Форсунки тнвд – Топливная система с насос-форсунками: устройство и принцип работы

Содержание

Восстановление форсунок и ТНВД систем Common Rail — все нюансы — журнал За рулем

Почему ремонт топливной аппаратуры так дóрог? «За рулем» объясняет. И советует, на что обратить особое внимание при восстановлении форсунок и ТНВД систем Common Rail.

Одна из причин ускоренного износа компонентов форсунок и ТНВД — увлечение топливными присадками.

Одна из причин ускоренного износа компонентов форсунок и ТНВД — увлечение топливными присадками.

С момента своего появления два десятка лет назад дизельная аппаратура Common Rail сменила уже несколько поколений. Ее современные компоненты — высокотехнологичные узлы, которые требуют особого подхода при ремонте. Поэтому крайне важно проводить их лечение в соответствующих условиях, а не на коленке. Производители позаботились о разработке технологий ремонта, поставке запчастей и даже о создании сетей специализированных СТО.

При схожих устройстве и принципе работы форсунки и ТНВД Common Rail разных производителей могут иметь довольно серьезные конструктивные особенности. Это обуславливает специфику их восстановления, хотя общий подход одинаковый. В качестве примера рассмотрим технологии ремонта форсунок и ТНВД фирмы Bosch — одного из самых крупных производителей компонентов топливной аппаратуры.

Цена ошибки

Приложение Bosch QualityScan для смартфона позволит после сканирования QR-кода на отремонтированном ТНВД или форсунке увидеть все подробности восстановления узла, включая перечень замененных деталей.

Приложение Bosch QualityScan для смартфона позволит после сканирования QR-кода на отремонтированном ТНВД или форсунке увидеть вс

www.zr.ru

ТНВД и форсунки

Топливные насосы высокого давления

Топливные насосы служат для подачи порций топлива к форсункам под высоким давлением в определенные моменты по углу поворота коленчатого вала. На двигателе устанавливаются пять индивидуальных топливных насосов плунжерного типа с постоянным ходом плунжера.

Диаметр плунжера 12 мм, ход плунжера 8 мм.

Каждый топливный насос состоит из корпуса 1 (рис. 1), плунжерной пары (гильзы 15 и плунжера 16), тройника 13, рычага 18, толкателя 2, направляющей толкателя 19, поворотной втулки 8, рейки 28 и пружин 5 и 6.

Корпус стальной, штампованный. В нем расточены отверстия для установки основных элементов насоса.

Во фланце корпуса просверлены четыре отверстия для прохода шпилек крепления насоса к блоккартеру. Фиксация корпуса осуществляется цилиндрическим выступом ф, входящим в расточку блок-картера.

Со стороны привалочной поверхности д в корпусе просверлены отверстия б и в для подвода и отвода топлива.

Отверстия для подвода и отвода топлива соединены каналами в корпусе с полостью всасывания р, расположенной вокруг плунжерной пары.

Нажимная гайка 12 корпуса прижимает тройник насоса и гильзу плунжера к посадочному бурту корпуса насоса.

Вверхней части корпуса имеется закрытое резьбовой крышкой отверстие, через которое осуществляется доступ к эксцентриковому устройству, используемому для регулировки начала подачи при установке насоса на двигатель.

Всквозном поперечном отверстии корпуса устанавливается рейка 28. В резьбу отверстия ввертывается упор 29 рейки, а в расточку, имеющуюся снизу, устанавливается резиновое уплотнение 31, предотвращающее утечку масла по рейке.

Рычаг 18 служит для передачи движения от кулачкового вала плунжеру 16. Движение передается через сферическую пару грибок 3 — сухарик 17 и проставку 4. Рычаг с помощью двухрядного игольчатого подшипника 21 монтируется на оси 22, установленной в проушинах корпуса 1. Ось рычага фиксируется от проворачивания штифтом, расположенным в одной из проушин. Осевое перемещение оси рычага ограничено расточкой блок-картера, в которую входит рычаг.

На нижнем конце рычага 18 имеется ролик 25, установленный на пальце 24 с помощью игольчатого подшипника 26. Палец 24 плавающего типа. Осевое перемещение пальца ограничено проушинами корпуса насоса.

Игольчатые подшипники 21 и 26, а также сферическая пара смазываются маслом, поступающим из блока через сверления в корпусе 1, оси 22, рычаге 18 и пальце 24 ролика.

Толкатель 2, служащий для разгрузки плунжера от боковых усилий, монтируется в алюминиевой направляющей 19, которая крепится к корпусу фланцем. От проворачивания толкатель фиксируется в направляющей штифтом 33, входящим в продольную прорезь толкателя.

Для прохода рычага 18 толкатель и направляющая имеют в боковых стенках окна. В верхней части направляющей 19 имеется, кроме того, паз для сухаря 35 эксцентрикового устройства.

Наиболее ответственной частью насоса является прецизионная (т. е. пригнанная с большой точностью) пара плунжер 16 — гильза 15.

Гильза плунжера представляет собой цилиндр, в утолщенной части которого имеются два отверстия «, соединяющие внутреннюю полость гильзы с полостью р всасывания. Косой канал ж служит для обратного перепуска в полость р топлива, просачивающегося по зазору между плунжером и гильзой во время нагнетания.

Гильза установлена в корпусе насоса в определенном положении и зафиксирована от проворачивания болтом 9, входящим концом в паз гильзы.

studfile.net

СУДОРЕМОНТ ОТ А ДО Я.: Топливные насосы и форсунки.

