Как устроена турбина самолета – Газотурбинный двигатель самолета. Фото. Строение. Характеристики.

Содержание

Газотурбинный двигатель самолета. Фото. Строение. Характеристики.

 

Авиационные газотурбинные двигатели.

 

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

 

Принцип работы газотурбинного двигателя.

 

Газотурбинный двигатель, как и поршневой двигатель на любом автомобиле, относится к двигателям внутреннего сгорания. Они оба преобразуют химическую энергию топлива в тепловую, путем сжигания, а после — в полезную, механическую. Однако то, как это происходит, несколько отличается. В обоих двигателях происходит 4 основных процесса – это: забор, сжатие, расширение, выхлоп. Т.е. в любом случае в двигатель сначала входит воздух (с атмосферы) и топливо (из баков), далее воздух сжимается и в него впрыскивается топливо, после чего смесь воспламеняется, из-за чего значительно расширяется, и в итоге выбрасывается в атмосферу. Из всех этих действий выдает энергию лишь расширение, все остальные необходимы для обеспечения этого действия.

А теперь в чем разница. В газотурбинных двигателях все эти процессы происходят постоянно и одновременно, но в разных частях двигателя, а в поршневом – в одном месте, но в разный момент времени и по очереди. К тому же, чем более сжат воздух, тем большую энергию можно получить при сгорании, а на сегодняшний день степень сжатия газотурбинных двигателей уже достигла 35-40:1, т.е. в процессе прохода через двигатель воздух уменьшается в объеме, а соответственно увеличивает свое давление в 35-40 раз. Для сравнения в поршневых двигателях этот показатель не превышает 8-9:1, в самых современных и совершенных образцах. Соответственно имея равный вес и размеры газотурбинный двигатель гораздо более мощный, да и коэффициент полезного действия у него выше. Именно этим и обусловлено такое широкое применения газотурбинных двигателей в авиации в наши дни.

 

А теперь подробней о конструкции. Четыре вышеперечисленных процесса происходят в двигателе, который изображен на упрощенной схеме под номерами:

  • забор воздуха – 1 (воздухозаборник)
  • сжатие – 2 (компрессор)
  • смешивание и воспламенение – 3 (камера сгорания)
  •  выхлоп – 5 (выхлопное сопло)
  • Загадочная секция под номером 4 называется турбиной. Это неотъемлемая часть любого газотурбинного двигателя, ее предназначение – получение энергии от газов, которые выходят после камеры сгорания на огромных скоростях, и находится она на одном валу с компрессором (2), который и приводит в действие.

 

Таким образом получается замкнутый цикл. Воздух входит в двигатель, сжимается, смешивается с горючим, воспламеняется, направляется на лопатки турбины, которые снимают до 80% мощности газов для вращения компрессора, все что осталось и обуславливает итоговую мощность двигателя, которая может быть использована разными способами.

В зависимости от способа дальнейшего использования этой энергии газотурбинные двигатели подразделяются на:

  • турбореактивные
  • турбовинтовые
  • турбовентиляторные
  • турбовальные

 

Двигатель, изображенный на схеме выше, является турбореактивным. Можно сказать «чистым» газотурбинным, ведь газы после прохождения турбины, которая вращает компрессор, выходят из двигателя через выхлопное сопло на огромной скорости и таким образом толкают самолет вперед. Такие двигатели сейчас используются в основном на высокоскоростных боевых самолетах.

Турбовинтовые двигатели отличаются от турбореактивных тем, что имеют дополнительную секцию турбины, которая еще называется турбиной низкого давления, состоящую из одного или нескольких рядов лопаток, которые отбирают оставшуюся после турбины компрессора энергию у газов и таким образом вращает воздушный винт, который может находится как спереди так и сзади двигателя. После второй секции турбины, отработанные газы выходят фактически уже самотеком, не имея практически никакой энергии, поэтому для их вывода используются просто выхлопные трубы. Подобные двигатели используются на низкоскоростных, маловысотных самолетах.

Турбовентиляторные двигатели имеют схожую схему с турбовинтовыми, только вторая секция турбины отбирает не всю энергию у выходящих газов, поэтому такие двигатели также имеют выхлопное сопло. Но основное отличие состоит в том, что турбина низкого давления приводит в действия вентилятор, который закрыт в кожух. Потому такой двигатель еще называется двуконтурным, ведь воздух проходит через внутренний контур (сам двигатель) и внешний, который необходим лишь для направления воздушной струи, которая толкает двигатель вперед. Потому они и имеют довольно «пухлую» форму. Именно такие двигатели применяются на большинстве современных авиалайнеров, поскольку являются наиболее экономичными на скоростях, приближающихся к скорости звука и эффективными при полетах на высотах выше 7000-8000м и вплоть до 12000-13000м.

Турбовальные двигатели практически идентичны по конструкции с турбовинтовыми, за исключением того, что вал, который соединен с турбиной низкого давления, выходит из двигателя и может приводить в действие абсолютно что угодно. Такие двигатели используются в вертолетах, где два-три двигателя приводят в действие единственный несущий винт и компенсирующий хвостовой пропеллер. Подобные силовые установки сейчас имеют даже танки – Т-80 и американский «Абрамс». 

 

Газотурбинные двигатели имеют классификацию также по другим признакам:

  • по типу входного устройства (регулируемое, нерегулируемое)
  •  по типу компрессора (осевой, центробежный, осецентробежный)
  • по типу воздушно-газового тракта (прямоточный, петлевой)
  • по типу турбин (число ступеней, число роторов и др.)
  • по типу реактивного сопла (регулируемое, нерегулируемое) и др.

 

Турбореактивный двигатель с осевым компрессором получил широкое применение. При работающем двигателе идет непрерывный процесс. Воздух проходит через диффузор, притормаживается и попадает в компрессор. Затем он поступает в камеру сгорания. В камеру через форсунки подается также топливо, смесь сжигается, продукты сгорания перемещаются через турбину. Продукты сгорания в лопатках турбины расширяются и приводят ее во вращение. Далее газы из турбины с уменьшенным давлением поступают в реактивное сопло и с огромной скоростью вырываются наружу, создавая тягу. Максимальная температура имеет место и на воде камеры сгорания.

Компрессор и турбина расположены на одном валу. Для охлаждения продуктов сгорания подается холодный воздух. В современных реактивных двигателях рабочая температура может превышать температуру плавления сплавов рабочих лопаток примерно на 1000 °С. Система охлаждения деталей турбины и выбор жаропрочных и жаростойких деталей двигателя — одни из главных проблем при конструировании реактивных двигателей всех типов, в том числе и турбореактивных.

Особенностью турбореактивных двигателей с центробежным компрессором является конструкция компрессоров. Принцип работы подобных двигателей аналогичен двигателям с осевым компрессором.

 

 

Газотурбинный двигатель. Видео.

 

Полезные статьи по теме.

 

Ещё узлы и агрегаты

 

avia.pro

Как работает двигатель самолета

Впервые самолет с турбореактивным двигателем (ТРД) поднялся в воздух в 1939 году. С тех пор устройство двигателей самолетов совершенствовалось, появились различные виды, но принцип работы у всех них примерно одинаковый. Чтобы понять, почему воздушное судно, имеющий столь большую массу, так легко поднимается в воздух, следует узнать, как работает двигатель самолета. ТРД приводит в движение воздушное судно за счет реактивной тяги. В свою очередь, реактивная тяга является силой отдачи струи газа, которая вылетает из сопла. То есть получается, что турбореактивная установка толкает самолет и всех находящихся в салоне людей с помощью газовой струи. Реактивная струя, вылетая из сопла, отталкивается от воздуха и таким образом, приводит в движение воздушное судно.

