 

Термостат — устройство, поддерживающее постоянную температуру в блоке цилиндров. Он не позволяет жидкости не только перегревать двигатель, но и переохлаждать его в зимний период. С его помощью регулируется объем охлаждающей жидкости, которая проходит через радиатор.

Вентилятор системы охлаждения

В ряде случаев набегающего потока воздуха может быть недостаточно для эффективного обдува радиатора. Для обеспечения отвода тепла в автомобильной системе охлаждения предусмотрен вентилятор. В автомобилях с задним приводом и продольным расположением двигателя нередко применяется механический вентилятор, который приводится в движение ремнем от переднего шкива коленвала. Скорость вращения лопастей регулирует термомуфта (разновидность вискомуфты), к которой привинчена крыльчатка.

Если прикрепить крыльчатку вентилятора к шкиву без термомуфты, при раскручивании двигателя свыше 3000 оборотов лопасти крыльчатки отломятся

В переднеприводных (и большинстве современных заднеприводных) автомобилях используется электрический вентилятор. Он соединен с диффузором, который привинчен к крепежным элементам, расположенным по контуру радиатора. Преимущество электрического вентилятора в возможности гибко управлять его работой при помощи контроллера, руководствующегося показаниями датчика температуры ОЖ.

Вспомогательные элементы

Жидкостная система охлаждения включает в себя и типовые элементы управления: электронный блок, датчик температуры и т.д., а также приспособления для слива жидкости. Жидкость приходится сливать, к примеру, для ремонта двигателя.               

Схема работы системы жидкостного охлаждения

Циркуляция охлаждающей жидкости в системе происходит по малому и большому кругам.

Малый круг задействован при запуске холодного двигателя и обеспечивает ему быстрый прогрев. Двигаясь по малому кругу, жидкость не проходит сквозь радиатор.

Когда температура охлаждающей жидкости повышается до 80 градусов, приоткрывается основной клапан термостата, и циркуляция продолжается по большому кругу, включающему в себя радиатор. (Термостат может быть градуирован и под другую температуру открытия).

При достижении отметки в 94 градуса, начинает закрываться дополнительный клапан термостата, ограничивающий доступ охлаждающей жидкости к малому кругу — от двигателя к насосу. Таким образом термостат не дает чрезмерно разогретой жидкости попадать в стенки блока цилиндров, препятствуя перегреву.

В зависимости от режима работы ДВС цикл движения охлаждающей жидкости в системе может меняться. Объем жидкости, циркулирующей в каждом круге напрямую зависит от того, в какой степени открыты основной и дополнительный клапаны термостата. Эта схема обеспечивает автоматическую поддержку оптимального температурного режима работы двигателя.

Преимущества и недостатки жидкостной системы охлаждения

Главное достоинство жидкостного охлаждения заключается в том, что охлаждение двигателя происходит равномернее, чем в случае обдува блока потоком воздуха. Это объясняется большей теплоемкостью охлаждающей жидкости по сравнению с воздухом.

Жидкостная система охлаждения позволяет значительно снизить шум от работающего двигателя за счет большей толщины стенок блока.

Инерционность системы не дает быстро остывать двигателю после выключения. Разогретая жидкость используется для обогрева салона автомобиля и для предварительного подогрева горючей смеси.

Наряду с этим, жидкостная система охлаждения имеет ряд недостатков.

Основной недостаток заключается в сложности системы и в том, что она работает под давлением после прогрева жидкости. Жидкость, находящаяся под давлением, предъявляет повышенные требования к герметичности всех соединений. Ситуация осложняется тем, что работа системы подразумевает постоянное повторение цикла «нагрев — остывание». Это вредно для соединений и резиновых патрубков. При нагреве резина расширяется, а затем сжимается при остывании, что становится причиной течей.

Кроме того, сложность и большое количество элементов сама по себе служит потенциальной причиной «техногенных катастроф», сопровождаемых «закипанием» двигателя в случае выхода из строя одной из ключевых деталей, например, термостата.

Система охлаждения двигателя — устройство, принцип работы, конструкция

Назначение и характеристика

Системой охлаждения называется совокупность устройств, осуществляющих принудительный регулируемый отвод и передачу теплоты от деталей двигателя в окружающую среду.

Система охлаждения предназначена для поддержания оптимального температурного режима, обеспечивающего получение максимальной мощности, высокой экономичности и длительного срока службы двигателя.

При сгорании рабочей смеси температура в цилиндрах двигателя повышается до 2500 °С и в среднем при работе двигателя составляет 800…900°С. Поэтому детали двигателя сильно нагреваются, и если их не охлаждать, то будут снижаться мощность двигателя, его экономичность, увеличиваться изнашивание деталей и может произойти поломка двигателя.

При чрезмерном охлаждении двигатель также теряет мощность, ухудшается его экономичность и возрастает изнашивание.

Для принудительного и регулируемого отвода теплоты в двигателях автомобилей применяют два типа системы охлаждения (рисунок 1). Тип системы охлаждения определяется теплоносителем (рабочим веществом), используемым для охлаждения двигателя.

Рисунок 1 – Типы систем охлаждения

Применение в двигателях различных систем охлаждения зависит от типа и назначения двигателя, его мощности и класса автомобиля.

Жидкостная система охлаждения

В

жидкостной системе охлаждения используются специальные охлаждающие жидкости — антифризы различных марок, имеющие температуру загустевания — 40 °С и ниже. Антифризы содержат антикоррозионные и антивспенивающие присадки, исключающие образование накипи. Они очень ядовиты и требуют осторожного обращения. По сравнению с водой антифризы имеют меньшую теплоемкость и поэтому отводят теплоту от стенок цилиндров двигателя менее интенсивно.

Так, при охлаждении антифризом температура стенок цилиндров на 15…20°С выше, чем при охлаждении водой. Это ускоряет прогрев двигателя и уменьшает изнашивание цилиндров, но в летнее время может привести к перегреву двигателя.

Оптимальным температурным режимом двигателя при жидкостной системе охлаждения считается такой, при котором температура охлаждающей жидкости в двигателе составляет 80 …100 °С на всех режимах работы двигателя.

Это возможно при условии, что с охлаждающей жидкостью уносится в окружающую среду 25…35 % теплоты, выделяющейся при сгорании топлива в цилиндрах двигателя. При этом в бензиновых двигателях величина отводимой теплоты больше, чем в дизелях.

На рисунке 2 приведена диаграмма распределения теплоты, выделяющейся при сгорании топлива в цилиндрах двигателей автомобилей при жидкостной системе охлаждения.

Рисунок 2 – Диаграмма распределения теплоты

Из диаграммы следует, что в механическую работу преобразуется 20…35% теплоты, уносится с отработавшими газами 35…40%, теряется на трение 5 % и уносится с охлаждающей жидкостью 25…35 % теплоты.

По сравнению с воздушной жидкостная система охлаждения более эффективная, менее шумная, обеспечивает меньшую среднюю температуру деталей двигателя, улучшение наполнения цилиндров горючей смесью и более легкий пуск двигателя при низких темпера

Схемы систем охлаждения

Подробности

 

Схема системы охлаждения №1. Система охлаждения воды с промежуточной емкостью.

 

В такой схеме системы охлаждения теплая вода от потребителя сливается в одну часть емкости, далее вода при помощи насоса, встроенного в чиллер подается на охлаждение. Холодная вода из чиллера сливается в другую половину емкости, откуда впоследствии отдельным насосом подается к потребителю с требуемым расходом.

При такой схеме охлаждения чиллер обеспечивает постоянное охлаждение воды в емкости. Чиллер вода. 

 

Схема охлаждения воды с промежуточной емкостью применяется в случае, если при охлаждении воды:

  1. Перепад температур на входе/выходе из оборудования — потребителя охлажденной воды —  больше 5 оC, но меньше 10 оC (за счет перемешивания воды в баке, система охлаждения чиллера работает в стандартном режиме)
  2. Система охлаждения потребителя — открытая, т.е. имеется разрыв струи в потребителе холодной воды. В этом случае вода от потребителя возвращается самотеком, если подключить чиллер напрямую, система охлаждения работать не будет.
  3. Разветвленная система охлаждения (в системе много потребителей 5, 10 и т.д.). При большом количестве потребителей, участвующих в схеме охлаждения, часто нагрузка меняется (работает разное количество станков), возможны скачки температуры. Применение емкости позволяет сглаживать скачки нагрузки.
  4. При непостоянной нагрузке от потребителя (например, 10 минут нагрузка, 20 минут перерыв и т.д.). Применение емкости позволяет сглаживать скачки нагрузки.

Преимущества:

— Когда используется такая схема охлаждения воды, то промежуточная емкость позволит установки охлаждения работать в щадящем режиме, т.к. промежуточный бак будет выполнять роль аккумулятора холода и позволит сократить амплитуду колебания температуры при изменении нагрузки от потребителей холодной воды.

— Данная схема охлаждения позволяет устанавливать дополнительные чиллеры, подключив их к существующей емкости, увеличивая мощность системы без существенной переделки.

Примечания.

— Емкость необходимо теплоизолировать.

— Объем емкости ориентировочно 15-20% от объемного расхода воды во всей системе.

— Можно применять емкость не разделенную на 2 части (для теплой и холодной воды). Данное отступление ослабляет преимущества данной схемы охлаждения, но позволяет немного снизить первоначальные затраты на установку охлаждения воды.