Топливные насосы высокого давления (ТНВД) предназначены для подачи определенного количества топлива к форсункам в строго определенные моменты. В качестве ТНВД используются плунжерные насосы клапанного и золотникового типа. Каждый цилиндр тихоходных ДВС большой мощности имеет свой ТНВД. У быстроходных двигателей ТНВД часто выполняется в виде одного агрегата с числом плунжеров, равным числу цилиндров. Плунжер топливного насоса приводится в движение кулачной шайбой определенного профиля, установленной на распределительном валу двигателя. В исходное положение (ход всасывания) плунжер возвращается под действием пружины. Количество топлива, подаваемое ТНВД, регулируется вручную с поста управления или при помощи центробежного регулятора. Большое распространение в судовых ДВС получили
ТНВД золотникового типа
, в которых за счет различного положения скоса отсечной кромки плунжера легко осуществляется три способа регулирования подачи топлива: изменением момента конца подачи; изменением момента начала подачи; изменением моментов начала и конца подачи.
В первом случае момент начала подачи топлива (по углу поворота коленчатого вала) остается неизменным на всех режимах, а конец — устанавливается поворотом плунжера, обеспечивающим резкую отсечку топлива. Этот способ регулирования получил широкое распространение, но используется преимущественно в ДВС, работающих с постоянной частотой вращения.
Во втором случае время начала подачи топлива изменяется, в конец — остается неизменным. Такой способ регулирования обеспечивает необходимое изменение опережения подачи топлива в соответствии с изменением частоты вращения коленчатого вала двигателя. Поэтому он используется в главных ДВС, непосредственно соединенных с гребным винтом.
Третий способ регулирования называется смешанным, так как при нем одновременно изменяется время начала и конца подачи топлива. В последнее время этот способ применяется все чаще для главных ДВС, работающих на переменных режимах широкого диапазона, для которых он наиболее приемлем.
На рисунке показан топливный насос золотникового типа, состоящий из плунжера 8, втулки 5, нагнетательного клапана 2 с пружиной 1, втулки 6 с шестерней 9 и зубчатой рейки 10.
При движении плунжера вниз топливо поступает в насос через два отверстия 3, а при движении вверх — проходит через нагнетательный клапан
2
и далее по трубам высокого давления к форсунке. В верхней части плунжер имеет продольную прямую канавку 4 и выфрезерованную полость с винтовой кромкой, служащей для открытия одного из всасывающих отверстий 3.В момент отсечки подача топлива прекращается, так как оно из нагнетательной полости насоса через канавку 4 и отверстие 3 перетекает во всасывающую трубу. При этом давление в нагнетательной полости насоса быстро падает и нагнетательный клапан закрывается. Количество топлива, подаваемого насосом, регулируется  поворотом плунжера,  который осуществляется при помощи втулки 6 с шестерней 9, свободно насаженной на втулку
5
. Втулка 6 в нижней части имеет прорези 7, в которые входят выступы плунжера топливного насоса. Зубчатая рейка 10 входит в зацепление с шестерней 9 и, перемещаясь в ту или другую сторону, поворачивает шестерню со втулкой 6, а с ними и плунжер 8. Винтовая кромка плунжера, поворачиваясь, изменяет момент открытия всасывающего отверстия, а следовательно, и количество подаваемого топлива.
Топливо к ТНВД может поступать самотеком из расходных цистерн, расположенных на определенной высоте над двигателем. Но в большинстве случаев оно подается топливоподкачивающим насосом под давлением 0,05—0,15 МПа, что позволяет преодолеть сопротивление топливоподводящего трубопровода.
Топливный насос клапанного типа с приводом показан на рисунке:
В корпусе 11 устанавливается втулка плунжера 14, крепящаяся нажимной гайкой 12. Движение плунжера 15 вверх осуществляется от кулачков распределительного вала через ролик 1 и толкатель 2. Возвратное движение плунжера происходит под действием пружины 13.
Всасывание топлива происходит через клапан 8, которым управляют толкатели 4 и 7. Всасывающий клапан крепится гайкой 9 и служит также для регулирования подачи топлива за каждый ход плунжера через нагнетательный клапан 10. Отсечной рычаг 16 опирается на эксцентриковую шейку валика 3. Правый конец отсечного рычага получает качательное движение от толкателя плунжера, а левый — при помощи толкателей
4
и 7 действует на всасывающий клапан. Когда плунжер насоса под действием пружины 13 движется вниз, левый конец рычага 16 поднимается вверх и при помощи толкателей открывает всасывающий клапан. В результате этого топливо из магистрали заполняет полость над плунжером. При движении плунжера вверх топливо вытесняется обратно во всасывающую полость насоса до тех пор, пока левый конец отсечного рычага 16 не опустится настолько, что всасывающий клапан полностью закроется. С этого момента оставшееся над плунжером топливо сжимается и, преодолевая усилие пружины форсунки, впрыскивается в цилиндр двигателя. Чем позже закроется всасывающий клапан, тем меньше топлива будет подано в цилиндр двигателя за один ход плунжера. Если клапан не закроется совсем, то все топливо при нагнетательном ходе плунжера вытеснится во всасывающую полость насоса и подача его в цилиндр двигателя прекратится.
Момент закрытия всасывающего клапана изменяется за счет длины толкателя 4, имеющего для этой цели регулировочный болт 6 с контргайкой 5. Кроме того, момент закрытия всасывающего клапана изменяется поворотом эксцентрикового валика 3, на конце которого насажен рычаг, соединенный с тягой, общей для всех насосов. Перемещение этой тяги рукояткой поста управления или регулятором частоты вращения двигателя вызывает изменение подачи топлива одновременно всеми насосами.
При регулировании момента закрытия всасывающего клапана топливного насоса одновременно с изменением количества подаваемого топлива изменяется и момент начала подачи топлива в цилиндр ДВС.
Форсунки двигателей служат для распыливания и равномерного распределения топлива в камере сгорания и обеспечения резкого прекращения подачи топлива в определенный момент. Форсунки разделяются на два основных типа: открытые и закрытые.
Открытые форсунки не имеют запорного органа (иглы), разделяющего нагнетательный трубопровод и сопловые отверстия.
В настоящее время в судовых двигателях применяются в основном закрытые форсунки, исключающие резкое ухудшение распыливания топлива при малых нагрузках и низкой частоте вращения. В закрытых форсунках игольчатый клапан (игла) разобщает сопловые отверстия и нагнетательный трубопровод. Игла нагружена пружиной и открывается автоматически давлением топлива или при помощи механического привода.
На рисунке показана закрытая форсунка, состоящая из корпуса 4 с щелевым фильтром 9. Внутри корпуса располагается толкатель 5 с пружиной 6, натяжение которой регулируется винтом 7 с контргайкой 8. Распылитель 1 крепится к корпусу форсунки накидной гайкой 3. Торцевые поверхности корпуса и распылителя тщательно притираются друг к другу. Нижний торец корпуса форсунки закален и является ограничителем подъема иглы 2 распылителя. Пружина 6, расположенная внутри корпуса, при помощи стержня толкателя 5 прижимает иглу 2 к уплотняющему конусу распылителя. Последний имеет отверстия, через которые топливо впрыскивается в цилиндр двигателя. Топливо к распылителю подводится через щелевой фильтр 9 по каналу А. При соответствующем давлении топлива на дифференциальный конус иглы последняя поднимается и топливо распыливается через сопловые отверстия.
Форсунка на крышке цилиндра крепится двумя шпильками. Между форсункой и крышкой цилиндра устанавливается уплотнительная красномедная прокладка, которая предварительно отжигается.