Устройство турбовентиляторного двигателя

Конструкция

Устройство двигателя самолета достаточно сложное. Рабочая температура в таких установках достигает 1000 и более градусов. Соответственно, все детали, из которых двигатель состоит, изготавливаются из устойчивых к воздействию высоких температур и возгоранию материалов. Из-за сложности устройства существует целая область науки о ТРД.

ТРД состоит из нескольких основных элементов:

  • вентилятор;
  • компрессор;
  • камера сгорания;
  • турбина;
  • сопло.

Перед турбиной установлен вентилятор. С его помощью воздух затягивается в установку извне. В таких установках используются вентиляторы с большим количеством лопастей определенной формы. Размер и форма лопастей обеспечивают максимально эффективную и быструю подачу воздуха в турбину. Изготавливаются они из титана. Помимо основной функции (затягивания воздуха), вентилятор решает еще одну важную задачу: с его помощью осуществляется прокачка воздуха между элементами ТРД и его оболочкой. За счет такой прокачки обеспечивается охлаждение системы и предотвращается разрушение камеры сгорания.

Возле вентилятора расположен компрессор высокой мощности. С его помощью воздух поступает в камеру сгорания под высоким давлением. В камере происходит смешивание воздуха с топливом. Образующаяся смесь поджигается. После возгорания происходит нагрев смеси и всех расположенных рядом элементов установки. Камера сгорания чаще всего изготавливается из керамики. Это объясняется тем, что температура внутри камеры достигает 2000 градусов и более. А керамика характеризуется устойчивостью к воздействию высоких температур. После возгорания смесь поступает в турбину.

Вид самолетного двигателя снаружи

Турбина представляет собой устройство, состоящее из большого количества лопаток. На лопатки оказывает давление поток смеси, приводя тем самым турбину в движение. Турбина вследствие такого вращения заставляет вращаться вал, на котором установлен вентилятор. Получается замкнутая система, которая для функционирования двигателя требует только подачи воздуха и наличия топлива.

Далее смесь поступает в сопло. Это завершающий этап 1 цикла работы двигателя. Здесь формируется реактивная струя. Таков принцип работы двигателя самолета. Вентилятор нагнетает холодный воздух в сопло, предотвращая его разрушение от чрезмерно горячей смеси. Поток холодного воздуха не дает манжете сопла расплавиться.

В двигателях воздушных судов могут быть установлены различные сопла. Наиболее совершенными считаются подвижные. Подвижное сопло способно расширяться и сжиматься, а также регулировать угол, задавая правильное направление реактивной струе. Самолеты с такими двигателями характеризуются отличной маневренностью.

Виды двигателей

Двигатели для самолетов бывают различных типов:

  • классические;
  • турбовинтовые;
  • турбовентиляторные;
  • прямоточные.

Классические установки работают по принципу, описанному выше. Такие двигатели устанавливают на воздушных судах различной модификации. Турбовинтовые функционируют несколько иначе. В них газовая турбина не имеет механической связи с трансмиссией. Эти установки приводят самолет в движение с помощью реактивной тяги лишь частично. Основную часть энергии горячей смеси данный вид установки использует для привода воздушного винта через редуктор. В такой установке вместо одной присутствует 2 турбины. Одна из них приводит компрессор, а вторая – винт. В отличие от классических турбореактивных, винтовые установки более экономичны. Но они не позволяют самолетам развивать высокие скорости. Их устанавливают на малоскоростных воздушных судах. ТРД позволяют развивать гораздо большую скорость во время полета.

Турбовентиляторные двигатели представляют собой комбинированные установки, сочетающие элементы турбореактивных и турбовинтовых двигателей. Они отличаются от классических большим размером лопастей вентилятора. И вентилятор, и винт функционируют на дозвуковых скоростях. Скорость перемещения воздуха понижается за счет наличия специального обтекателя, в который помещен вентилятор. Такие двигатели более экономично расходуют топливо, чем классические. Кроме того, они характеризуются более высоким КПД. Чаще всего их устанавливают на лайнерах и самолетах большой вместительности.

Размер двигателя самолета относительно человеческого роста

Прямоточные воздушно-реактивные установки не предполагают использование подвижных элементов. Воздух втягивается естественным путем благодаря обтекателю, установленному на входном отверстии. После поступления воздуха двигатель работает аналогично классическому.

Некоторые самолеты летают на турбовинтовых двигателях, устройство которых гораздо проще, чем устройство ТРД. Поэтому у многих возникает вопрос: зачем использовать более сложные установки, если можно ограничиться винтовой? Ответ прост: ТРД превосходят винтовые двигатели по мощности. Они мощнее в десятки раз. Соответственно, ТРД выдает гораздо большую тягу. Благодаря этому обеспечивается возможность поднимать в воздух большие самолеты и осуществлять перелеты на высокой скорости.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

samoleting.ru

Авиационные газотурбинные двигатели / Habr

Всем привет! В этой статье я хочу рассказать о том, как работают авиационные газотурбинные двигатели (ГТД). Я постараюсь сделать это наиболее простым и понятным языком.

Авиационные ГТД можно можно разделить на:

  • турбореактивные двигатели (ТРД)
  • двухконтурные турбореактивные двигатели (ТРДД)
  • Турбовинтовые двигатели (ТВД)
  • Турбовальные двигатели (ТВаД)

Притом, ТРД и ТРДД могут содержать в себе форсажную камеру, в таком случае они будут ТРДФ и ТРДДФ соответственно. В этой статье мы их рассматривать не будем.

Начнём с турбореактивных двигателей.

Турбореактивные двигатели


Такой тип двигателей был создан в первой половине 20-го века и начал находить себе массовое применение к концу Второй мировой войны. Первым в мире серийным турбореактивным самолетом был немецкий Me.262. ТРД были популярны вплоть до 60-ых годов, после чего их стали вытеснять ТРДД.


Современная фотография Me-262, сделанная в 2016 году

Самый простой турбореактивный двигатель включает в себя следующие элементы:

  • Входное устройство
  • Компрессор
  • Камеру сгорания
  • Турбину
  • Реактивное сопло (далее просто сопло)

Можно сказать, что это минимальный набор для нормальной работы двигателя.

А теперь рассмотрим что для чего нужно и зачем.

Входное устройство — это расширяющийся* канал, в котором происходит подвод воздуха к компрессору и его предварительное сжатие. В нём кинетическая энергия входящего воздуха частично преобразуется в давление.

*здесь и дальше мы будем говорить про дозвуковые скорости. На сверхзвуковой скорости физика меняется, и там все совсем не так.

Компрессор — это устройство, в котором происходит повышение давление воздуха. Компрессор можно характеризовать такой величиной, как степень повышения давления. В современных двигателях оно уже начинает переступать за 40 единиц. Кроме того, в нем увеличивается температура (может быть, где-то до 400 градусов Цельсия).

Камера сгорания — устройство, в котором к сжатому воздуху (после компрессора) подводится тепло из-за горения топлива. Температура в камере сгорания очень высокая, может достигать 2000 градусов Цельсия. Вам может показаться, что давление газа в камере тоже сильно увеличивается, но это не так. Теоретически принято считать, что подвод тепла осуществляется при постоянном давлении. В реальности оно немного падает из-за потерь (проблема несовершенства конструкции).