— Можно применять 2 емкости (1- для теплой, 2- для холодной воды), соединенные между собой уравнительной трубой. Требуется особо тщательный расчет уравнительной трубы.

……………………………………………………………………………………………………………………………………………….

 

 

Схема охлаждения №2. Схема охлаждения воды с промежуточным теплообменником.

 

В данном случае жидкость поступает с расходом G1 на вход в теплообменник с температурой T1 выходит из теплообменника с заданной температурой T2, охлаждаясь за 1 проход. Во втором контуре циркулирует хладоноситель с расходом G2 и температурой T3 на входе в теплообменник и Т4 на выходе. Степень охлаждения обеспечивается площадью поверхности теплообменника.

Теплообменник из нержавеющей стали.

Перепад температур на чиллере не должен превышать Т4-Т3  = 5 градусов

Температура на выходе из чиллера выбирается Т3=Т2- (4 … 50).

Тип хладоносителя (вода, раствор гликоля и т.д.) выбирается в зависимости от температуры Т3

 

Холодопроизводительность считается по продукту:

Q = G1*(Т2- Т1)*C1*p1 / 3600 = G2*(Т4- Т3)*C2*p2/ 3600 = … кВт

Данная схема охлаждения применяется в случае:

  1. Перепад температур на входе/выходе из оборудования ?T>100C (верхний предел не ограничен)
  2. Охлаждение любых пищевых продуктов (пиво, минеральная вода, молоко и т.д.).  Пищевые продукты охлаждать НЕЛЬЗЯ Напрямую в чиллер. Охлаждение ТОЛЬКО в теплообменнике из нержавеющей стали.

Преимущества:

— Возможность охлаждения любых жидких и газовых сред с любыми значениями вязкости, текучести и плотности. (встречались проекты охлаждения газообразного азота, нефти и других веществ.)

— Возможность охлаждения с любых темепартур до любых температур за 1 проход (обеспечивается засчет подбора нужного теплообменника)

— Чиллер работает в стандартном режиме нагрузки.

……………………………………………………………………………………………………………………………………………….

Схема охлаждения №3. Комбинированная схема охлаждения.

 

В данном случае жидкость от потребителя сначала охлаждается в воздушном охладителе 1 («сухой» градирне, см. Приложение №1) до температуры близкой к температуре окружающего воздуха, затем попадает в емкость для теплой воды 2. Далее жидкость подается на охлаждение в чиллер 3 и закачивается в емкость для холодной воды 4, откуда в дальнейшем, при помощи насоса 5 качается к потребителю.

 

 

Данная схема применяется в случае:

  1. Высокая температура от  потребителя (выше +40 оC) и низкая требуемая температура, подаваемая к потребителю (ниже +20 оC)
  2. В основном применяется для охлаждения автоклав и реакторов.

Преимущества:

— менее дорогостоящий и энергозатратный вариант, чем охлаждение с помощью промежуточного теплообменника (при непостоянной нагрузке)

……………………………………………………………………………………………………………………………………………….

Схема охлаждения №4. Схема охлаждения с естественным охлаждением — фрикуллинг.

 

В данном случае вода от потребителя проходит через воздушный охладитель, охлаждается до температуры близкой к температуре окружающего воздуха, далее вода попадает в чиллер и доохлаждается (при необходимости) до требуемой температуры.

В зимний период охлаждение происходит засчет работы воздушного охладителя. Чиллер выключается, хладоноситель охлаждается до требуемой температуры за счет обдува окружающим воздухом.

 

Данная схема применяется в случае:

  1. Требуемая температура жидкости от 0 оC и выше.
  2. При больших мощностях системы
  3. Централизованных системах охлаждения

Преимущества:

— экономия электроэнергии до 45% в год.

— меньше эксплуатируется чиллер, увеличивается его срок службы

Недостатки:

— увеличивается стоимость

— требует применения незамерзающей жидкости в качестве рабочей жидкости.

…..

Оборудование, которое поставляет Компания Питер Холод можно встретить на предприятиях в таких регионах, как: Москва Санкт-Петербург Екатеринбург Ростов-на-Дону Казань Краснодар Нижний Новгород Волгоград Уфа Воронеж Челябинск Пенза Самара Тольятти Оренбург Тверь Сочи Белгород Пермь Смоленск Владимир Воскресенск Чебоксары Саратов Курск Новочеркасск Ярославль Черноголовка Ижевск Киров Астрахань Рязань Курган Сургут Ульяновск Тюмень Кострома Липецк Калуга в Марий Эл Димитровград Каменск-Уральский Жуковский Набережные Челны Ейск Иваново Нижневартовск Подольск Тамбов Армавир Магнитогорск в Мордовии Миасс Новороссийск Калмыкия Ханты-Мансийск Брянск Волжский Сызрань Нижний Тагил Таганрог Орел Ленинградская В Ленинградской области В лен области Железногорск Всеволожск Выборг Гатчина Кириши Сосновый бор Тихвин Череповец Волхов Великий Новгород В Новгородской области В Ненецком Петрозаводск В республике Коми Архангельск Вологда Мурманск Псков Великие Луги Воркута Сыктывкар Ухта Северодвинск Калининград В калининградской области Кондопога Сортавала В Ивановской области Обнинск В Липецкой области Электросталь Поволжье Дзержинск Саров Выкса В Нижегородской области Орск В Пермском краю Березники Нефтекамск Салават Альметьевск Бугульма Нижнекамск Жигулевск Балоково Энгельс в Татарстане В Пензенской области В Башкортостане В Ульяновской области В Чувашии Глазов Сарапул Дмитров Юг Владикавказ В Адыгее Анапа Туапсе Волгодонск Шахты в Калмыкии В Краснодарском крае Геленджик Ялта Сибирь Иркутск Барнаул Братск Усть-Илимск Кемерово Новокузнецк Красноярск Норильск Алтайский край Алтай В Красноярском крае Новосибирск Томск Омск В Бурятии Улан–Удэ в Тыве в Хакасии На Дальнем Востоке Благовещенск Белогорск Владивосток Уссурийск Хабаровск В Еврейской области Камчатский край Магадан в Сахе На Чукотске Южно-Сахалинск В Приморье В Хабаровском крае Якутск На Северном Кавказе Северный Кавказ В Чечне Ессентуки Кисловодск Минеральные воды Пятигорск В Карачаево-Черкесске Черкесск На Ставрополье В Дагестане в Ингушетии ив Северной Осетия Аланья В Кабардино-Балкарии На Урале Первоуральск Тобольск Нефтеюганск Озерск В Челябинской области В Ханты-Мансийском округе Новый Уренгой Ноябрьск Салехард В Ямало-Ненецком округе Удмуртск В Удмуртии

Схемы систем охлаждения — Студопедия

ЛАБОРАТОРНАЯ РАБОТА № 3

Тема: «Назначение, устройство и принцип работы

Системы охлаждения двигателя»

Цель работы:изучение назначения, устройства и принципа работы системы охлаждения двигателя.

Общие положения

Схемы систем охлаждения

Система охлаждения предназначена для поддержания оптимального теплового режима двигателя регулируемым отводом теплоты от наиболее горячих деталей, которые нагреваются в результате трения или контакта с горячими газами.

При недостаточном отводе теплоты двигатель перегревается, при этом его мощность уменьшается и возрастает расход топлива. Кроме того, в карбюраторном двигателе может возникнуть детонация. При сильном перегреве происходит задир и выплавление вкладышей подшипников, разрушение поверхности шеек коленчатого вала, заклинивание поршня и т.п. С другой стороны, переохлаждение двигателя также нежелательно из-за ухудшения его топливной экономичности и значительного снижения срока службы.

В автомобильных двигателях в основном применяют жидкостную и реже воздушную системы охлаждения.

В жидкостных системах (см. рисунок 3.1, а) теплота от деталей сначала передается охлаждающей жидкости, а от нее — в окружающую среду (воздух). Температура жидкости при работе двигателя 85 -100°С.

Охлаждающая жидкость циркулирует в пространстве (рубашке) между двойными стенками в блоке цилиндров и головке. Циркуляцию обеспечивает насос 7, который приводится от коленчатого вала ремнем. Интенсивность циркуляции охлаждающей жидкости регу­лируется термостатом 5 или отключением и включением вентилятора. Теплота от охлаждающей жидкости в окружающую среду передается радиатором 1.


Поток циркулирующей жидкости иногда специаль­ной водораспределительной трубой 6 или продольным каналом с отверстиями направляется в первую очередь к наиболее нагретым деталям — выпускным каналам, стенкам камеры сгорания, свечам зажигания.

Система охлаждения, применяемая в современных двигателях, делается закрытой, т. е. она сообщается с атмосферой через клапаны в пробке (крышке) радиатора или расширительного бачка. В закрытой системе повышается температура кипения охлаждающей жидкости, жидкость реже закипает и меньше испаряется.

Систему охлаждения используют и для охлаждения компрессора пневматической тормозной системы, а также для отопления кабины водителя или салона легкового автомобиля.


Система жидкостного охлаждения лучше регулируется и равномернее охлаждает детали, бесшумна в работе, потребляет сравнительно мало мощности на привод насоса и вентилятора, но эта система дороже воздушной и уязвима в эксплуатации.

В качестве охлаждающей жидкости применяют воду или антифризы (водные растворы этиленгликоля), в том числе «Тосол-А40» и «Тосол-А65» с температурой замерзания соответственно не выше -40°С и -65°С.