sudoremont.blogspot.com

Какие бывают топливные дизельные форсунки

Категория: Полезная информация.

Топливные форсунки — один из главных элементов системы питания дизельного двигателя. С течением времени, конструкция и принцип работы форсунок неоднократно менялись, у каждого нового поколения появлялись свои особенности. Рассмотрим основные типы форсунок, которые встречаются в топливной системе дизельных ДВС.

fors ff

Зачем вообще нужны форсунки

Форсунки обеспечивают прямую подачу топлива в камеры сгорания и его равномерное распределение по стенкам. Распыление топлива происходит через специальные сопла (распылитель форсунки). Сопла формируют строго заданный топливный факел, в результате чего топливо и воздух смешиваются эффективнее, а смесь сгорает лучше.

Основное отличие форсунок для бензиновых и дизельных систем заключается в рабочем давлении топливной магистрали. Так, если бензонасос создает давление в 1-2 атмосферы в бензиновых двигателях, то топливный насос высокого давления (ТНВД) нагнетает дизтопливо до отметки в несколько сотен атмосфер.

Выделяют несколько типов дизельных форсунок, в зависимости от принципа их работы и особенностей конструкции:

  • механические
  • электромагнитные
  • пьезоэлектрические
  • насос-форсунки

Механические форсунки

Имеют самую простую и надежную конструкцию и длительный стаж применения в автомобилестроении (несколько десятилетий). Принцип работы механической форсунки: клапан ее открывается, как только достигнуто необходимое давление.

Корпус форсунки оканчивается соплом и подпружинной иглой. В опущенном состоянии игла закрывает доступ топлива к соплу. Как только давление поднимается благодаря работе ТНВД, игла приподнимается, топливо поступает на распылитель для последующего впрыска. С падением давления, игла снова опускается, перекрывая доступ топлива к распылителю форсунки.

injection

Такое простое конструктивное решение: корпус, распылитель, игла плюс пружина —  позволяет применять механические форсунки на самых простых моделях дизельных ДВС.

Но вследствие ужесточающихся с каждым годом требований к экономичности и экологичности дизелей, производители были вынуждены искать новые решения, ведь механические форсунки не обеспечивают достаточно контроля над смешиванием топливной смеси.

Электромагнитные форсунки

Речь идет о форсунке, в которой солярка подается в цилиндры посредством опускания и поднимания иглы, но управляется она не пружиной, а с помощью специального элекромагнитного клапана, который регулируется электронным блоком управления двигателя. Следовательно, без соответствующего сигнала топливо не попадет в распылитель.

То есть дозирование топлива, начало его впрыска и длительность подачи определяется ЭБУ двигателя. Необходимые параметры определяются частотой вращения коленвала, режимом работы мотора, температурой ДВС и другими важными параметрами.

fors 2

При этом в системе Common Rail за один цикл электромеханическая форсунка способна подавать топливо посредством нескольких впрысков (до 7 раз). Такая дозированная и точная подача горючего в цилиндр способствует его лучшему распределению по стенкам камеры сгорания и более полноценной переработке.

Таким образом, за счет управления процессом впрыска под контролем ЭБУ, конструкторам удалось существенно увеличить мощность дизельного двигателя, сделать его более экономичным и экологичным. С появлением электромагнитных форсунок связана и более культурная (не такая шумная, как раньше) работа дизеля, и даже повышение его общего ресурса. 

Пьезоэлектрические форсунки

Самое современное изобретение в категории современных дизельных моторов с системой прямого впрыска топлива в цилиндры. Принцип работы пьезоэлектрических форсунок фактически дублирует электромагнитные форсунки, но вместо электрического магнита клапан, регулирующий впрыск горючего, приводит пьезоэлектрический кристалл.

Дело в том, что отдельные кристаллы способны менять свою форму под действием электрического заряда. При конструировании пьезоэлектрических форсунок был учтен этот принцип. В результате появилось устройство, где кристалл удлинялся под действием электричества, что и приводит в действие запорные механизмы форсунки.

fors 3

Основное преимущества пьезоэлектрических форсунок — скорость срабатывания клапана. Это позволило совершать многократный впрыск за один цикл подачи горючего в цилиндр (до девяти раз!). В результате качество смеси дизтоплива и воздуха улучшается, мощность и эффективность работы дизельного ДВС увеличиваются.