Турбина — устройство, превращающее часть энергии газа после камеры сгорания в энергию привода компрессора. Так как турбины используются не только в авиации, можно дать более общее определение: это устройство, преобразующее внутреннюю энергию рабочего тела (в нашем случае рабочее тело — это газ) в механическую работу на валу. Как вы могли понять, турбина и компрессор находятся на одном валу и жестко связаны между собой. Если в компрессоре происходит повышение давления газа, то в турбине, наоборот, понижение, то есть газ расширяется.

Сопло — суживающийся канал, в котором происходит преобразование потенциальной энергии газа в кинетическую (оставшийся запас энергии газа после турбины). Как и в турбине, в сопле происходит расширение газа. Образуется струя, которая, вытекая из сопла, движет самолёт.

С основными элементами разобрались. Но все равно не очень понятно как оно работает? Тогда давайте ещё раз и коротко.

Воздух из атмосферы попадает во входное устройство, где немного сжимается и поступает в компрессор. В компрессоре давление воздуха растёт ещё сильнее, растёт и температура. После компрессора воздух поступает в камеру сгорания и, смешиваясь там с топливом, воспламеняется, что приводит к сильному возрастанию температуры, при, можно сказать, постоянном давлении. После камеры сгорания горячий сжатый газ попадает в турбину. Часть энергии газа расходуется на вращение компрессора турбиной (чтобы он мог выполнять свою функцию, описанную выше), другая часть энергии расходуется на, нужное нам, движение самолёта, из-за того, что газ, пройдя турбину, превращается в реактивную струю в сопле и вырывается из него (сопла) в атмосферу. На этом цикл завершается. Конечно, в реальности все процессы цикла проходят непрерывно.

Такой цикл называется циклом Брайтона, или термодинамическим циклом с непрерывным характером рабочего процесса и подводом тепла при постоянном давлении. По такому циклу работают все ГТД.


Цикл Брайтона в P-V координатах

Н-В — процесс сжатия во входном устройстве
В-К — процесс сжатия в компрессоре
К-Г — изобарический подвод тепла
Г-Т — процесс расширения газа в турбине
Г-С — процесс расширения газа в сопле
С-Н — изобарический отвод тепла в атмосферу


Схематичная конструкция турбореактивного двигателя, где 0-0 — ось двигателя

ТРД может иметь и два вала. В таком случае компрессор состоит из компрессора низкого давления (КНД) и компрессора высокого давления (КВД), а подвод работы будут осуществлять турбина низкого давления (ТНД) и турбина высокого давления (ТВД) соответственно. Такая схема более выгодная газодинамически.


Реальный двигатель такого вида в разрезе

Мы рассмотрели принцип работы самой простой схемы авиационного газотурбинного двигателя. Естественно, на современных «Эйрбасах и Боингах» устанавливаются ТРДД, конструкция которых заметно сложнее, но работает все по таким же законам. Давайте рассмотрим их.

Двухконтурный турбореактивный двигатель


ТРДД, прежде всего, отличается от ТРД тем, что имеет два контура: внешний и внутренний. Внутренний контур содержит в себе то же самое, что и ТРД: компрессор (разделенный на КНД и КВД), камеру сгорания, турбину (разделенную на ТВД и ТНД) и сопло. Внешний контур представляет собой канал, с соплом в конце. В нем нет ни камеры сгорания, ни турбины. Перед обоими контурами (сразу после входного устройства двигателя) стоит ступень компрессора, работающая на оба контура.

Не очень понятная картина выходит, да? Давайте разберемся как оно работает.


Схематичная конструкция двухвального двухконтурного турбореактивного двигателя

Воздух, попадающий в двигатель, пройдя через первую ступень компрессора низкого давления, разбивается на два потока. Одна часть воздуха идет по внутреннему контуру, где происходят те же процессы, которые были описаны, когда мы разбирали ТРД. Вторая часть воздуха попадает во внешний контур, получив энергию от первой ступени КНД (та, которая работает на два контура). Во внешнем контуре энергия воздуха тратится только на преодоление гидравлических потерь (за счёт трения). В конце этот воздух попадает в сопло внешнего контура, создавая огромную тягу. Тяга, созданная внешним контуром, может составлять 80% тяги всего двигателя.

Одной из важнейших характеристик ТРДД является степень двухконтурности. Степень двухконтурности — это отношение расхода воздуха во внешнем контуре, к расходу воздуха во внутреннем контуре. Это число может быть как больше, так и меньше единицы. На современных двигателях это число переступает за значение в 12 единиц.
Двигатели, степень двухконтурности которых больше двух, принято называть турбовентиляторными, а первую ступень компрессора (ту, что работает на оба контура) вентилятором.


ТРДД самолета Boeing 757-200. На переднем плане видно входное устройство и вентилятор

На некоторых двигателях вентилятор приводится в движение отдельной турбиной, которая ставится ближе всего к соплу внутреннего контура. Тогда двигатель получается трехвальным. Например, по такой схеме выполнены двигатели Rolls Royce RB211 (устанавливались на L1011, B747, B757, B767), Д-18Т (Ан-124), Д-36 (Як-42)


Д-18Т в разрезе изнутри

Главное достоинство ТРДД заключается в возможности создания большой тяги и хорошей экономичности, по сравнению с ТРД.

На этом я хотел бы закончить про ТРДД и перейти к следующему виду двигателей — ТВД.

Турбовинтовые двигатели


Турбовинтовой двигатель, как и турбореактивный, относится к газотурбинным двигателям. И работает он почти как турбореактивный. Элементарный турбовинтовой двигатель состоит из уже знакомых нам элементов: компрессора, камеры сгорания, турбины и сопла. К ним добавляются редуктор и винт.

Принцип работы работы такой же, как у турбореактивного, с разницей в том, что практически вся энергия газа расходуется на турбине на вращение компрессора и на вращение винта через редуктор (здесь винт и редуктор находятся на одном валу с компрессором). Винт создаёт основную долю тяги. Оставшаяся, после турбины, часть энергии направляется в сопло, образуя реактивную тягу, но она мала, может составлять десятую часть от общей. Редуктор в этой схеме нужен для того, чтобы понизить обороты и передать момент, так как турбина может вращаться с очень высокой частотой, например, 10000 оборотов в минуту, а винту нужно только 1500. И винт достаточно тяжелый.


Схематичная конструкция ТВД

Но бывает и другая схема турбовинтовых двигателей: со свободной турбиной.
Её суть в том, что за обычной турбиной компрессора ставится отдельная турбина, которая механически не связана с турбиной компрессора. Такая турбина называется свободной. Связь между турбиной компрессора и свободной турбиной только газодинамическая. От свободной турбины идёт отдельный вал, на который устанавливаются редуктор с винтом. Все остальное работает так же, как и в первом случае. Большинство современных двигателей выполняют именно по такой схеме. Одним из плюсов такой схемы является возможность использования двигателя на земле, как вспомогательную силовую установку (ВСУ), не приводя винт в движение.