Для воздушных систем охлаждения характерна непосредственная передача теплоты в атмосферу (см. рисунок 3.1, б). Необходимая интенсивность охлаждения достигается с помощью охлаждающих ребер 10,вентилятора 2 и дефлектора 9. Расход охлаждающего воздуха может регулироваться. Система проста по устройству и в эксплуатации, обеспечивает быстрый прогрев двига­теля после запуска, имеет небольшую массу.

Недостатки системы воздушного охлаждения:

-большая мощность, расходуемая на привод вентилятора;

-шумность работы;

-плохая равномерность отвода теплоты по высоте цилиндра.

На рисунке 3.2 показана схема жидкостной системы охлаждения дизеля КамАЗ. В системе используют охлаждающую жидкость «Тосол». Центробежный насос 8 засасывает охлаждающую жидкость из радиатора (стрелка А) или из перепускной трубы 7 и нагнетает ее через трубу 12 в рубашку охлаждения цилиндров.

1 — перепускная трубка к расширительному бачку; 2 — трубка от компрессора к бачку; 3 — компрессор; 4 и 6 — правая и левая трубы; 5 — соединительная труба; 7 — перепускная труба термостатов; 8 — жидкостный насос; 9 — колено отводящего патрубка; 10 — крыльчатка; 11 — сливной кран; 12 и 13 — подводящая труба и ее патрубок; 14 — головка цилиндров; 15 — включатель гидромуфты; 16 — коробка термостатов; 17 — патрубок отвода жидкости из бачка в насос;

18 — патрубок отвода жидкости в отопитель; 19 — воздухоотводящая труба от радиатора к бачку;

20 — расширительный бачок; 21 — термостаты

Рисунок 3.2 — Схема системы жидкостного охлаждения

После охлаждения гильз цилиндров жидкость поступает в рубашки головок цилиндров 14,откуда по трубам 4 и 6подается в коробку термостатов 16, из которой в зависимости от температуры направляется в радиатор (нормальный температурный режим двигателя) или на вход насоса 8 (режим прогрева двигателя). Температурный режим двигателя обеспечивается автоматически термостатами и включателем гидромуфты привода вентилятора.

Для заполнения системы охлаждающей жидкостью предназначена заливная горловина расширительного бачка 20. Сливается жидкость из системы через сливной кран 11, а также краны нижнего патрубка радиатора, подводящей трубы отопителя кабины, котла и насосного агрегата предпускового подогревателя.

Устройство системы охлаждения двигателя

Система охлаждения предназначена для поддержания оптимального теплового режима двигателя, чтобы он не перегревался и не переохлаждался.

Порядок замены охлаждающей жидкости

Если не менять охлаждающую

жидкость во время , это приведет к повышенному…

Требования к системе охлаждения:

• автоматическое поддержание оптимального теплового режима в двигателе, независимого от режима работы и внешних условий;
• быстрый прогрев двигателя до рабочей температуры;
• длительное сохранение теплоты после остановки двигателя;
• малые энергетические затраты, связанные с приводом агрегатов системы охлаждения.


Сгорание горючей смеси сопровождается выделением значительного количества теплоты. Если двигатель не охлаждать или охлаждать недостаточно, го его детали могут нагреться до высокой температуры, а это уменьшает их прочность и наполнение цилиндров, ухудшает условия работы смазочной системы вследствие снижения вязкости перегретого масла, ускоряет срабатывание присадок к маслам и увеличивает количество отложений и нагара на деталях.

«Большинство автомобильных двигателей имеют жидкостные системы охлаждения закрытого типа» .

Жидкостная система охлаждения

Жиддкостная система охлаждения более инерционна, двигатель медленно прогревается, но и медленно остывает. Кроме того, большая теплоемкость охлаждающей жидкости обеспечивают интенсивный и равномерный теплоотвод и меньшую температуру деталей.

Теплота, отводимая от двигателей, используется для подогрева впускного трубопровода и улучшения смесеобразования, а также для отопления кабины или салона автомобиля в холодную погоду.

Приборы системы охлаждения:

радиатора 3, вентилятора 1, жидкостного насоса 8, рубашки охлаждения блока цилиндров, рубашки охлаждения головки блока цилиндров, термостата 10, патрубков 6,17 шлангов 9, расширительного бачка, приборов контроля температуры жидкости 13, сливных краников 18, 19.

Устройство системы охлаждения двигателя

Работа системы охлаждения

Циркуляцию жидкости в системе охлаждения осуществляют по двум кругам: малому и большому.

По малому кругу жидкость циркулирует при пуске холодною двигателя, обеспечивая его быстрый прогрев в такой последовательности: жидкостной насос — распределительные трубы — рубашка охлаждения блока цилиндров — рубашка охлаждения головки блока цилиндров — верхний патрубок термостата (клапан закрыт) — перепускной шланг приемная полость жидкостного насоса.

По большому кругу жидкость циркулирует при прогретом двигателе: жидкостной насос (как и по малому кругу) — термостат (клапан открыт) — резиновый шланг — патрубок радиатора — верхний бачок радиатора — сердцевина радиатора — нижний бачок радиатора — патрубок — шланги — приемная полость жидкостного насоса.

жидкостная система охлаждения

Переохлаждение двигателя сопровождается ростом механических потерь из-за повышения вязкости масла, ухудшением процессов смесеобразования и сгорания, следствием чего является повышенный расход топлива. Конденсация паров воды в картерной полости холодного двигателя и на стенках цилиндров приводит к коррозии. В отрабатавших газах повышается содержание углеводородов не сгоревшего топлива и высокотоксичных альдегидных соединений.
Принудительный отвод теплоты от деталей двигателя осуществляется с помощью жидкости или воздуха, в связи с чем различают двигатели жидкостного и воздушного охлаждения.

Радиатор является теплообменником системы охлаждения, где поступающая из двигателя жидкость передаст теплоту потоку воздуха.

Радиатор состоит из верхнего и нижнего бачков, соединенных между собой трубками, образующими его охлаждающую решетку (сердцевину ра­диатора). Верхний бачок радиатора имеет наливную горловину с пробкой, а нижний — сливной кран. В наливную горловину впаяна пароотводная трубка, соединенная с расширительным бачком. Пароотводная трубка за­глублена в радиатор, где отводимые пары конденсируются. К верхнему и нижнему бачкам припаяны боковые стойки. Стойки и пластина образуют каркас радиатора. Сердцевина радиатора состоит из нескольких рядов тру­бок, впаянных в верхний и нижний бачки. К трубкам крепятся гонкие ох­лаждающие пластины или гофрированные ленты, изготовленные из лату­ки, алюминия или красной меди.

Пробка заливной горловины в закрытых системах жидкостного охлажде­ния имеет два предохранительных клапана с уплотнительными резиновы­ми прокладками и пружинами. Паровой клапан регулируют на избыточное давление (0,145—0,160 МПа), воздушный клапан открывается при падении давленияв системе против атмосферного не более чем на 0,01 МПа.

При нормальном функционировании клапанов система охлаждения только кратковременно может сообщаться с окружающей средой или поло­стью расширительного бачка.

Жалюзи устанавливаются перед радиатором, с их помощью регулирует­ся количество воздуха, проходящего через сердцевину радиатора. Жалюзи изготовляются в виде набора вертикальных иди горизонтальных пластин — створок из оцинкованного железа, которые объединены общей рамкой и снабжены шарнирным устройством, обеспечивающим одновременный или групповой поворот их вокруг своей оси. Жалюзи прикрепляют к каркасу радиатора или к его наружной облицовке. Управление створками осущест­вляется вручную или с помощью устройства с термостатом.

Жидкостной насос создаст в системе охлаждения принудительную цир­куляцию жидкости. Применяют одноступенчатые жидкостные насосы цен­тробежного типа. Привод насоса, как правило, работает от шкива коленча­того вала посредством клиноременной передачи.

Жидкостной насос состоит из корпуса, вала привода с крыльчаткой, ступицы для крепления шкива привода, самоподжимной уплотняющей манжеты, двух латунных обойм, резиновой манжеты» уплотняющей шайбы ипружинного кольца. Вал насоса вращается на двух шарикоподшипниках.

Центробежные насосы одноступенчатого типа, рассчитанные на давле­ние и 0,04 —0,1 МПа, отличаются компактностью и обеспечивают доста­точную подачу жидкости при сравнительно больших зазорах между крыль­чаткой и стенками корпуса.

Вентилятор служит для создания воздушного потока, проходящего че­рез сердцевину радиатора, для охлаждения жидкости, протекающей по трубкам.

Ремонт системы охлаждения

Воздушная система охлаждениянеисправности системы охлаждения

Обслуживание системы охлаждения гарантия нормальной работы вашего двигателя.

 

 

Устройство системы жидкостного охлаждения — Студопедия

Жидкостный насос центробежного типа (см. рисунок 3.3) обеспечивает циркуляцию жидкости в системе охлаждения. В улиткообразном корпусе 1 насоса в подшипниках 4 и 5 вращается валик 11 с крыльчаткой 8. В корпусе и его крышке 3 валик уплотняется сальниками и манжетой 10. Валик 11 приводится во вращение через шкив 2 и ременную передачу.