К основному недостатку относят высокую стоимость пьезоэлектрических форсунок. Они крайне чувствительны к качеству топлива, не поддаются ремонту и восстановлению, а их замена обходится владельцу в круглую сумму.

Насос — форсунки

Насос-форсунка это не отдельный вид форсунки, а целая отдельная система подачи топлива в дизельном ДВС. Особенность такой системы — отсутствие ТНВД. Высокое давление впрыска обеспечивают сами дизельные насос-форсунки.

Принцип их работы заключается в следующем: насос низкого давления подает горючее на форсунку, а затем собственная плунжерная пара форсунки от прямого воздействия кулачков распредвала нагнетает необходимое для впрыска давление. В итоге качество распыления топлива в камере улучшается.

Электрический клапан в устройстве насос-форсунки обеспечивает возможность дозированного впрыска, топливо можно подавать в цилиндр за два впрыска.

fors 6

К другим преимуществам насос-форсунок можно отнести исключение из системы питания дизеля такого узла, как ТНВД, что облегчает конструкцию и уменьшает габариты самого двигателя. Мотор с насос-форсунками работает мягче и экономичнее, а содержание выхлопа максимально экологично.

Главным недостаткам системы насос-форсунок считается прямая зависимость давления впрыска от частоты вращения коленвала. Кроме того, насос-форсунки очень требовательны к качеству топлива и моторного масла. Ремонтировать и заменять их обходится очень дорого, поэтому на сегодняшний день многие автопроизводители отказываются от насос-форсунок в пользу классической схемы «ТНВД + форсунки».

  • Особенности и виды форсунок Bosch, Delphie, Denso мы рассматривали здесь.

Если вы в поиске качественных запчастей для своего дизельного двигателя, проверьте наш каталог

ПЕРЕЙТИ В КАТАЛОГ

 

www.dieselkraft.by

Насос-форсунка дизельного двигателя: устройство и принцип работы

Требования, которые предъявляются к современным дизельным моторам в отношении мощности, экономичности и экологичности, становятся все выше. Чтобы эти требования удовлетворить, следует обеспечить хорошее смесеобразование. Для этого моторы оснащаются современными и эффективными системами впрыска топлива. Они способны не только обеспечить мельчайший распыл за счет более высокого давления, но также с высокой точностью регулируют момент впрыска и количество подаваемого в цилиндры горючего. Такая система существует и полностью удовлетворяет всем тем высоким требованиям. Это насос-форсунка дизельного двигателя. Представляет собой отдельный элемент впрыска для каждого цилиндра в двигателе. Деталь управляется электронным блоком.

Идеи Дизеля

О создании узла, в котором бы объединялась форсунка и топливный насос, задумывался сам создатель этих двигателей – Рудольф Дизель.

насос форсунка дизельного двигателя фольксваген

Это позволило бы уйти от топливных магистралей и трубопроводов высокого давления, тем самым повысив впрысковое давление. Но во времена Дизеля еще не существовало таких возможностей, которые есть сегодня.

Описание системы

Насос-форсунка дизельного двигателя – это насос для подачи горючего и форсунка, которая объединена в одном узле. Как и в ТНВД с форсунками, впрыск на базе этих элементов может выполнять определенные задачи. Система создает достаточное давление, подает определенную порцию топливной смеси в нужный момент. Для каждой камеры сгорания предназначен отдельный насос. Именно поэтому сейчас можно встретить двигатели, где отсутствуют топливные магистрали высокого давления, что есть на силовых агрегатах с ТНВД.

Исторические факты

Эта система впрыска – не новая разработка. Насос-форсунка дизельного двигателя устанавливалась на автомобили в конце 30-х годов. Впервые конструкция была опробована на дизельных двигателях для железнодорожной, морской, а также грузовой техники. Всю эту технику объединяло одно – небольшая скорость. Особенности этих двигателей — в наличии отдельного насоса на каждый цилиндр и в коротких напорных линиях, которые идут к форсунке. Приводом для элементов служат толкатели и буферы.

Серийно стали применять такие системы на грузовиках с 1944 года. На легковых авто – с 1988 года. В 1938 году компанией «Детройт-Дизель», которая принадлежала тогда концерну «Дженерал Моторс», был создан первый такой агрегат, в котором и применялась система питания дизельного двигателя с насос-форсунками. Несмотря на то, что устройство было разработано в США, конструкции такого типа разрабатывались также и в СССР.

Первые моторы ЯАЗ-204 оснащались такими форсунками уже в 1947 году. Но производились эти узлы по лицензии «Детройт-Дизель». Этот силовой агрегат, а затем и модифицированный шестицилиндровый двигатель производился до 1992 года.

система питания дизельного двигателя с насос форсунками

В 1994 году устройство и работа насос-форсунки дизельного двигателя были замечены инженерами «Вольво». Компания выпускает первое грузовое авто Fh22 с форсунками такого типа. Затем такими же узлами начнут оснащать свои грузовики «Скания» и «Ивеко».

Среди легковых автомобилей впервые эту систему начали использовать на «Фольксвагенах». Насос-форсунка дизельного двигателя «Фольксваген» появилась в 1998 году. В конце 90-х моторы с такой системой заняли 20 % автомобильного рынка.

Устройство

Итак, рассмотрим, что представляет собой насос-форсунка дизельных двигателей. Устройство ее чрезвычайно просто. В корпусе узла находится непосредственно форсунка, дозирующий узел, а также силовая часть. Благодаря этому силовому приводу насос-форсунка имеет определенные преимущества перед традиционными системами. Так, значительно сокращается время движения горючей жидкости под высоким давлением. Также увеличивается гидравлическая эффективность и уменьшается масса.