Схематичная конструкция ТВД со свободной турбиной

Хочу отметить, что не нужно смотреть на турбовинтовые двигатели как на малоэффективный пережиток прошлого. Я несколько раз слышал такие высказывания, но они неверны.
Турбовинтовой двигатель в некоторых случаях обладает наивысшим КПД, как правило, на самолетах с не очень большими скоростями (например, на 500 км/ч), притом, самолет может быть внушительных размеров. В таком случае, турбовинтовой двигатель может быть в разы выгоднее, рассмотренного ранее, турбореактивного двигателя.

На этом про турбовинтовые двигатели можно заканчивать. Мы потихоньку подошли к понятию турбовального двигателя.

Турбовальный двигатель


Должно быть, большинство читателей здесь вообще впервые слышат такое название. Такой тип двигателей устанавливается на вертолёты.

Турбовальный двигатель очень схож с турбовинтовым двигателем со свободной турбиной. Он также состоит из компрессора, камеры сгорания, турбины компрессора, далее идёт свободная турбина, связанная со всем предыдущем только газодинамически. А вот реактивную тягу такой двигатель не создаёт, реактивного сопла у него нет, только выхлоп. Свободная турбина имеет свой вал, который соединяется к главному редуктору вертолёта (несущего винта). Да, у всех известных мне вертолетов есть такой редуктор, и, как правило, он внушительных размеров. Дело в том, что обороты несущего винта вертолёта очень низкие. Если у самолета, как я писал выше, они могут достигать 1500 об/мин, то у вертолёта, например у Ми-8, всего 193 об/мин.
А обороты двигателя у вертолёта зачастую очень высокие (из-за небольших размеров), и понижать их приходится в сотню и более раз. Бывает такое, что редуктор стоит и на двигателе, и на самом вертолете, например, у Ми-2 и его двигателя ГТД-350.


Схематичная конструкция турбовального двигателя


Двигатель ТВ3-117 от вертолета Ми-8. Справа видны выхлопная труба и приводной вал

Итак, мы рассмотрели четыре типа газотурбинных двигателей. Надеюсь, мой текст был понятен и полезен для вас. Все вопросы и замечания можете писать в комментариях.

Спасибо за внимание.

habr.com

Принцип работы турбореактивного двигателя самолёта

Совершая полет в самолете в большинстве случаев люди никогда не задумываются о том, как работает его двигатель. Но на самом деле о работе двигателя и реактивной тяги с помощью, которой работает сам двигатель, знали ее в Античное время. Но применить эти знания на практике смогли не так давно, так как раньше не технологии не позволяли никому достичь его исправной работы. Гонка вооружения между Англией и Германией стала толчком к созданию ТРД (турбореактивного двигателя).

В работе ТРД самолета нет никаких сложностей, принцип его работы может понять почти каждый человек. Но данный двигатель имеет несколько нюансов, их соблюдение контролируется под строгим присмотром руководства. Для того чтобы авиалайнер смог держаться в небе, необходима идеальная работа двигателя. Так как от работы двигателя напрямую зависят жизни пассажиров находящихся на борту авиатранспорта.

Принцип работы реактивного двигателя

Реактивный двигатель

За работу двигателя отвечает реактивная тяга. Для создания реактивной тяги необходима определенная жидкость, которая подается из задней части двигателя и по ходу ее продвижения увеличивается ее скорость движения вперед. Работу тяги отлично объясняет один из законов Ньютона, звучит он так «Любое действия вызывает равное противодействие».

Вместо жидкости в ТРД используется горючая смесь (газы и воздух со сгоревшими частичками топлива). Благодаря этой смеси самолет толкает вперед и позволяет ему лететь дальше.

Разработки таких двигателей начались в тридцатых годах. Первыми кто начал разрабатывать двигатели такого типа стали немцы и англичане. Но в гонке вооружений одержали победу ученные из Германии, так как они выпустили самый первый в мире самолет с ТРД под названием «Ласточка», данный самолет впервые взлетел в небеса над Люфтваффом. Спустя некоторое время появился и Английский самолет «Глостерский метеор»

Также сверхзвуковые двигатели принято считать турбореактивными, но они отличаются более совершенными модификациями, в отличие от ТРД.

Устройство двигателя имеет четыре главные детали, а именно:

  • Компрессор.
  • Камера горения.
  • Турбина.
  • Выхлоп.

Компрессор

Компрессор

В компрессоре находиться несколько турбин, с помощью которых происходит засасывание и сжатие воздуха. Во время сжатия воздуха, его давление и температура начинает нагнетаться и расти.

Камера горения

Камера горения

После того как воздух проходит турбину и его сжимает до необходимых размеров. Часть сжатого воздуха поступает в камеру горения, где воздух начинает смешиваться с топливом, после чего его поджигают. Благодаря этому увеличивается тепловая энергия воздуха. После смесь выходит из камеры с большой скорости и расширяется.

Турбина

Турбина

После выхода эта смесь снова попадает в турбину, с помощью высокой энергии газа лопасти в турбине начинают свое вращение. Турбина тесно связанна с компрессором, который находиться в начале двигателя. Благодаря этому турбина начинает свою работу. Остатки воздуха выходят в выхлоп. В момент выхода смеси температура достигает рекордных размеров. Но она продолжает повышать свою температуру с помощью эффекта Дросселирования. После того как температура воздуха доходит до своего пика, она начинает идти на спад и выходит из турбины.

Принцип работы турбореактивного двигателя

Турбореактивный двигатель

В отличие от реактивного двигателя, который пользуется спросом почти у всех самолетов, турбореактивный двигатель больше подходит для пассажирских авиалайнеров. Так как для работы реактивного двигателя необходимо не только топливо, но и окислитель.

Благодаря своему строению окислитель поступает вместе с топливом из бака. А в случаи с ТРД окислитесь, поступает напрямую из атмосферы. А в остальном их работа совершенно идентична и не отличается друг от друга.

У турбореактивного двигателя главной деталью является лопасть турбины, так как от ее исправной работы напрямую зависит мощность двигателя. Благодаря этим лопастям и образуется тяга, которая необходима для поддержания скорости самолета. Если сравнить одну лопасть с автомобильным двигателем, то она сможет обеспечить мощностью целых десять машин.

Лопасти устанавливаются за камерой сгорания, так как там нагнетается самое высокое давления, также температура воздуха в данной части двигателя может доходить до 1400 градусов Цельсия.

В целях улучшения прочности и устойчивости лопасти перед различными факторами их монокристаллизируют, благодаря этому они могут держать высокую температуру и давление. Прежде чем установить такой двигатель на самолет его тестируют на полном тяговом усилителе. Также двигатель должен получить сертификат от Европейского совета по безопасности.

Атомный двигатель

Атомный двигатель

В период холодной войны в мире были попытки создания атомного двигателя, за основу был взят турбореактивный двигатель. Главной задумкой ученых было создание двигателя, основанного не на химической реакции радиоактивных веществ, а на вырабатываемом тепле от ядерного реактора. Он должен был находиться на месте камеры сгорания.

В теории воздух должен был проходить через работающую зону реактора, благодаря этому реактор должен был остужаться, а температура воздуха наоборот возрастать. После чело воздух должен был расширяться и выходить через сопла (выхлоп) на этот момент скорость воздуха должна была превышать скорость полета самолета.

В Советском союзе были попытки проведения испытаний подобного двигателя, также ученные в соединенных штатах Америки, вели разработку данного двигателя, и их работа почти подходила к тестам двигателя на настоящем самолете.