1 — корпус; 2 — шкив; 3 — крышка; 4 и 5 — шарикоподшипники; 6 — втулка; 7 — отверстие для выхода воздуха;

8 — крыльчатка; 9 — пружина; 10 — манжета; 11 — валик; 12 — входной патрубок

Рисунок 3.3 — Жидкостный насос

По патрубку 12жидкость подводится к центру крыльчатки 8 и вращается вместе с ней. Центробежная сила отбрасывает жидкость от центра к периферии, поэтому в центре крыльчатки образуется пониженное давление, а на периферии — повышенное, под действием этого перепада и происходит циркуляция жидкости в системе охлаждения.

Радиатор (см. рисунок 3.4) предназначен для охлаждения жидкости, отводящей теплоту от двигателя. Охлаждение происходит в обдуваемой воздухом сердцевине 10 радиатора, соединяющей верхний 18 и нижний 9 бачки. Сердцевина состоит из латунных, медных или алюминиевых трубок и латунных или стальных охлаждающих ребер. Интенсивность обдува воздухом сердцевины радиатора можно регулировать с места водителя изменением положения створок жалюзи 11 с помощью системы рычагов и троса 13 с рукояткой 17.

В системах охлаждения двигателей автомобилей КамАЗ, «Жигули», ГАЗ-24 «Волга» и «АЗЛК-2140» устанавливают расширительный бачок, предназначенный для компенсации изменения объема охлаждающей жидкости «Тосол» вследствие ее нагревания (при работе двигателя) и охлаждения (после его остановки).


1 — пробка заливной горловины; 2, 3, 21 — дренажные трубки; 4 — кронштейн крепления радиатора; 5 — резиновые подушки; 6 — гайка; 7 — тяга крепления радиатора к поперечине; 8 — жидкостный радиатор; 9 — нижний бачок;

10 — сердцевина; 11 — жалюзи; 12, 13, 17 — привод управления жалюзи; 14 — радиатор гидроусилителя руля;

15 — масляный радиатор; 16 — трубки сердцевины; 18 — верхний бачок; 19 — входной патрубок;

20 — кожух вентилятора; 22 — расширительный бачок

Рисунок 3.4 — Блок жидкостного и масляного радиаторов автомобиля КамАЗ-740

На бачке 22 (см. рисунок 3.4) в системе дизеля КамАЗ-740 имеется кран для контроля уровня охлаждающей жидкости «Тосол». Пробка бачка имеет впускной и выпускной клапаны.


Заливная горловина верхнего бачка закрывается пробкой радиатора (см. рисунок 3.5), в которой установлены выпускной (паровой) 1 и перепускной 2 клапаны. При изменении температуры, а значит, и объема охлаждающей жидкости она свободно перетекает через клапан 2 из радиатора в расширительный бачок и обратно. Если температура жидкости превысит 100°С, клапан 2 под давлением ее паров закроется, но после увеличения давления в системе на 0,05 МПа откроется клапан 1 и пары закипающей жидкости направятся в расширительный бачок, где они конденсируются.

Вентилятор обеспечивает обдув радиатора просасыванием через его сердцевину атмосферного воздуха. Лопасти вентилятора изготовляют из листовой стали или из пластмассы, придавая им специальную форму для снижения затрат мощности на привод вентилятора. Привод вентилятора обеспечивается клиноременной передачей от коленчатого вала.

Для уменьшения мощности, необходимой для привода вентилятора и улучшения работы системы охлаждения, применяют отключаемые вентиляторы с автоматизированным приводом.

В привод вентилятора двигателя КамАЗ-740 включена гидромуфта, обеспечивающая плавную передачу вращения от коленчатого вала к вентилятору. Гидромуфта 5 включается авто­матически: по мере увеличения температуры жидкости в системе охлаждения активная масса, находящаяся в баллоне включателя, плавится и объем ее увеличивается, а это вызывает перемещение золотника, открывающего доступ масла из смазочной системы в гидромуфту. Частота вращения вентилятора зависит от количества масла, поступающего в гидромуфту. При прекращении подачи масла вентилятор отключается.

На некоторых моделях двигателей ВАЗ устанавливают вентилятор 3 с приводом от специального электродвигателя 4 (см. рисунок 3.6). Этот вентилятор автоматически включается при увеличении температуры охлаждающей жидкости до 75 — 85°С, при меньшей температуре вентилятор не работает.

1 — радиатор; 2 — пробка радиатора; 3 — вентилятор; 4 — электродвигатель; 5 — кожух вентилятора;

6 — датчик включения электродвигателя; 7 — пробка сливного отверстия; 8 — нижняя опора радиатора

Рисунок 3.6 — Радиатор и вентилятор с электроприводом

Термостат 5 (см. рисунок 3.1) автоматически поддерживает устойчивый тепловой режим двигателя. Как правило, термостат устанавливают на выходе охлаждающей жидкости из рубашек охлаждения головок цилиндров или впускного трубопровода двигателя.

Термостаты могут быть жидкостными или с твердым наполнителем. Например, термостат дизеля КамАЗ имеет твердый наполнитель из церезина (нефтяной воск) с температурой плавления 70 — 83°С. В режиме прогрева дизеля (см. рисунок 3.7) клапан 12 закрыт и охлаждающая жидкость не поступает из блока в радиатор. Она через открытый клапан 4 по перепускному каналу направляется на вход насоса. В этом режиме охлаждающая жидкость циркулирует по малому кругу (минуя радиатор), что ускоряет прогрев дизеля. Когда охлаждающая жидкость прогреется до 84°С, вместе с ней разогреется и наполнитель 3 термостата, заключенный в баллоне 2. При этом наполнитель расплавится и, увеличиваясь в объеме, переместит баллон 2 вправо, т.е. откроет клапан 12 и прикроет клапан 4. Охлаждающая жидкость начнет циркулировать через радиатор, т.е. по большому кругу. После прогрева охлаждающей жидкости до температуры 93°С клапан 12 термостата откроется полностью, а клапан прижмется к своему седлу (на рисунке 3.7 седло не показано), при этом вся жидкость будет проходить через радиатор.

Пружина 7 обеспечивает возвращение клапанов в положение, показанное на рисунке 3.7, при снижении температуры охлаждающей жидкости и соответствующем уменьшении объема твердого наполнителя 3.

Сигнальные лампы и указатели на щитке приборов служат для контроля температуры охлаждающей жидкости. Датчики контрольно-измерительных приборов размещают в головке цилиндров, верхнем бачке радиатора и рубашке охлаждения впускного трубопровода.

Система охлаждения автомобиля: назначение,виды,описание,фото,устройство. | АВТОМАШИНЫ

В настоящее время все прогрессивное человечество использует для передвижения тот или иной автомобильный транспорт (легковые автомобили, автобусы, грузовые автомобили).

Русский энциклопедический словарь толкует слово автомобиль (от авто — подвижной, легко двигающийся), транспортная безрельсовая машина главным образом на колесном ходу, приводимая в движение собственным двигателем (внутреннего сгорания, электрическим или паровым).

Различают автомобили: пассажирские (легковые и автобусы), грузовые, специальные (пожарные, санитарные и другие) и гоночные.

Рост автомобильного парка страны вызвал значительное расширение сети предприятий технического обслуживания и ремонта автомобилей и потребовал привлечение большого количества квалифицированных кадров.

Чтобы справиться с огромным объёмом работ по поддержанию растущего автомобильного парка в технически исправном состоянии, необходимо механизировать и автоматизировать процессы техобслуживания и ремонта автомобилей, резко повысить производительность труда.

Предприятия по техническому обслуживанию и ремонту автомобилей оснащаются более совершенным оборудованием, внедряются новые технологические процессы, обеспечивающие снижение трудоёмкости и повышение качества работ.

Содержание статьи

Назначение и виды системы охлаждения

Температура газов в камере сгорания в момент воспламенения смеси превышает 2000°С. Такая температура при отсутствии искусственного охлаждения привела бы к сильному нагреву деталей двигателя и их разрушению. Поэтому необходимо воздушное или жидкостное охлаждение двигателя. При воздушном охлаждении не требуются радиатор, водяной насос и трубопроводы, отпадает опасность «размораживания» двигателя зимой при заправке системы охлаждения водой. Поэтому, не смотря на повышенную затрату мощности на приведение в действие вентилятора и затруднённый пуск при низкой температуре применяют воздушное охлаждение на лёгковых машинах и ряде зарубежных автомобилей.

Система охлаждения — жидкостная закрытого типа с принудительной циркуляцией жидкости, с расширительным бачком. Такая система заполняется водой или антифризом, не замерзающим при температуре до минус 40°С.

При чрезмерном охлаждении двигателя увеличиваются потери тепла с охлаждающей жидкостью, неполностью испаряется и сгорает топливо, которое в жидком виде проникает в поддон картера и разжижает масло. Это приводит к снижению мощности и экономичности двигателя и быстрому износу деталей. При перегреве двигателя происходят разложение и коксование масла ускоряющие, отложение нагара, вследствие чего ухудшается отвод тепла. Из-за расширения деталей уменьшаются температурные зазоры, увеличиваются трение и износ деталей, ухудшается наполнение цилиндров. Температура охлаждающей жидкости при работе двигателя должна составлять 85-100°С.

В автомобильных двигателях применяют принудительную (насосную) систему жидкостного охлаждения. Такая система включает рубашки охлаждения цилиндров, радиатор, водяной насос, вентилятор, жалюзи, термостат, сливные краники, указатели температуры охлаждающей жидкости.