насос форсунка дизельного двигателя

Форсунки последнего поколения оснащены насосами, способными выдавать достаточно высокое давление (до 2 500 бар). Они могут мгновенно реагировать на команды ЭБУ, который собирает и анализирует текущую информацию от внешних датчиков. По этим данным и определяется необходимое количество смеси и время впрыска. Это дает возможность получить оптимальные значения по мощности при заданных рабочих режимах. Кроме этого, узлы помогают экономить дизельное топливо, что позволяет снизить до минимума вредные выбросы в атмосферу и способствуют снижению шума от работающего мотора. Ну и наконец устройство очень компактно и может размещаться в ГБЦ. Туда же можно установить другие детали и узлы.

Форсунка создана таким образом, чтобы обеспечивать наиболее эффективное смесеобразование. Для этого инженеры предусмотрели фазы – это предварительный, основной и дополнительный впрыск. Предварительный дает плавное сгорание в момент основной фазы, когда обеспечивается качественное образование рабочей смеси в разных режимах работы двигателя. Дополнительный необходим для регенерационных процессов в сажевом фильтре.

Принцип действия механической форсунки

Насос-форсунка дизельного двигателя установлена непосредственно в ГБЦ. На распредвале имеется четыре специальных кулачка. Они служат для запуска привода форсунок. При помощи коромысел усилие передается на насос-форсунки посредством плунжеров.

Приводной кулачок имеет специальный профиль, который обеспечивает резкий подъем вверх, а затем медленное опускание коромысла. Когда последнее поднимется, плунжер быстро прижимается вниз. За счет этого создается нужное давление. При медленном опускании коромысла вниз, плунжер идет вверх. Благодаря этому горючее попадает в камеры с высоким давлением без пузырьков воздуха.

Сам процесс впрыска проходит тогда, когда будет подано управляющее напряжение от ЭБУ на электромагнитный клапан.

Фазы впрыска

Разберем подробней принцип работы насос-форсунки дизельного двигателя. Когда под воздействием коромысла плунжер двигается вниз, горючая смесь перетекает по каналам в форсунки. Когда клапан закрывается, поток дизеля отсекается. Давление начинает расти. Когда оно достигнет уровня в 13 мПа, распылительная игла преодолеет усилие пружины. После этого начнется предварительная фаза впрыска.

устройство и работа насос форсунки дизельного двигателя

Как только клапан начнет открываться, предварительная фаза заканчивается, а топливная смесь направляется по питающей магистрали. Давление начинает падать. В зависимости от режима работы двигателя, может выполняться одна либо две предварительных фазы.

Когда плунжер движется вниз, начинается такт основного впрыска. Клапан вновь закрывается, давление горючего снова растет. При достижении уровня в 30 мПа, распылительная игла преодолеет силу давления и поднимается вверх, тем самым запуская процесс впрыска. Чем выше поднимается давление, тем больше горючего будет сжато. Количество дизеля и воздуха, которое сможет попасть в цилиндр, увеличивается.

Максимальная подача (а она осуществляется при работе мотора в режиме пиковой мощности), выполняется при давлении в 220 мПа. Завершает этап основного впрыска открытие клапана. Давление падает, игла закрывается.

Дополнительная фаза впрыска выполняется, когда плунжер далее двигается вниз. Принцип работы устройства на этом этапе такой же, как и основной впрыск. Чаще алгоритм выполняется в два этапа.

Если рассмотреть устройство насос-форсунки дизельного двигателя ТДИ, то она может оснащаться датчиком, следящим за подъемом иглы. Положение иглы нужно блоку управления, где топливные насосы также управляются электроникой.

Преимущества

Тогда как в системе «Коммон рейл» применяется аккумуляторный впрыск, насос-форсунка осуществляет подачу топливной смеси под более высоким давлением за счет отсутствия длинных магистралей.

насос форсунка дизельных двигателей устройство

Они часто могут разрушаться в процессе эксплуатации автомобиля. Это слабое звено в классических системах питания. Насос-форсунка позволяет подать в камеру сгорания больше топлива. При этом распыление будет эффективней. Моторы, оснащенные такими узлами, отличаются большей мощностью.

Кроме этого, двигатели с таким впрыском работают менее шумно, чем их аналоги. Но с «Коммон рейл» или ТНВД насос-форсунка все равно будет компактней.

Недостатки

Но существуют и недостатки. Самый серьезный минус – высокая требовательность к качеству горючего. Достаточно малейшего засора, чтобы система прекратила свою работу. Второй минус – это цена.

принцип работы насос форсунки дизельного двигателя

Ремонтировать этот точный узел вне заводских условий практически невозможно. Еще одни недостаток – при воздействии большого давления эти узлы частенько разбивают посадочные гнезда в блоке двигателя.

Как обслуживать насос-форсунки?

Как видно, эти узлы очень требовательны к качеству дизеля, а оно в нашей стране и в СНГ далекое от высокого. Чтобы не пришлось часто менять этот дорогостоящий элемент, рекомендуется регулярно менять топливные, воздушные и все прочие фильтры, приобретать оригинальные расходные материалы.

О промывках

Нередко автовладельцы интересуются, как промыть насос-форсунки на дизельном двигателе. Специалисты промывать не рекомендуют – это нехорошо для любой форсунки. Лучше заменить фильтры и заправляться на проверенных заправках.

как промыть насос форсунки на дизельном двигателе

Промывка на стенде подойдет, если есть некачественное распыление – неустойчивый холостой ход и похожие проблемы. Промывать в УЗ ванне допускается при полном залипании иглы. Если форсунка льет, то здесь уже ничего не поможет. Для промывки можно использовать популярные сейчас средства «ЛАВР» и «ВИНС».