Но по ряду причин разработки этого двигателя было решено закрыть. Так как у двигателя было множество недостатков, а именно:

  • Пилоты были подвержены постоянному радиоактивному облучению на протяжении всего полета.
  • Вместе с воздухом через сопла выходили и частички радиоактивного элемента в атмосферу.
  • В том случае если самолет терпел крушение, был очень большой шанс взрыва радиоактивного реактора, что влекло за собой радиоактивное отравление на довольно большой площади.

vpolete.online

Турбовальный двигатель. | АВИАЦИЯ, ПОНЯТНАЯ ВСЕМ.

Привет!

Центробежная ступень компрессора ТВаД.

Сегодня продолжаем серию рассказов о типах авиационных двигателей.

Как известно, основной узел любого газотурбинного двигателя ( ГТД) – это турбокомпрессор. В нем компрессор работает в связке с турбиной, которая его вращает. Функции турбины этим могут и ограничиться. Тогда вся оставшаяся полезная энергия газового потока, проходящего через двигатель, срабатывается в выходном устройстве (реактивном сопле). Как говорил мой преподаватель «спускается на ветер» :-). Тем самым создается реактивная тяга и ГТД становится обычным турбореактивным двигателем (ТРД).

Но можно сделать и по-другому. Турбину ведь можно заставить кроме компрессора вращать и другие нужные агрегаты, используя ту самую оставшуюся полезную энергию. Это может быть, например, самолетный воздушный винт. В этом случае ГТД становится уже турбовинтовым двигателем, в котором 10-15% энергии все же расходуется «на воздух» :-), то есть создает реактивную тягу.

Принцип работы турбовального двигателя.

Но если вся полезная энергия в двигателе срабатывается на валу и через него передается для привода агрегатов, то мы уже имеем так называемый турбовальный двигатель (ТваД).

Такой двигатель чаще всего имеет свободную турбину. То есть вся турбина как бы поделена на две части, между собой механически несвязанные. Связь между ними только газодинамическая. Газовый поток, вращая первую турбину, отдает часть своей мощности для вращения компрессора и далее, вращая вторую, тем самым через вал этой (второй) турбины приводит в действие полезные агрегаты. Сопла на таком двигателе нет. То есть выходное устройство для отработанных газов конечно имеется, но соплом оно не является и тяги не создает. Просто труба… Зачастую еще и искривленная :-).

Компоновка двигателя Arriel 1E2.

Турбовальный двигатель ARRIEL 1E2.

Eurocopter BK 117 c 2-мя турбовальными двигателями Arriel 1E2.

Выходной вал ТваД, с которого снимается вся полезная мощность, может быть направлен как назад, через канал выходного устройства, так и вперед, либо через полый вал турбокомпрессора, либо через редуктор вне корпуса двигателя.

Компоновка двигателя Arrius 2B2.

Турбовальный двигатель ARRIUS 2B2.

Eurocopter EC 135 с 2-мя турбовальными двигателями Arrius 2B2.

Надо сказать, что редуктор – непременная принадлежность турбовального двигателя. Ведь скорость вращения как ротора турбокомпрессора, так и ротора свободной турбины велика настолько, что это вращение не может быть напрямую передано на приводимые агрегаты. Они просто не смогут выполнять свои функции и даже могут разрушиться. Поэтому между свободной турбиной и полезным агрегатом обязательно ставится редуктор для снижения частоты вращения приводного вала.

Компоновка двигателя Makila 1A1.

Турбовальный двигатель MAKILA 1A1

Eurocopter AS 332 Super Puma с 2-мя турбовальными двигателями Makila 1A1

Компрессор у ТваД может быть осевым (если двигатель мощный) либо центробежным. Часто компрессор бывает и смешанным по конструкции, то есть в нем есть как осевые, так и центробежные ступени. В остальном принцип работы этого двигателя такой же, как и у ТРД. Примером разнообразия конструкций ТваД могут служить двигатели известной французской двигателестроительной фирмы TURBOMEKA. Здесь я представляю ряд иллюстраций на эту тему (их сегодня вообще много как-то получилось :-)… Ну много — не мало… :-)).

Компоновка двигателя Arrius 2K1

Турбовальный двигатель ARRIUS 2K1.

Вертолет Agusta A-109S с 2-мя турбовальными двигателями Arrius 2K1.

Основное свое применение турбовальный двигатель находит сегодня конечно же в авиации, по большей части на вертолетах. Его часто и называют вертолетный ГТД. Полезная нагрузка в этом случае – несущий винт вертолета. Известным примером ( кроме французов :-))могут служить широко распространенные до сих пор отличные классические вертолеты МИ-8 и МИ-24 с двигателями ТВ2-117 и ТВ3-117.

Вертолет МИ-8Т с 2-мя турбовальными двигателями ТВ2-117.

Турбовальный двигатель ТВ2-117.

Вертолет МИ-24 с 2-мя турбовальными двигателями ТВ3-117.

Турбовальный двигатель ТВ3-117 для вертолета МИ-24.

Кроме того ТваД может применяться в качестве вспомогательной силовой установки (ВСУ, о ней подробнее в следующей статье :-)), а также в виде специальных устройств для запуска двигателей. Такие устройства представляют собой миниатюрный турбовальный двигатель, свободная турбина которого раскручивает ротор основного двигателя при его запуске. Называется такое устройство турбостартер. В качестве примера могу привести турбостартер ТС-21, используемый на двигателе АЛ-21Ф-3, который устанавливается на самолеты СУ-24, в частности на мой родной СУ-24МР :-)…

Двигатель АЛ-21Ф-3 с турбостартером ТС-21.

Турбостартер ТС-21, снятый с двигателя.

Фронтовой бомбардировщик СУ-24М с 2-мя двигателями АЛ-21Ф-3.

Однако, говоря о турбовальных двигателях, нельзя не сказать о совсем неавиационном направлении их использования. Дело в том, что ведь изначально газотурбинный двигатель не был монополией авиации. Главный его рабочий орган, газовая турбина, создавался задолго до появления самолетов. И предназначался ГТД для целей более прозаических, нежели полеты в воздушной стихии :-). Эта самая воздушная стихия его все же завоевала. Однако неавиационное приземленное предназначение существует и серьезности своей не потеряло, скорее наоборот.

На земле, так же как и в воздухе ГТД (турбовальный двигатель) применяется на транспорте.

Первое – это перекачка природного газа по крупным магистралям через газоперекачивающие станции. ГТД используются здесь в качестве мощных насосов.

Второе – это водный транспорт. Суда, использующие турбовальные газотурбинные двигатели называют газотурбоходы. Это чаще всего суда на подводных крыльях, у которых гребной винт приводит в движение турбовальный двигатель механически через редуктор или электрически через генератор, который он вращает. Либо это суда на воздушной подушке, которая создается при помощи ГТД.

Газотурбоход «Циклон-М» с 2-мя газотурбинными двигателями ДО37.

Пасажирских газотурбоходов за российскую историю было всего два. Последнее очень перспективное судно «Циклон-М» появилось в очень неудобное для себя время в 1986 году. Успешно пройдя все испытания, оно «благополучно» перестало существовать для России. Перестройка… Более таких судов не строили. Зато у военных в этом плане дела обстоят несколько лучше. Чего стоит один только десантный корабль «Зубр», самое большое в мире судно на воздушной подушке.

Десантный корабль на воздушной подушке «Зубр» с газотурбинными двигателями.