Жидкость, циркулирующая в системе охлаждения, воспринимает тепло от стенок цилиндров и их головок и передаёт его через радиатор окружающей среде. Иногда предусматривается направление потока циркулирующей жидкости через водораспределительную трубу или продольный канал с отверстиями в первую очередь к наиболее нагретым деталям (выпуклые клапаны, свечи зажигания, стенки камеры сгорания).

В современных двигателях система охлаждения двигателя используется для подогрева впускного трубопровода, охлаждения компрессора и отопления кабины или пассажирского помещения кузова. В современных автомобильных двигателях применяют закрытые системы жидкостного охлаждения, сообщающиеся с атмосферой через клапаны в пробке радиатора. В такой системе повышается температура кипения воды, закипает вода реже и меньше испаряется.

Устройство, состав и работа системы охлаждения

Устройство системы охлаждения включает в себя: трубку отвода жидкости от радиатора отопителя; патрубок отвода горячей жидкости из головки цилиндров в радиатор отопителя; перепускной шланг термостата; выпускной патрубок рубашки охлаждения; подводящий шланг радиатора; расширительный бачок; рубашку охлаждения; пробку и трубку радиатора; вентилятор и его кожух; шкив; отводящий шланг радиатора; ремень вентилятора; насос охлаждающей жидкости; шланг подачи охлаждающей жидкости в насос; и термостат.

Радиатор предназначен для охлаждения горячей воды, выходящей из рубашки охлаждения двигателя. Располагается он впереди двигателя. Трубчатый радиатор состоит из верхнего и нижнего бачков, соединённых между собой тремя-четырьмя рядами латунных трубок. Поперечно расположенные горизонтальные пластины придают радиатору жесткость и увеличивают поверхность охлаждения. Радиаторы двигателей ЗМЗ-53 и ЗИЛ-130 трубчато-ленточные со змейковыми охлаждающими пластинами (лентами), расположенными между трубками. Системы охлаждения этих двигателей закрытые, поэтому пробки радиатора имеют паровой и воздушный клапаны. Паровой клапан открывается при избыточном давлении 0,45-0,55 кГ/см² (ЗМЗ-24, 53). При открытии клапана избыток воды или пара отводится через пароотводную трубку. Воздушный клапан предохраняет радиатор от сжатия давлением воздуха и открывается при охлаждении воды, когда давление в системе снижается на 0,01-0,10 кГ/см².

Если в системе охлаждения устанавливается расширительный бачок, то паровой и воздушной клапаны располагают в пробке этого бачка (ЗИЛ-131).

Для слива жидкости из системы охлаждения открывают сливные краны блоков цилиндров и сливной кран патрубка радиатора или расширительного бачка.

У двигателей ЗИЛ сливные краны блоков цилиндров и патрубка радиатора имеют дистанционное управление. Рукоятки кранов выведены в подкапотное пространство над двигателем.

Жалюзи створчатого типа предназначены для изменения количества воздуха, проходящего через радиатор. Управляет ими водитель при помощи троса и рукоятки, выведённой в кабину. 

Водяной насос служит для создания циркуляции воды в системе охлаждения. Он состоит из корпуса, вала, крыльчатки и самоуплотняющегося сальника. Располагается насос обычно в передней части блока цилиндров и имеет привод клиновидным ремнём от коленчатого вала двигателя. Шкив приводит во вращение одновременно крыльчатку водяного насоса и ступицу вентилятора.

система охлаждение автомобиль ремонт

Самоуплотняющийся сальник состоит из резинового уплотнителя, графитизированной текстолитовой шайбы, обоймы и пружины, прижимающей шайбу к торцу подводящего патрубка.

Вентилятор предназначен для усиления потока воздуха, проходящего через радиатор. Вентилятор имеет обычно 4-6 лопастей. Для снижения шума лопасти располагают Х-образно, попарно под углом 70 и 110°. Изготовляют лопасть из листовой стали или пластмассы.

Лопасти имеют отогнутые концы (ЗМЗ-53, ЗИЛ-130), что улучшает вентиляцию подкапотного пространства и повышает производительность вентиляторов. Иногда вентилятор располагают в кожухе, который способствует повышению скорости воздуха, просасываемого через радиатор.

Для уменьшения мощности, необходимой для привода вентилятора, и улучшения работы системы охлаждения применяют вентиляторы с электромагнитной муфтой (ГАЗ-24 «Волга»). Эта муфта автоматически отключает вентилятор, когда температура воды в верхнем бачке радиатора ниже 78-85°С.

Термостат автоматически поддерживает устойчивый тепловой режим двигателя. Как правило, устанавливают на выходе охлаждающей жидкости из рубашек охлаждения головок цилиндров или впускного трубопровода двигателя. Термостаты могут быть жидкостные и с твёрдым наполнителем.

В жидкостном термостате имеется гофрированный баллон, заполненный легко испаряющейся жидкостью. Нижний конец баллона закреплён в корпусе термостата, а к штоку с верхнего конца припаян клапан.

При температуре охлаждающей жидкости ниже 78°С клапан термостата закрыт, и вся жидкость через перепускной шланг направляется обратно в водяной насос, минуя радиатор. Вследствие этого ускоряется перегрев двигателя и впускного трубопровода.

Когда температура превысит 78°С, давление в баллоне увеличивается, он удлиняется и приподнимает клапан. Горячая жидкость через патрубок и шланг направляется в верхний бачок радиатора. Клапан полностью открывается при температуре 91°С (ЗМЗ-53). Термостат с твёрдым наполнителем (ЗИЛ-130) имеет баллон, заполненный церезином и закрытый резиновой диафрагмой. При температуре 70-83°С церезин плавится, расширяясь, перемещает вверх диафрагму, буфер и шток. При этом открывается клапан и охлаждающая жидкость начинает циркулировать через радиатор.

При снижении температуры церезин затвердевает и уменьшается в объёме. Под действием возвратной пружины клапан закрывается, а диафрагма опускается вниз.

В двигателях автомобилей ВАЗ-2101 «Жигули» термостат выполнен двухклапанным и устанавливается перед водяным насосом. При холодном двигателе большая часть охлаждающей жидкости будет циркулировать по кругу: водяной насос→блок цилиндров→головка цилиндров→термостат→водяной насос. Параллельно жидкость циркулирует через рубашки впускного трубопровода и смесительной камеры карбюратора, а при открытом кране отопителя пассажирского помещения — через его радиатор.

Когда двигатель прогрет не полностью (температура жидкости ниже 90°С), оба клапана термостата частично открыты. Часть жидкости поступает к радиатору.

При полностью прогретом двигателе основной поток жидкости из головки цилиндров направляется в радиатор системы охлаждения.

Для контроля за температурой охлаждающей жидкости служат сигнальные лампы и указатели на щитке приборов. Датчики контрольно-измерительных приборов размещаются в головках цилиндров, верхнем бачке радиатора и рубашке охлаждения впускного трубопровода.

Особенности устройства

Насос охлаждающей жидкости центрального типа, приводится в действие от шкива коленчатого вала клиновидным ремнём. Вентилятор имеет четырёхлопастную крыльчатку, которая крепится болтами к ступице шкива, приводится в действие от ремня привода насоса. Термостат с твёрдым чувствительным наполнителем имеет основной и перепускной клапаны. Начало открытия основного клапана при температуре охлаждающей жидкости 77-86°С, ход основного клапана не менее 6 мм. Радиатор — вертикальный, трубчатопластинчатый, с двумя рядами трубок и стальными лужеными пластинами. В пробке заливной горловины имеются впускной и выпускной клапаны.

Проверка уровня и плотности жидкости в системе охлаждения

Правильность заправки системы охлаждения проверяется по уровню жидкости в расширительном бачке, который на холодном двигателе (при 15-20°С) должен находиться на 3-4 мм выше метки «MIN», нанесённой на расширительном бачке.

Предупреждение. Уровень охлаждающей жидкости рекомендуется проверять на холодном двигателе, т.к. при нагревании её объём увеличивается и у прогретого двигателя уровень жидкости может значительно подняться.

При необходимости проверяйте ареометром плотность охлаждающей жидкости, которая должна быть 1,078-1,085 г/см³. При низкой плотности и при высокой (больше 1,085-1,095 г/см³) повышается температура начала кристаллизации жидкости, что может привести к её замерзанию в холодное время года. Если уровень жидкости в бачке ниже нормы, то доливайте дистиллированную воду. Если плотность нормальная, доливайте жидкость той же плотности и марки, какая находится в системе. Если ниже нормы, доведите её до неё, используя жидкость ТО-СОЛ-А.

Проверка уровня и плотности жидкости в системе охлаждения

Правильность заправки системы охлаждения проверяется по уровню жидкости в расширительном бачке, который на холодном двигателе (при 15-20°С) должен находиться на 3-4 мм выше метки «MIN», нанесённой на расширительном бачке.

Предупреждение. Уровень охлаждающей жидкости рекомендуется проверять на холодном двигателе, т.к. при нагревании её объём увеличивается и у прогретого двигателя уровень жидкости может значительно подняться.