В целом, если форсунка не работает, лучше провести ТО и выполнить замену деталей, которые вышли из строя. Промывка помогает лишь в случае, если узел хоть как-нибудь, но работает.

Заключение

Итак, мы выяснили, что собой представляет насос-форсунка дизельного двигателя и каково ее устройство. Как видите, это неотъемлемый элемент системы питания дизельных ДВС. Он имеет более технологичную конструкцию, однако очень требователен к качеству топлива.

fb.ru

Устройство форсунки дизельного двигателя

Дизельная форсунка представляет собой один из главных элементов системы питания дизельного двигателя. Форсунка (инжектор) обеспечивает прямую подачу солярки в камеру сгорания дизеля, а также дозирование подаваемого топлива с высокой частотой (более 2 тыс. импульсов в минуту). Инжектор осуществляет эффективный распыл горючего в пространстве над поршнем. Топливо в результате такого распыла получает форму факела. Форсунки отличных друг от друга систем топливоподачи имеют конструктивные особенности, различаются по способу управления. Инжекторы делят на две группы:

  • механические;
  • электромеханические;

Читайте в этой статье

Принцип работы механической форсунки

Принцип работы системы питания дизеля с механическим управлением форсунки состоит в следующем. К топливному насосу высокого давления (ТНВД) подается горючее из топливного бака. За подачу отвечает подкачивающий насос, который создает низкое давление, необходимое для прокачки солярки по топливопроводам.

Далее ТНВД в нужной последовательности осуществляет распределение и нагнетание горючего под высоким давлением в магистрали, ведущие к механической форсунке. Каждая форсунка данного типа открывается для очередного впрыска порции солярки в цилиндры под воздействием высокого давления топлива. Снижение давления приводит к закрытию дизельной топливной форсунки.

Простой механический инжектор имеет корпус, распылитель, иглу и одну пружину. В устройстве запорная игла свободно движется по направляющему каналу распылителя. Сопло форсунки плотно перекрывается в тот момент, когда нет нужного давления от ТНВД. Внизу игла опирается на уплотнение распылителя, имеющее коническую форму. Прижим иглы реализован посредством закрепленной сверху пружины.

Распылитель является одной из важнейших составных деталей среди других элементов в устройстве инжекторной форсунки. Распылители могут иметь разное количество распылительных отверстий, отличаться способом регулировки подачи топлива.

Простые дизельные моторы, которые имеют разделенную камеру сгорания, зачастую получают распылитель с одним отверстием и иглой. Дизельные моторы, которые устроены на основе непосредственного впрыска топлива, оборудованы форсунками с несколькими распылительными отверстиями. Число отверстий в таком распылителе колеблется от двух до шести.

Подача топлива регулируется зависимо от конструкции распылителя, так как существуют два основных типа подобных решений:

  • распылитель с возможностью перекрытия каналов;
  • распылитель с перекрываемым объемом;

В первом случае игла форсунки перекрывает подачу горючего путем перекрытия каждого отверстия. Второй тип форсунок означает, что игла перекрывает своеобразную камеру в нижней части распылителя.

Давление топлива, нагнетаемого ТНВД, заставляет иглу подниматься благодаря наличию на поверхности такой иглы специальной ступеньки. Солярка проникает в корпус под указанной ступенькой. В момент, когда давление горючего сильнее усилия, которое создает прижимная пружина, игла движется вверх. Таким образом открывается канал распылителя. Дизтопливо под давлением проходит через распылитель и происходит его распыл в форме факела. Так реализован впрыск топлива.

Далее определенное количество горючего, которое подается насосом высокого давления, пройдет через распылитель и попадет в камеру сгорания. После этого давление на ступеньке иглы начинает снижаться, в результате чего игла от усилия пружины возвращается в исходное положение и плотно перекрывает канал. Тогда подача солярки в распылитель полностью прекращается.

Инжектор с двумя пружинами

На эффективность топливоподачи и последующего сгорания топлива в цилиндрах дизеля можно влиять, изменяя различные характеристики форсунки, такие как структура и количество каналов распылителя, усилие пружины и т.п. Одним из конструкторских решений стало внедрение в устройство форсунок специального датчика подъема иглы. Данный подъем учитывается специальными электронными блоками управления, которые взаимодействуют с ТНВД.

Еще одним витком развития стали дизельные форсунки с двумя пружинами. Устройство таких форсунок сложнее, но результатом становится большая гибкость в процессе подачи топлива. Сгорание рабочей смеси становится более мягким, дизель тише работает. 

Особенностью работы указанных инжекторов является двухступенчатый подъем иглы. Получается, нагнетаемое ТНВД топливо сначала превышает по силе давления силу сопротивления одной пружины, а затем другой. В режиме холостого хода и при небольших нагрузках на мотор впрыск осуществляется только посредством первой ступени, подавая в двигатель незначительное количество солярки. Когда мотор выходит на режим нагрузки, давление нагнетаемого ТНВД топлива растет, горючее подается уже двумя дозированными порциями. Первый впрыск небольшого объема (1/5 от общего количества), а далее основной (около 80% солярки). Разница давлений впрыска для открытия первой и второй ступени не особенно большая, что обеспечивает плавность топливоподачи.

Такой подход позволил повысить равномерность, эффективность и полноценность сгорания смеси. Дизельный двигатель стал расходовать меньше горючего, снизилось количество токсичных примесей в выхлопных газах. Дизельные форсунки с двумя пружинами активно использовались на агрегатах с непосредственным впрыском топлива до момента появления систем питания под названием Commоn Rail.