Третье – это железнодорожный транспорт. Локомотивы на которых стоят турбовальные газотурбинные двигатели, называют газотурбовозы. На них используется так называемая электрическая передача. ГТД вращает электрогенератор, а вырабатываемый им ток, в свою очередь, вращает электродвигатели, приводящие локомотив в движение. В 60-е годы прошлого века в СССР проходили довольно успешную опытную эксплуатацию три газотурбовоза. Два пассажирских и один грузовой. Однако они не выдержали соревновавния с электровозами и в начале 70-х проект был свернут. Но в 2007 году по инициативе ОАО «РЖД» был изготовлен опытный образец газотурбовоза с ГТД, работающем на сжиженном природном газе (опять криогенное топливо :-)). Газотурбовоз успешно прошел испытания, планируется его дальнейшая эксплуатация.

И наконец четвертое, самое, наверное, экзотическое… Танки. Грозные боевые машины. На сегодняшний момент достаточно широко известны два типа ныне использующихся боевых танков с газотурбинными двигателями. Это американский М1 Abrams и российский Т-80.

Танк M1A1 Abrams с газотурбинным двигателем AGT-1500.

Во всех вышеописанных случаях применения ГТД (суть турбовальный двигатель), он обычно заменяет дизельный двигатель. Это происходит потому, что (как я уже описывал здесь) при одинаковых размерах турбовальный двигатель значительно превосходит дизельный по мощности, имеет гораздо меньший вес и шумность.

Танк Т-80 с газотурбинным двигателем ГТД-1000Т.

Однако у него есть и крупный недостаток.Он обладает сравнительно низким коэффициентом полезного действия, что обуславливает большой расход топлива. Это естественно снижает запас хода любого транспортного средства (и танка в том числе :-)). Кроме того он чувствителен к грязи и посторонним предметам, всасываемым вместе с воздухом. Они могут повредить лопатки компрессора. Поэтому приходится создавать достаточно объемные системы очистки при использовании такого двигателя.

Эти недостатки достаточно серьезны. Именно поэтому турбовальный двигатель получил гораздо большее распространение в авиации, чем в наземном транспорте. Там этот трудяга-движок, ничего не пуская «на ветер» :-), заставляет подниматься в воздух вертолеты. И они в родной для них стихии из несуразных, на первый взгляд, машин превращаются в изумительные по красоте и возможностям творения рук человеческих… Все-таки авиация – это здорово :-)…

P.S. Вы только посмотрите, что они вытворяют!

Все фотографии и схемы кликабельны.

No related posts.

avia-simply.ru

Принцип Действия Турбины Самолета. Проектирование изделий. informatik-m.ru

принцип действия турбины самолета

История создания и принцип работы турбореактивного двигателя

Реактивные авиадвигатели во второй половине XX века открыли новые возможности в авиации: полеты на скоростях, превышающих скорость звука, создание самолетов с высокой грузоподъемностью, сделали возможным массовые путешествия на большие расстояния. Турбореактивный двигатель по праву считается одним из самых важных механизмов ушедшего века, несмотря на простой принцип работы, пишет Ростех .

Первый самолет братьев Райт, самостоятельно оторвавшийся от Земли в 1903 году, был оснащен поршневым двигателем внутреннего сгорания. И на протяжении сорока лет этот тип двигателя оставался основным в самолетостроении. Но во время Второй мировой войны стало ясно, что традиционная поршнево-винтовая авиация подошла к своему технологическому пределу – как по мощности, так и по скорости. Одной из альтернатив был воздушно-реактивный двигатель.

Идею применения реактивной тяги для преодоления земного притяжения впервые довел до практической осуществимости Константин Циолковский. Еще в 1903 году, когда братья Райт запускали свой первый самолет «Флайер-1», российский ученый опубликовал свой труд «Исследование мировых пространств реактивными приборами», в котором он разработал основы теории реактивного движения. Опубликованная в «Научном обозрении» статья утвердила за ним репутацию мечтателя и не была воспринята всерьез. Циолковскому потребовались годы трудов и смена политического строя, чтоб доказать свою правоту.

Реактивный самолет Су-11 с двигателями ТР-1, разработки КБ Люльки

Тем не менее, родиной серийного турбореактивного двигателя суждено было стать совсем другой стране – Германии. Создание турбореактивного двигателя в конце 1930-х было своеобразным хобби немецких компаний. В этой области отметились практически все известные ныне бренды: Heinkel, BMW, Daimler-Benz и даже Porsche. Основные лавры достались компании Junkers и ее первому в мире серийному турбореактивному двигателю 109-004, устанавливаемому на первый же в мире турбореактивный самолет Me 262.

Несмотря на невероятно удачный старт в реактивной авиации первого поколения, немецкие решения дальнейшего развития нигде в мире не получили, в том числе и в Советском Союзе.

В СССР разработкой турбореактивных двигателей наиболее удачно занимался легендарный авиаконструктор Архип Люлька. Еще в апреле 1940 года он запатентовал собственную схему двухконтурного турбореактивного двигателя, позже получившую мировое признание. Архип Люлька не нашел поддержки у руководства страны. С началом войны ему вообще предложили переключиться на танковые двигатели. И только когда у немцев появились самолеты с турбореактивными двигателями, Люльке было приказано в срочном порядке возобновить работы по отечественному турбореактивному двигателю ТР-1.

Уже в феврале 1947 года двигатель прошел первые испытания, а 28 мая свой первый полет совершил реактивный самолет Су-11 с первыми отечественными двигателями ТР-1, разработки КБ А.М. Люльки, ныне филиала Уфимского моторостроительного ПО, входящего в Объединенную двигателестроительную корпорацию (ОДК).

Принцип работы

Турбореактивный двигатель (ТРД) работает на принципе обычной тепловой машины. Не углубляясь в законы термодинамики, тепловой двигатель можно определить как машину для преобразования энергии в механическую работу. Этой энергией обладает так называемое рабочее тело – используемый внутри машины газ или пар. При сжатии в машине рабочее тело получает энергию, а при последующем его расширении мы имеем полезную механическую работу.

При этом понятно, что работа, затрачиваемая на сжатие газа должна быть всегда меньше работы, которую газ может совершить при расширении. Иначе никакой полезной «продукции» не будет. Поэтому газ перед расширением или во время него нужно еще и нагревать, а перед сжатием – охладить. В итоге за счет предварительного нагрева энергия расширения значительно повысится и появится ее излишек, который можно использовать для получения необходимой нам механической работы. Вот собственно и весь принцип работы турбореактивного двигателя.

Таким образом, любой тепловой двигатель должен иметь устройство для сжатия, нагреватель, устройство для расширения и охлаждения. Все это есть у ТРД, соответственно: компрессор, камера сгорания, турбина, а в роли холодильника выступает атмосфера.

Рабочее тело – воздух, попадает в компрессор и сжимается там. В компрессоре на одной вращающейся оси укреплены металлические диски, по венцам которых размещены так называемые «рабочие лопатки». Они «захватывают» наружный воздух, отбрасывая его внутрь двигателя.

Далее воздух поступает в камеру сгорания, где нагревается и смешивается с продуктами сгорания (керосина). Камера сгорания опоясывает ротор двигателя после компрессора сплошным кольцом, либо в виде отдельных труб, которые называются жаровыми трубами. В жаровые трубы через специальные форсунки и подается авиационный керосин.