При необходимости проверяйте ареометром плотность охлаждающей жидкости, которая должна быть 1,078-1,085 г/см³. При низкой плотности и при высокой (больше 1,085-1,095 г/см³) повышается температура начала кристаллизации жидкости, что может привести к её замерзанию в холодное время года. Если уровень жидкости в бачке ниже нормы, то доливайте дистиллированную воду. Если плотность нормальная, доливайте жидкость той же плотности и марки, какая находится в системе. Если ниже нормы, доведите её до неё, используя жидкость ТО-СОЛ-А.

Заправка системы охлаждения жидкостью

Заправка производится при смене охлаждающей жидкости или после ремонта двигателя. Операции по заправке выполняйте в следующем порядке:

1. Снимите пробки с радиатора и с расширительного бачка и откройте кран отопителя;

2. Залейте охлаждающую жидкость в радиатор, а затем и в расширительный бачок, предварительно поставив пробку радиатора. Закройте пробкой расширительный бачок;

3. Запустите двигатель и дайте ему поработать на холостом ходу 1-2 мин для удаления воздушных пробок. После остывания двигателя проверьте уровень охл. жид. Если уровень ниже нормального, а в системе охлаждения нет следов подтекания, то долейте жидкость.

Регулировка натяжения ремня привода насоса

Натяжение ремня проверяется прогибом между шкивами генератора насоса или между насоса и коленчатого вала. При нормальном натяжении ремня прогиб «А» под усилием 10 кгс (98Н) должен быть в пределах 10-15 мм, а прогиб «В» в пределах 12-17 мм. Для увеличения натяжения ремня ослабив гайки крепления генератора, сместите его от двигателя и затяните гайки.

Насос охлаждающей жидкости

Для разборки насоса: — отсоедините корпус насоса от крышки; — закрепите крышку в тисках, используя прокладки, и снимите крыльчатку валика съёмником А.40026; — снимите ступицу шкива вентилятора с валика при помощи съёмника А.40005/1/5; — выверните стопорный винт и выньте подшипник с валиком насоса; — удалите сальник из крышки корпуса.

Проверьте осевой зазор в подшипнике (не должен превышать 0,13 мм при нагрузке 49Н (5 кгс)), особенно если отмечался значительный шум насоса. При необходимости подшипник замените. Сальник насоса и прокладку между насосом и блоком цилиндров при ремонте рекомендуется заменять. Осмотрите корпус и крышку насоса деформации или трещины не допускаются

Сборка насоса: — установите оправкой сальник, не допуская перекоса, в крышку корпуса; — запрессуйте подшипник с валиком в крышку так, чтобы гнездо стопорного винта совпало с отверстием в крышке корпус насоса; — заверните стопорный винт подшипника и зачеканьте контуры гнезда, чтобы винт не ослабевал; — напрессуйте с помощью приспособления А.60430 на валик ступицу шкива, выдержав размер 84,4+0,1 мм. Если ступица из металлокерамики, то после снятия напрессовывать только новую; — напрессуйте крыльчатку на валик с помощью приспособления А.60430, обеспечивающего технологически зазор между лопаткам крыльчатки и корпусом насоса 0,9-1,3 мм; — соберите корпус насоса с крышкой, установите между ними прокладку.

Термостат

У термостата следует проверять температуру начала открытия и ход основного клапана. Для этого термостат установите на стенде БС-106-000, опустив в бак с водой или охл. жид. Снизу в основной клапан уприте кронштейн ножки индикатора. Начальная температура жидкости в баке должна быть 73-75°С. Температура жидкости постепенно увеличивается примерно на 1°С/м при постепенном окрашивании, чтобы она во всём объёме жидкости была одинаковой. За температуру начала открытия клапана принимается та, при которой ход основного клапана составит 0,1 мм. Термостат необходимо заменять, если температура начала открытия основного клапана не находится в пределах 81+5\4°С или ход клапана менее 6 мм. Простейшая проверка термостата может быть осуществлена на ощупь непосредственно на автомобиле. После пуска холодного двигателя при исправном термостате нижний бачок радиатора должен нагреваться, когда стрелка указателя температуры жидкости находится примерно на расстоянии 3-4 мм от красной зоны шкалы, что соответствует 80-85°С.

Радиатор

Чтобы снять радиатор с автомобиля: — слейте из него и блока цилиндров жидкость, удалив сливные пробки в нижнем бачке радиатора и на блоке цилиндров; кран отопителя кузова при этом откройте, а пробку радиатора удалите с наливной горловины; — отсоедините от радиатора шланги; — снимите кожух вентилятора; — отверните болты крепления радиатора к кузову, выньте радиатор из отсека двигателя.

Герметичность проверяется в ванне с водой. Заглушив патрубки радиатора, подведите к нему воздух под давлением 0,1 МПа (1 кгс/см²) и опустите в ванну с водой не менее чем на 30 с. При этом не должно наблюдаться травление воздуха. Незначительно повреждение латунного радиатора запаяйте мягким припоем, а при значительных замените на новый.

Ремонт системы охлаждения

Основные возможные дефекты деталей водяного насоса: сколы и трещины корпуса, срыв резьбы в отверстиях, износ посадочных мест под подшипники и упорную втулку; изгиб и износ посадочного места под крыльчатку на валике, под втулками, сальниками и шкивами вентиляторов; износ, трещины и коррозия поверхности лопаток крыльчатки; износы внутренней поверхности втулок и шпоночной канавки. Корпус насоса охлаждения изготавливают у ЗИЛ-130 из алюминиевого сплава АЛ4, корпус подшипников — из серого чугуна; у ЗМЗ-53 — из СЧ 18-36, у ЯМЗ КамАЗ — из СЧ 15-32. Основные дефекты корпуса подшипников водяного насоса двигателя ЗИЛ-130: износ торцевой поверхности под упорную шайбу; обломы торца гнезда и износ отверстия под задний подшипник; и износ отверстия под передний подшипник.

Трещины и обломы корпуса заваривают или заделывают синтетическими материалами. Сколы на фланце и трещины на корпусе устраняют сваркой. Деталь предварительно нагревают. Рекомендуется заварку производить ацетилено-кислородным нейтральным пламенем. Трещины можно заделывать эпоксидной смолой. Изношенные поверхности под подшипники при зазорах не более 0,25 мм следует восстанавливать герметиками «Унигерм-7» и «Унигерм-11». При зазоре более 0,25 мм для устранения дефекта требуется ставить тонкие (толщиной до 0,07 мм) стальные ленты.

Погнутый валик правят под прессом, а изношенный менее допустимого восстанавливают хромированием и последующим шлифованием до номинального размера. Изношенную шпоночную канавку на валу заваривают, а затем фрезеруют новую канавку под углом 90-180° к старой.

Крыльчатки можно изготавливать литьём из алюминиевого сплава или капрона. При этом ступица (втулка) должна быть стальной.

После восстановления корпус насоса охлаждения должен отвечать следующим техническим требованиям: торцевое биение поверхности корпуса подшипников под упорную шайбу крыльчатки относительно оси отверстий под подшипники не более 0,050 мм; биение торцевой поверхности бурта корпуса подшипников под корпус насоса относительно отверстий под подшипники не более 0,15 мм; шероховатость поверхности корпуса подшипников под упорную шайбу крыльчатки не более Rа=0,80 мкм, поверхностей отверстий под подшипники не более Rа=1,25 мкм.

Валики насосов охлаждения изготавливают у ЗИЛ и ЗМЗ из стали 45, HRC 50-60; у ЯМЗ — из стали 35, HB 241-286; у КамАЗ — из стали 45Х, HRC 24-30. Основные дефекты валика: износы поверхности под подшипники; износ шейки под крыльчатку; износ паза; повреждение резьбы.

Изношенные поверхности восстанавливают наплавкой в среде углекислого газа с последующим хромированием или железнением с последующим шлифованием на бесцентрово-шлифовальном станке. На уплотнительной шайбе допускаются риски и износ на глубину не более 0,5 мм. При большем износе шайбу заменяют. При установке валика следует заложить 100 г смазки «Литол-24» в межподшипниковую полость. Уплотняющую шайбу и торец опорной втулки перед установкой следует покрыть тонким слоем герметика или смазкой, состоящей по массе из 60% дизельного масла и 40% графита.

Изношенную или повреждённую резьбу в отверстиях восстанавливают нарезанием резьбы ремонтного размера или заваркой с последующим нарезанием резьбы номинального размера.

После сборки зазор между корпусом водяного насоса и лопастями крыльчатки должен быть 0,1…1,5 мм и валик легко вращаться. 

Водяные насосы обкатывают и испытывают на специальных стендах, например насосы двигателей ЯМЗ-240Б — на стенде ОР-8899, двигателей Д-50 и Д-240 — на КИ-1803, двигателя ЗМЗ-53 — на ОР-9822. Обкатку выполняют за 3 мин при температуре воды 85…90°С и испытывают по режиму.

Каждый отремонтированный насос проверяют на герметичность при давлении 0,12…0,15 МПа. Утечка воды через уплотнения и резьбу шпилек не допускается.

Возможные дефекты деталей вентиляторов следующие: износ посадочных мест в шкивах под наружные кольца подшипников качения, износ ручьев в шкивах под ремень, ослабление заклёпок на крестовине, изгиб крестовине и лопастей.

Изношенные посадочные места под подшипники восстанавливают железнением, хромированием. Изношенные ручьи шкивов (до 1мм) протачивают. Ослабленные заклёпки на крестовине лопастей подтягивают. Если отверстия под заклёпки изношены, их рассверливают и ставят заклёпки увеличенного диаметра. Передние кромки лопастей после переклёпки должны лежать в одной плоскости с отклонением не более 2 мм. Шаблоном проверяют форму лопастей вентиляторов и угол их наклона относительно плоскости вращения, который должен быть в пределах 30…35° (при необходимости правят).