Электромеханическая дизельная форсунка

Дальнейшее развитие систем топливоподачи дизельного ДВС привело к появлению форсунок, в которых солярка подается в цилиндры посредством электромеханических форсунок. В таких инжекторах игла форсунки открывает и закрывает доступ к распылителю не под воздействием давления топлива и противодействия силе пружины, а при помощи специального управляемого электромагнитного клапана. Клапан контролируется ЭБУ двигателя, без соответствующего сигнала которого горючее не попадет в распылитель.

Блок управления отвечает за  момент начала топливного впрыска и длительность подачи топлива. Получается, ЭБУ дозирует солярку для дизеля путем подачи на клапан форсунки определенного количества импульсов. Параметры импульсов напрямую зависят от того, с какой частотой вращается коленчатый вал двигателя, в каком режиме работает дизельный мотор, какая температура ДВС и т.д.

В системе питания Common Rail электромеханическая форсунка может за один цикл реализовать подачу топлива посредством нескольких раздельных импульсов (впрысков). Топливный впрыск за цикл осуществляется до 7 раз. Давление впрыска также значительно повысилось сравнительно с предыдущими системами.

Благодаря дозированной высокоточной подаче давление газов на поршень в результате сгорания смеси растет плавно, сама топливно-воздушная смесь равномернее распределяется по цилиндрам дизеля, лучше распыляется и полноценно сгорает.

Дальнейшее видео наглядно иллюстрирует принцип работы электромеханической форсунки на примере бензинового двигателя. Главное отличие заключается в том, что давление топлива в дизельной форсунке значительно выше. 

Указанный подход позволил окончательно переложить задачу по управлению впрыском с форсунок и ТНВД на электронный блок. Электронный впрыск работает намного точнее, дизель с подобными решениями стал еще более мощным, экономичным и экологичным. Разработчикам удалось значительно снизить вибрации и шумы в процессе работы дизельного агрегата, повысить общий ресурс ДВС.

Насос-форсунка

Одной из разновидностей систем питания дизеля являются конструкции, в которых полностью отсутствует ТНВД. За создание высокого давления впрыска отвечают так называемые дизельные насос-форсунки. Принцип работы системы состоит в том, что насос низкого давления сначала подает солярку напрямую к инжектору, в котором уже имеется собственная плунжерная пара для создания высокого давления впрыска. Плунжерная пара форсунки работает от прямого воздействия на нее кулачков распредвала. Данная система позволяет добиться лучшего качества распыла дизтоплива благодаря способности создать очень высокое давление впрыска. 

Исключение из системы подачи топлива ТНВД позволяет сделать размещение дизельного ДВС под капотом более компактным, избавиться от привода топливного насоса и отбора мощности на его постоянное вращение. Также стало возможным удалить из системы питания решения, которые распределяют топливо от ТНВД по цилиндрам. Инжекторы в системе с насос-форсунками имеют электрический клапан, что позволяет подавать топливо за два импульса.

Принцип похож на работу механической форсунки с двумя пружинами. Решение позволяет реализовать сначала подвпрыск, а уже затем произвести подачу в цилиндр основной порции горючего. Насос-форсунки реализуют подачу топлива в максимально точно заданный момент начала впрыска, лучше дозируют солярку. Дизельный мотор с такой системой экономичен, работает мягко и тихо, содержание вредных веществ в отработавших газах сведено к минимуму.

Главным минусом решения можно считать то, что давление впрыска насос-форсунки напрямую зависит от частоты вращения коленвала двигателя. В списке недостатков также отмечены: сложность исполнения, высокая требовательность к моторному маслу, чистоте и качеству топлива. В процессе эксплуатации выделяют трудности в процессе ремонта и обслуживания, а также общую дороговизну сравнительно с системами, которые оборудованы привычным ТНВД.

Читайте также

krutimotor.ru

Устройство и принцип действия системы с насос форсунками

Как уже говорит само название, насос-форсунка представляет собой впрыскивающий насос с узлом управления и форсунку в едином узле.

На каждый цилиндр двигателя приходится по насос-форсунке. Поэтому отсутствуют топливопроводы высокого давления, которые имеются на двигателе с ТНВД.

Как и ТНВД с форсунками, система впрыска с насос-форсунками выполняет следующие функции:

  • создает высокое давления для впрыска топлива
  • впрыскивает определенное количество топлива в определенный момент

Местонахождение:

Насос-форсунки расположены непосредственно в головке блока.

Крепление:

Насос-форсунки крепятся в головке блока. При установке насос-форсунок необходимо следить за правильным положением их.
Если насос-форсунка не стоит под прямым углом к головке блока, может ослабнуть крепежный болт. Вследствие этого возможно
повреждение как насос-форсунки, так и головки блока.

Устройство насос-форсунки

Привод

На распределительном валу имеется четыре кулачка для привода насос-форсунок. Посредством коромысел усилие передается на плунжеры насос форсунок.

Требования к процессам смесеобразования и сгорания

Обязательным условием эффективного сгорания является хорошее смесеобразование. Для этого топливо должно подаваться в цилиндр в нужном количестве, в нужный момент и под высоким давлением. Уже при незначительных отклонениях от требуемых параметров распыления топлива отмечается увеличение содержания вредных веществ в отработавших газах, повышение шумности процесса сгорания и увеличение расхода топлива. Важным моментом для процесса сгорания в дизельном двигателе является малая величина задержки самовоспламенения. Задержка самовоспламенения представляет собой промежуток времени между началом впрыска топлива и началом повышения давления в камере сгорания. Если в этот временной промежуток подается большое количество
топлива, то это ведет к резкому повышению давления в камере сгорания и, тем самым, к увеличению уровня шума процесса сгорания.