Из камеры сгорания нагретое рабочее тело поступает на турбину. Она похожа на компрессор, но работает, так сказать, в противоположном направлении. Ее раскручивает горячий газ по тому же принципу, как воздух детскую игрушку-пропеллер. Ступеней у турбины немного, обычно от одной до трех-четырех. Это самый нагруженный узел в двигателе. Турбореактивный двигатель имеет очень большую частоту вращения – до 30 тысяч оборотов в минуту. Факел из камеры сгорания достигает температуры от 1100 до 1500 градусов Цельсия. Воздух здесь расширяется, приводя турбину в движение и отдавая ей часть своей энергии.

После турбины – реактивное сопло, где рабочее тело ускоряется и истекает со скоростью большей, чем скорость встречного потока, что и создает реактивную тягу.

Поколения турбореактивных двигателей

Несмотря на то, что точной классификации поколений турбореактивных двигателей в принципе не существует, можно в общих чертах описать основные типы на различных этапах развития двигателестроения.

К двигателям первого поколения относят немецкие и английские двигатели времен Второй мировой войны, а также советский ВК-1, который устанавливался на знаменитый истребитель МИГ-15, а также на самолеты ИЛ-28 и ТУ-14.

Истребитель МИГ-15

ТРД второго поколения отличаются уже возможным наличием осевого компрессора, форсажной камеры и регулируемого воздухозаборника. Среди советских примеров двигатель Р-11Ф2С-300 для самолета МиГ-21.

Двигатели третьего поколения характеризуются увеличенной степенью сжатия, что достигалось увеличением ступеней компрессора и турбин, и появлением двухконтурности. Технически это самые сложные двигатели.

Появление новых материалов, которые позволяют значимо поднять рабочие температуры, привело к созданию двигателей четвертого поколения. Среди таких двигателей – отечественный АЛ-31 разработки ОДК для истребителя Су-27.

Сегодня на уфимском предприятии ОДК начинается выпуск авиационных двигателей пятого поколения. Новые агрегаты установят на истребитель Т-50 (ПАК ФА), который приходит на смену Су-27. Новая силовая установка на Т-50 с увеличенной мощностью сделает самолет еще более маневренным, а главное – откроет новую эпоху в отечественном авиастроении.

Устрой­ство реак­тив­ного двигателя

Реак­тив­ный дви­га­тель был изоб­ре­тен Ган­сом фон Охай­ном (Dr. Hans von Ohain). выда­ю­щимся немец­ким инженером-конструкторм и Фрэн­ком Уитт­лом (Sir Frank Whittle). Пер­вый патент на рабо­та­ю­щий газо­тур­бин­ный дви­га­тель, был полу­чен в 1930 году Фрэнк Уитт­лом. Однако первую рабо­чую модель собрал именно Охайн.

2 авгу­ста 1939 года в небо под­нялся пер­вый реак­тив­ный само­лет — He 178 (Хейн­кель 178), сна­ря­жен­ный дви­га­те­лем HeS 3, раз­ра­бо­тан­ный Охайном.

Устрой­ство реак­тив­ного дви­га­теля доста­точно про­сто и одно­вре­менно крайне сложно. Про­сто по прин­ципу дей­ствия: заборт­ный воз­дух (в ракет­ных дви­га­те­лях — жид­кий кис­ло­род) заса­сы­ва­ется в тур­бину, там сме­ши­ва­ется с топ­ли­вом и сго­рая, в конце тур­бины обра­зует т.н. “рабо­чее тело” (реак­тив­ная струя), кото­рое и дви­гает машину.

Так все про­сто, но на деле — это целая область науки, ибо в таких дви­га­те­лях рабо­чая тем­пе­ра­тура дости­гает тысяч гра­ду­сов по Цель­сию. Одна из самых глав­ных про­блем тур­бо­ре­ак­тив­ного дви­га­те­ле­стро­е­ния — созда­ние не пла­вя­щихся дета­лей, из пла­вя­щихся метал­лов. Но для того, что бы понять про­блемы кон­струк­то­ров и изоб­ре­та­те­лей нужно сна­чала более детально изу­чить прин­ци­пи­аль­ное устрой­ство двигателя.

Устрой­ство реак­тив­ного двигателя

основ­ные детали реак­тив­ного двигателя

В начале тур­бины все­гда стоит вен­ти­ля­тор. кото­рый заса­сы­вает воз­дух из внеш­ней среды в тур­бины. Вен­ти­ля­тор обла­дает боль­шой пло­ща­дью и огром­ным коли­че­ством  лопа­стей спе­ци­аль­ной формы, сде­лан­ных из титана. Основ­ных задач две — пер­вич­ный забор воз­духа и охла­жде­ние всего дви­га­теля в целом, путем про­ка­чи­ва­ние воз­духа между внеш­ней обо­лоч­кой дви­га­теля и внут­рен­ними дета­лями. Это охла­ждает камеры сме­ши­ва­ния и сго­ра­ния и не дает им разрушится.

Сразу за вен­ти­ля­то­ром стоит мощ­ный ком­прес­сор. кото­рый нагне­тает воз­дух под боль­шим дав­ле­нием в камеру сгорания.

Камера сго­ра­ния выпол­няет еще и роль кар­бю­ра­тора, сме­ши­вая топ­ливо с воз­ду­хом. После обра­зо­ва­ния топ­ливо воз­душ­ной смеси она под­жи­га­ется. В про­цессе воз­го­ра­ния про­ис­хо­дит зна­чи­тель­ный разо­грев смеси и окру­жа­ю­щих дета­лей, а также объ­ем­ное рас­ши­ре­ние. Фак­ти­че­ски реак­тив­ный дви­га­тель исполь­зует для дви­же­ния управ­ля­е­мый взрыв.

Камера сго­ра­ния реак­тив­ного дви­га­теля одна из самых горя­чих его частей  — её необ­хо­димо посто­янно интен­сив­ное охла­жде­ние. Но и этого недо­ста­точно. Тем­пе­ра­тура  в ней дости­гает 2700 гра­ду­сов, поэтому её часто делают из керамики.

После камеры сго­ра­ния горя­щая топливо-воздушная смесь направ­ля­ется непо­сред­ственно в турбину.

Тур­бина состоит из сотен лопа­ток, на кото­рые давит реак­тив­ный поток, при­водя тур­бину во вра­ще­ние. Тур­бина в свою оче­редь вра­щает вал, на кото­ром “сидят” вен­тил­ля­тор и ком­прес­сор. Таким обра­зом система замы­ка­ется и тре­бует лишь под­вода топ­лива и воз­духа для сво­его функционироваия.

После тур­бины поток направ­ля­ется в сопло. Сопло реак­тив­ного дви­га­теля — послед­няя, но далеко не по зна­че­нию часть реак­тив­ного дви­га­теля. Оно фор­ми­рует непо­сред­ственно реак­тив­ную струю. В сопло направ­ля­ется холод­ный воз­дух, нагне­та­е­мый вен­тил­ля­то­ром для охла­жде­ния внут­рен­них дета­лей дви­га­теля. Этот поток огра­ни­чи­вает ман­жету сопла от сверх­го­ря­чего реак­тив­ного потока и ее дает ей расплавится.