Собранный со шкивом вентилятор статически балансируют. Для устранения дисбаланса сверлят углубления дисбаланса сверлят углубления в торце шкивов или утяжеляют лопасть с её выпуклой стороны приваркой или приклёпыванием пластинки.

Если в гидромуфте привода вентилятора подтекает масло через уплотнения, есть осевой зазор и заедание ведомого и ведущего валов при вращении лопастей крыльчатки и шкива от руки, необходим ремонт.

В деталях гидромуфты дефекты аналогичны дефектам деталей вентиляторов. Это обусловливает и подобные способы их устранения. Шариковые подшипники гидромуфты необходимо заменять при осевом и радиальном зазоре более 0,1 мм.

При сборке зазор между ведомым и ведущим колёсами гидромуфты должен быть 1,5…2 мм. Шкив привода гидромуфты при неподвижной ступице вентилятора и, наоборот, ступица при неподвижном шкиве должны вращаться свободно. Термосиловой датчик включателя гидромуфты регулируют постановкой регулировочных шайб на включение при температуре охлаждающей жидкости 90…95°С и на выключение при её температуре 75…80°С.

Радиаторы системы охлаждения изготавливают из: верхние и нижние бачки и трубки — латунь, охлаждающие пластины — медь, каркас и латунь; бачки масляных радиаторов — сталь.

Радиаторы могут иметь следующие основные дефекты: отложения накипи на внутренних стенках трубок и резервуаров, их повреждения и загрязнения наружных поверхностей трубок, сердцевины, охлаждающих пластин и пластин каркаса, течь трубок, пробоины, вмятины или трещины на бачках, нарушение герметичности в местах пайки. После снятия с автомобиля радиатор поступает на участок ремонта, где его моют снаружи и дефектуют внешним осмотром и проверкой на герметичность сжатым воздухом под давлением 0,15 МПа для масляных радиаторов в ванне с водой при температуре 30…50°С. При испытании, герметизируя резиновыми пробками, водяной радиатор заполняют водой и создают насосом избыточное давление: в течение 3…5 мин радиатор не должен давать утечек. При обнаружении подтеканий радиатор разбирают, помещают сердцевину в ванну с водой и, подавая воздух по шлангу от ручного насоса в каждую трубку, по пузырькам определяют место повреждения. Загрязнение и накипь удаляют в установках, обеспечивающих подогрев раствора до 60-80°С, его циркуляцию и последующую промывку радиатора водой. Отверстия закрывают резиновыми пробками, через одну из которых поступает по шлангу на наличие дефектов. Когда радиаторы ремонтируют без разборки (не снимая бочков), то испытание на герметичность осуществляют после удаления накипи.

Течь трубок устраняют пайкой. Повреждённые трубки, расположенные во внутренних рядах, запаивают (заглушают) с обоих концов. Допускается запаивать до 5% трубок, при большем их числе повреждённые трубки заменяют. Заменяют на новые заглушенные трубки и трубки, имеющие большие вмятины. Для этого через трубки продувают горячий воздух, нагретый до 500-600°С в змеевике, укреплённом на паяльной лампе. Когда припой расплавится, трубку извлекают специальными пассатижами с язычком с размерами и формой, соответствующей сечению отверстия трубки. Отпаивать трубки можно шомполом, нагретым до 700-800°С в горне, или пропускать по нему электрический ток от сварочного трансформатора. Старые трубки извлекают и вставляют новые или отремонтированные по направлению усиков охлаждающих пластин. Трубки припаивают к опорным пластинам припоем.

По другой технологии дефектную трубку развальцовывают на большой диаметр (используют шомпол квадратного сечения для круглых трубок или ножевидный с уширением на конце для плоских) и вставляют новую, припаивая её по концам к опорным пластинам.

Общее число вновь установленных или гильзованных трубок для дизелей не должно быть более 20% от общего их числа, а для карбюраторных двигателей — 25%.

При больших повреждениях после отпайки опорных пластин вырезают дефектную часть радиатора (используют ленточные пилы и вместо неё устанавливают такую же часть радиатора из другого выбракованного, припаивая все трубки к опорным пластинам.

Трещины в чугунных резервуарах устраняют сварочным способом. В резервуарах из латуни, трещины и разрывы устраняют пайкой.

Вмятины бачков устраняют рихтовкой, для чего бачок надевают на деревянную болванку и деревянным молотком выравнивают повреждения. Пробоины устраняют постановкой заплат из листовой латуни с последующей припайкой их. Трещины запаивают.

Повреждения пластин каркаса устраняют газовой сваркой. Помятые пластины радиатора выпрямляют при помощи гребёнки. 

Отремонтированный радиатор проверяют в ванне, предварительно накачав в него воздух.

Операции по ремонту масляных радиаторов аналогичны операциям по ремонту водяных. Смолистые отражения в них удаляют в препарате АМ-15. Пайку трубок к бачкам выполняют медно-цинковым припоем ПМЦ газовой сваркой. Испытывают масляные радиаторы под давлением 0,3 МПа.

При ремонте термостатов — удаляют накипь. Повреждение места пружинной коробки запаивают припоем ПОС-40. Пружинные коробки заполняют 15% -ным раствором этилового спирта.

При испытании термостата в ванне с водой начала открытия клапана должно быть 70°С, а полное открытие — при 85°С. Высота полного подъёма клапана 9-9,5 мм. Её регулируют, вращая клапан на резьбовом конце хвостовика пружинной коробки.

Заключение

В техобслуживание автомобилей всё шире внедряются методы диагностики с использованием электронной аппаратуры. Диагностика позволяет своевременно выявить неисправности агрегатов и систем автомобиля и устранить их до того, как они вызовут серьёзные нарушения. Объективные методы оценки технического состояния агрегатов и узлов автомобиля помогают вовремя устранить дефекты, которые способны вызвать аварийную ситуацию, что повышает безопасность дорожного движения.

Применение современного оборудования для выполнения работ по техническому обслуживанию и ремонту автомобилей облегчает и ускоряет многие производственные процессы, но требует от обслуживающего персонала усвоения определённого круга знаний и навыков: устройство автомобиля, основные технологические процессы техобслуживания и ремонта, умение пользоваться современными контрольно-измерительными приборами, инструментами и приспособлениями.

Для изучения устройства и процессов работы механизмов автомобиля необходимы знания физики, химии, основ электротехники в объёме программ средних школ.

Применение современного оборудования и приспособлений для выполнения монтажно-демонтажных работ ремонта автомобиля не исключает необходимости освоения навыков общеслесарных работ, которыми должен владеть рабочий, занимающийся ремонтом.

Хорошо организованное техобслуживание, своевременное устранение неисправностей в агрегатах и системах автомобиля, при высококвалифицированном выполнении работ, позволяют повысить долговечность автомобилей, снизить их простои, увеличить сроки межремонтных пробегов, что в конечном счёте значительно сокращает непроизводительные издержки и повышает рентабельность эксплуатации автотранспортных средств.

Liquid Cooling Basics — Руководство для начинающих по водяному охлаждению вашего ПК

Основы жидкостного охлаждения

Назначение любой системы охлаждения ПК — отвод тепла от ваших компонентов и размещение его в другом месте.

В традиционном воздушном охладителе ЦП тепло передается от ЦП к радиатору. Вентилятор активно протягивает воздух мимо этого радиатора, и когда этот воздух проходит мимо радиатора, он отводит тепло от него. Воздух в корпусе вашего ПК вытягивается из корпуса и обратно другим вентилятором или вентиляторами.Как видите, здесь много движения воздуха:

При жидкостном охлаждении охлаждающая жидкость используется для передачи тепла вместо воздуха. Жидкий теплоноситель перекачивается из резервуара в трубку, по которой теплоноситель направляется туда, где он нужен. Блок жидкостного охлаждения может быть либо в отдельном блоке вне корпуса ПК, либо интегрирован в корпус ПК. На нашей схеме блок водяного охлаждения внешний.

Тепло передается от ЦП в охлаждающий блок.«Охлаждающий блок — это просто полый радиатор с входом и выходом для жидкого хладагента. Когда жидкость проходит через этот охлаждающий блок, она передает тепло вместе с ним, и работает намного эффективнее, чем воздух.

Нагреваемый Затем охлаждающая жидкость закачивается в резервуар. Из резервуара он поступает в радиатор, где охлаждается, обычно вентилятором. Затем он снова откачивается в охлаждающий блок, и цикл начинается заново.

Теперь, когда у нас есть хорошее понимание основ жидкостного охлаждения ПК, какие варианты доступны на рынке?

,

Как работают ПК с жидкостным охлаждением | HowStuffWorks

Независимо от того, используете ли вы настольный или портативный компьютер, есть большая вероятность, что, если вы остановите то, что делаете, и внимательно прислушаетесь, вы услышите жужжание маленького вентилятора. Если ваш компьютер оснащен видеокартой высокого класса и большой вычислительной мощностью, вы можете даже услышать больше одной.