Откло­ня­е­мый век­тор тяги

Сопла у реак­тив­ных дви­га­те­лей бывают самые раз­ные. Самым пере­до­вым счи­тает подвиж­ное сопло, сто­я­щее на дви­га­те­лях с откло­ня­е­мым век­то­ром тяги. Оно может сжи­маться и рас­ши­рятся, а также откло­нятся на зна­чи­тель­ные углы, регу­ли­руя и направ­ляя непо­сред­ственно реак­тив­ный поток. Это делает само­леты с дви­га­те­лями с откло­ня­е­мым век­то­ром тяги очень манев­рен­ными, т.к. манев­ри­ро­ва­ние про­ис­хо­дит не только бла­го­даря меха­низ­мам крыла, но и непо­сред­ственно двигателем.

Типы реак­тив­ных двигателей

Клас­си­че­ский реак­тив­ный дви­га­тель само­лета F-15

Клас­си­че­ский реак­тив­ный дви­га­тель — прин­ци­пи­аль­ное устрой­ство кото­рого мы опи­сы­али выше. Исполь­зу­ется в основ­ном на истре­би­те­лях в раз­лич­ных модификациях.

Тур­бо­вин­то­вой дви­га­тель. В этом типе дви­га­теля мощ­ность тур­бины через пони­жа­ю­щий редук­тор направ­ля­ется на вра­ще­ние клас­си­че­ского винта. Такие дви­га­тели поз­во­лят боль­шим само­ле­там летать на при­ем­ле­мых ско­ро­стях и тра­тить меньше горю­чего. Нор­маль­ной крей­сер­ской ско­ро­стью тур­бо­вин­то­вого само­лета счи­та­ется  600—800 км/ч.

Пря­мо­точ­ный воздушно-реактивный дви­га­тель (Ramjet)

Пря­мо­точ­ный воздушно-реактивный двигатель

Рабо­тает без подвиж­ных дета­лей. Воз­дух нагне­та­ется в камеру сго­ра­ния есте­ствен­ным спо­со­бом, за счет тор­мо­же­ния потока об обте­ка­тель вход­ного отверстия.

Далее все про­ис­хо­дит так же как в обыч­ном реак­тив­ном дви­га­теле — воз­дух сме­ши­ва­ется с горю­чим и выхо­дит в виде реак­тив­ной струи из сопла.

Исполь­зо­вался на поез­дах, само­ле­тах, БЛА, и в бое­вых раке­тах, а также на вело­си­пе­дах и скутерах.

И напо­сле­док — видео работы реак­тив­ного дви­га­теля:

Кар­тинки взяты из раз­лич­ных источ­ни­ков. Руси­фи­ка­ция кар­ти­нок — Лабо­ра­тори 37.

Источники: http://military-industry.ru/missilery/1425, http://lab-37.com/science_world/turbojet/

Комментариев пока нет!

informatik-m.ru

Устройство реактивного двигателя | Двигатель прогресса

February 27, 2010

турбовинтовой двигатель

Реактивный двигатель был изобретен Гансом фон Охайном (Dr. Hans von Ohain), выдающимся немецким инженером-конструкторм и Фрэнком Уиттлом (Sir Frank Whittle). Первый патент на работающий газотурбинный двигатель, был получен в 1930 году Фрэнк Уиттлом. Однако первую рабочую модель собрал именно Охайн.

2 августа 1939 года в небо поднялся первый реактивный самолет – He 178 (Хейнкель 178), снаряженный двигателем HeS 3, разработанный Охайном.

Устройство реактивного двигателя достаточно просто и одновременно крайне сложно. Просто по принципу действия: забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину, там смешивается с топливом и сгорая, в конце турбины образует т.н. “рабочее тело” (реактивная струя), которое и двигает машину.

Так все просто, но на деле – это целая область науки, ибо в таких двигателях рабочая температура достигает тысяч градусов по Цельсию. Одна из самых главных проблем турбореактивного двигателестроения – создание не плавящихся деталей, из плавящихся металлов. Но для того, что бы понять проблемы конструкторов и изобретателей нужно сначала более детально изучить принципиальное устройство двигателя.

Устройство реактивного двигателя

турбовинтовой двигатель

основные детали реактивного двигателя

В начале турбины всегда стоит вентилятор, который засасывает воздух из внешней среды в турбины. Вентилятор обладает большой площадью и огромным количеством  лопастей специальной формы, сделанных из титана. Основных задач две – первичный забор воздуха и охлаждение всего двигателя в целом, путем прокачивание воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.

Сразу за вентилятором стоит мощный компрессор, который нагнетает воздух под большим давлением в камеру сгорания.

Камера сгорания выполняет еще и роль карбюратора, смешивая топливо с воздухом. После образования топливо воздушной смеси она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв.

Камера сгорания реактивного двигателя одна из самых горячих его частей  – её необходимо постоянно интенсивное охлаждение. Но и этого недостаточно. Температура  в ней достигает 2700 градусов, поэтому её часто делают из керамики.

После камеры сгорания горящая топливо-воздушная смесь направляется непосредственно в турбину.

Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал, на котором “сидят” вентиллятор и компрессор. Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.

После турбины поток направляется в сопло. Сопло реактивного двигателя – последняя, но далеко не по значению часть реактивного двигателя. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый вентиллятором для охлаждения внутренних деталей двигателя. Этот поток ограничивает манжету сопла от сверхгорячего реактивного потока и ее дает ей расплавится.

Отклоняемый вектор тяги

Сопла у реактивных двигателей бывают самые разные. Самым передовым считает подвижное сопло, стоящее на двигателях с отклоняемым вектором тяги. Оно может сжиматься и расширятся, а также отклонятся на значительные углы, регулируя и направляя непосредственно реактивный поток. Это делает самолеты с двигателями с отклоняемым вектором тяги очень маневренными, т.к. маневрирование происходит не только благодаря механизмам крыла, но и непосредственно двигателем.

Типы реактивных двигателей

Существует несколько основных типом реактивных двигателей.

двигатель ф15

Классический реактивный двигатель самолета F-15

Классический реактивный двигатель – принципиальное устройство которого мы описыали выше. Используется в основном на истребителях в различных модификациях.

Двухлопастной турбовинтовой двигатель

Двухлопастной турбовинтовой двигатель

Турбовинтовой двигатель. В этом типе двигателя мощность турбины через понижающий редуктор направляется на вращение классического винта. Такие двигатели позволят большим самолетам летать на приемлемых скоростях и тратить меньше горючего. Нормальной крейсерской скоростью турбовинтового самолета считается  600—800 км/ч.

Турбовентиляторный реактивный двигатель.

Турбовентиляторный реактивный двигатель.

Турбовентиляторный реактивный двигатель.

Этот тип двигателя является более экономичным родственником классического типа. главное отличие в том, что на входе ставится вентилятор большего диаметра, который подает воздух не только в турбину, но и создает достаточно мощный поток вне её. Таким образом достигается повышенная экономичность, за счет улучшения КПД.

Используется на лайнерах и больших самолетах.

Прямоточный воздушно-реактивный двигатель (Ramjet)

Прямоточный воздушно-реактивный двигатель

Прямоточный воздушно-реактивный двигатель

Работает без подвижных деталей. Воздух нагнетается в камеру сгорания естественным способом, за счет торможения потока об обтекатель входного отверстия.

Далее все происходит так же как в обычном реактивном двигателе – воздух смешивается с горючим и выходит в виде реактивной струи из сопла.

Использовался на поездах, самолетах, БЛА, и в боевых ракетах, а также на велосипедах и скутерах.

И напоследок – видео работы реактивного двигателя:

Картинки взяты из различных источников. Русификация картинок – Лаборатори 37.

lab-37.com

Ваш электронный адрес не будет опубликован.