В большинстве компьютеров вентиляторы достаточно хорошо поддерживают охлаждение электронных компонентов. Но для людей, которые хотят использовать высокопроизводительное оборудование или заставить свои ПК работать быстрее, у вентилятора может не хватить мощности для этой работы.Если компьютер выделяет слишком много тепла, лучшим решением может быть жидкостное охлаждение , также известное как водяное охлаждение . Может показаться немного нелогичным помещать жидкости рядом с хрупким электронным оборудованием, но охлаждение водой намного эффективнее, чем охлаждение воздухом.

Система жидкостного охлаждения для ПК во многом похожа на систему охлаждения автомобиля. Оба используют основной принцип термодинамики — тепло перемещается от более теплых объектов к более холодным.По мере того, как более холодный объект становится теплее, более теплый объект становится холоднее. Вы можете испытать этот принцип на собственном опыте, положив руку на прохладное место на столе на несколько секунд. Когда вы поднимаете руку, ваша ладонь будет немного прохладнее, а место, где была ваша рука, будет немного теплее.

Жидкостное охлаждение — очень распространенный процесс. Система охлаждения автомобиля обеспечивает циркуляцию воды, обычно смешанной с антифризом , через двигатель. Горячие поверхности в двигателе нагревают воду, охлаждая при этом сами.

Этот контент несовместим с этим устройством.

Вода циркулирует от двигателя к радиатору , системе ребер и трубок с большой площадью внешней поверхности. Тепло передается от горячей воды к радиатору, в результате чего вода остывает. Затем холодная вода возвращается в двигатель. В то же время вентилятор перемещает воздух за пределы радиатора. Радиатор нагревает воздух, одновременно охлаждая его.Таким образом, тепло двигателя выходит из системы охлаждения в окружающий воздух. Если бы поверхности радиатора не контактировали с воздухом и не рассеивали тепло, система просто перемещала бы тепло, а не избавлялась от него.

Двигатель автомобиля выделяет тепло как побочный продукт сгорания топлива. Компоненты компьютеров, с другой стороны, выделяют тепло как побочный продукт движения электронов. Микросхемы компьютера заполнены электрическими транзисторами, которые в основном представляют собой электрические переключатели, которые либо включены, либо выключены.Когда транзисторы меняют свое состояние между включенным и выключенным, электричество перемещается по микрочипу. Чем больше транзисторов содержит микросхема и чем быстрее они меняют состояние, тем горячее становится микросхема. Как и в автомобильном двигателе, если чип станет слишком горячим, он выйдет из строя.

,

Выбор подходящей системы жидкостного охлаждения для вас — руководство для начинающих по водяному охлаждению вашего ПК

Выбор подходящей системы жидкостного охлаждения

Существует три основных типа систем водяного охлаждения, и главное отличие заключается в том, где расположены радиатор, водяной насос и резервуар — основные компоненты системы. Три типа: внутренние, внешние и интегрированные.

Интегрированная система охлаждения, как следует из названия, входит в состав корпуса ПК.Поскольку все оборудование жидкостного охлаждения размещено в этом корпусе, это, вероятно, самый простой вариант для работы, так как он предоставит вам больше всего места внутри корпуса без каких-либо громоздких внешних компонентов. Обратной стороной, конечно же, является то, что если вы перейдете на этот тип системы, любой уже имеющийся у вас корпус ПК станет бесполезным.

Интегрированная система водяного охлаждения

Если вам очень нравится корпус вашего ПК и вы не хотите, чтобы он ушел, два других варианта могут показаться вам больше по вкусу: внутреннее или внешнее водяное охлаждение система.Внутренняя система имеет компоненты водяного охлаждения внутри корпуса ПК. Поскольку большинство корпусов ПК не предназначены для этого типа систем, все немного тесновато. Однако такая установка позволяет сохранить любимый футляр, а также легко перемещать готовый продукт.

Внутренняя система водяного охлаждения

Третий вариант для тех, кто хочет сохранить свой существующий корпус ПК, — это внешняя система жидкостного охлаждения. В системе этого типа радиатор, резервуар и насос размещены снаружи в отдельном блоке.Жидкий теплоноситель закачивается в корпус ПК, а по обратной магистрали нагретый теплоноситель перекачивается из корпуса в резервуар. Преимущество внешней системы заключается в том, что она обеспечивает внутреннее рабочее пространство интегрированной системы с возможностью адаптации для использования с любым корпусом ПК. Это также позволяет использовать большой радиатор и большую мощность охлаждения, чем у средней интегрированной установки. Обратной стороной является то, что ПК с внешней системой охлаждения не такой мобильный, как интегрированные или внутренние системы, которые намного проще перемещать.

Внешняя система водяного охлаждения

В нашем приложении мобильность не так уж и важна, но мы хотели бы сохранить наш стандартный корпус для ПК. Кроме того, нас привлекает повышенная эффективность охлаждения внешнего радиатора. Поэтому мы выбрали внешнюю систему охлаждения для этого руководства, и Koolance любезно предоставил нам прекрасный пример, свою систему EXOS-2.

Внешняя система водяного охлаждения EXOS-2 от Koolance

EXOS-2 — это мощная внешняя система охлаждения с охлаждающей мощностью более 700 Вт.Это не означает, что он потребляет 700 Вт энергии — он использует крошечную часть этой мощности — но он может эффективно отводить 700 Вт тепловой энергии, поддерживая тепловую нагрузку на уровне 55 градусов Цельсия при температуре окружающей среды 25 градусов Цельсия.

EXOS-2 поставляется со всеми шлангами и насадками, необходимыми для начала работы, но без охлаждающих блоков. Пользователь должен приобрести соответствующие блоки для охлаждения компонентов, которые он или она желает.

,

Cooling 101: Проектирование системы охлаждения

На первый взгляд жидкостное охлаждение выглядит просто. Жидкость прокачивается через охладитель, поглощает тепло и охлаждается обратно с помощью радиатора. Но поскольку вы работаете с жидкостью, принципы проектирования становятся более сложными.

Вода проводит электричество

Water cooling system close up

Очевидно, вы не хотите, чтобы система протекала. Это более распространенная проблема для тех, кто плохо знаком с жидкостным охлаждением.На самом деле это редкость.

Хомуты для шлангов, используемые внутри, являются мерой предосторожности в системах Koolance. Каждое устройство спроектировано так, чтобы плотно прилегать к следующему, и, хотя это не рекомендуется, системы обычно работают нормально, не будучи зажатыми. Любой, кто установил систему Koolance, быстро осознает, какое огромное физическое напряжение может выдержать типичное шланговое соединение.

В процессе производства компоненты Koolance также проходят испытания под давлением, во много раз превышающим их рабочий режим.Например, воздух нагнетается в радиатор под давлением в 70 раз (7 кг / см 2 , 100 фунтов на кв. Дюйм) от нормального рабочего давления, чтобы удостовериться в отсутствии утечки.

Руководства пользователя Koolance содержат инструкции по тестированию каждой системы охлаждения перед установкой любого оборудования в корпус. Это позволяет клиентам проверить работу, которую они проделали с соплами и расположением трубок, перед тем, как начать работу с компьютером.

Надежность насоса

Water cooling pump

Насос — это «сердце» системы жидкостного охлаждения.Согласно этой аналогии, подобный эффект может произойти с системой, если этот компонент выйдет из строя. Это не означает, что для системы жидкостного охлаждения необходимо использовать насос за 200 долларов. Это только означает, что вы не можете использовать любой стандартный аквариумный насос и надеяться, что он продолжит работать в течение месяцев и лет в условиях охлаждения компьютера.

В системах Koolance используются разные насосы, в зависимости от теплового применения. Все модели специально протестированы для длительного использования, с надежностью, обычно превышающей 30-50 тысяч часов MTBF (3.От 4 до 5,7 лет непрерывной работы в режиме 24/7).

Сейфы

Hardware fail-safe

Предположим, что-то пошло не так. Был установлен кулер материнской платы, но при установке новой видеокарты трубка погнулась. Потока жидкости практически нет, что похоже на действие мертвого насоса. Процессор нагревается, жидкость поглощает дополнительное тепло, но постепенно температура жидкости начинает повышаться.

При использовании обычного комплекта жидкостного охлаждения такая ситуация может привести к поломке компьютера.Однако системы Koolance имеют встроенные аппаратные средства безопасности. Когда температура жидкости достигает заданного уровня (например, 50 ° C / 122 ° F), раздается звуковой сигнал. Если вас нет рядом, чтобы услышать или увидеть это, система может автоматически отключить питание компьютера.

Коррозия

Существует несколько типов химических реакций, которые могут происходить в системе охлаждения, использующей жидкость. Чаще всего это гальваническая коррозия, вызываемая различными металлами в электролите (в данном случае — водой).Эти изменяющиеся электродные потенциалы могут создавать эффект «батареи», повреждая металл анода.

Использование бытовой водопроводной воды может вызвать коррозию. Водопроводная вода содержит множество микроэлементов, способных ускорить этот процесс. По этой причине следует использовать дистиллированную воду (а не «очищенную», «деионизированную» или бутилированную питьевую воду). Жидкая охлаждающая жидкость Koolance содержит множество присадок в сочетании с водой: антикоррозионные, антибиотические и другие химические вещества, которые обычно используются в инженерной области, чтобы помочь избежать реакций.Охлаждающая жидкость Koolance известна своим увеличенным интервалом между заменами (2-3 года).

Предыдущая статья: Тепловой интерфейс Следующая статья: Процессорный кулер

,

Ваш электронный адрес не будет опубликован.