Предварительный впрыск

Для достижения максимально возможной плавности протекания процесса сгорания перед основным впрыском осуществляется
предварительный впрыск малого количества топлива под небольшим давлением. Благодаря сгоранию этого малого количества топлива в камере сгорания повышаются давление и температура. Вследствие этого происходит ускоренное самовоспламенение топлива, поданного в ходе основного впрыска. Предварительный впрыск и наличие паузы между предварительным и основным впрыском способствует тому, что давление в камере сгорания повышается не скачкообразно, а относительно равномерно. Вследствие этого достигается снижение шумности процесса сгорания и уменьшение эмиссии окислов азота.

Основной впрыск

При основном впрыске необходимо достичь хорошего смесеобразования для возможно полного сгорания топлива. Благодаря высокому давлению впрыска достигается очень тонкий распыл топлива, что позволяет получить весьма равномерную смесь топлива и воздуха. Полное сгорание топлива обеспечивает уменьшение выброса вредных веществ и повышение мощности двигателя.

Конец впрыска топлива

Для хорошей работы двигателя важно, чтобы в конце процесса впрыска давление впрыска резко упало, а игла распылителя быстро
возвратилась в исходное положение. При этом предотвращается попадание топлива в камеру сгорания под низким давлением и с
плохим распылом. Такое топливо сгорает не полностью, что ведет к увеличению токсичности выхлопа.

Процесс впрыска топлива, обеспечиваемой системой впрыска с применением насос- форсунок, с уменьшенным давлением при
предварительном впрыске, повышенном давлении и быстром протекании процесса основного впрыска способствует улучшению
показателей работы двигателя.

Заполнение камеры высокого давления

При процессе заполнения камеры высокого давления плунжер под действием пружины движется кверху, что ведет к увеличению объема камеры. Электромагнитный клапан управления насос-форсункой бездействует. Игла клапана находится в положении, открывающем путь топливу из питающей магистрали в камеру высокого давления. Топливо под давлением поступает из питающей магистрали в камеру высокого давления. 

Процесс впрыска
Начало предварительного впрыска

Кулачок распределительного вала через коромысло поджимает плунжер книзу; плунжер, в свою очередь, отжимает топливо из камеры
высокого давления в питающую магистраль. Протекание процесса впрыска топлива происходит под управлением блока управления
двигателя через электромагнитный клапан. По сигналу от блока управления двигателем игла электромагнитного клапана прижимается
к седлу, перекрывая путь топливу из камеры высокого давления в питающую магистраль. Вследствие этого происходит повышение
давления в камере. Когда давление достигает 180 бар, оно становится выше, чем усилие пружины распылителя. Игла
распылителя приподнимается, и начинается предварительный впрыск.

Начало предварительного впрыска
Демпфирование хода иглы распылителя

В процессе предварительного впрыска ход иглы распылителя демпфируется гидравлическим буфером, что дает возможность точно дозировать количество впрыскиваемого топлива.

Это происходит таким образом:
на первой трети хода ничто не мешает ходу иглы. При этом в камеру сгорания предварительно впрыскивается топливо

Как только демпферный клапан начнет перемещаться по сверлению корпуса распылителя, топливо над иглой распылителя сможет поступать под давлением в зону размещения пружины только через зазор снизу демпферного клапана. Вследствие этого возникает
гидравлический буфер, который ограничивает ход иглы распылителя при предварительном впрыске.

Процесс впрыска
Конец предварительного впрыска

Непосредственно после открытия иглы форсунки заканчивается предварительный впрыск. Под действием увеличивающегося
давления перепускной клапан движется книзу, тем самым увеличивая объем камеры высокого давления. Вследствие этого давление
на короткое время падает, и игла форсунки закрывается. Предварительный впрыск закончился. Вследствие движения книзу перепускного клапана пружина распылителя сжимается сильнее. Поэтому для повторного открытия иглы форсунки при последующем основном впрыске необходимо давление топлива больше, чем при предварительном впрыске.

Процесс впрыска
Начало основного впрыска

Вскоре после запирания иглы распылителя давление в камере высокого давления опять поднимается. Электромагнитный клапан закрыт, и поршень насос-форсунки движется вниз. Когда давление достигает примерно 300 бар, оно становится больше, чем давление
пружины распылителя. Игла распылителя снова поднимается, и в камеру сгорания впрыскивается основная порция топлива.
Давление при этом поднимается до 2050 бар, поскольку в камере высокого давления сжимается больше топлива, чем может его выйти
через распылитель. При достижении двигателем максимальной мощности, а также при наибольшем крутящем моменте и одновременно
самым большом количестве впрыскиваемого топлива давление максимально.

Процесс впрыска
Конец основного впрыска

Конец впрыска наступает, когда с блока управления двигателя перестает поступать сигнал на электромагнитный клапан.
При этом игла клапана под действием пружины отходит от седла, и сжимаемое плунжером топливо может поступать в питающую
магистраль. Давление топлива падает. Игла распылителя закрывается, и перепускной клапан под действием пружины распылителя
возвращается в исходное положение. Основной впрыск закончился. 

Схема топливного контура

Топливо засасывается механическим топливным насосом через фильтр из топливного бака и подается по питающей магистрали в головке блока к насос-форсункам. Избыточное топливо подается обратно в топливный бак через сливную магистраль в головке блока, датчик температуры топлива и охладитель топлива.

  1. Охладитель топлива охлаждает сливаемое топливо для предупреждения попадания в топливный бак слишком горячего топлива.
  2. Датчик температуры топлива определяет температуру топлива в сливной магистрали и посылает соответствующий сигнал блоку управления двигателю
  3. Ограничительный клапан поддерживает давление в сливной магистрали на уровне 1 бар. Благодаря этому достигается постоянство давления топлива на игле электромагнитного клапана.
  4. Байпас Если в топливной системе имеется воздух, к примеру при выработанном топливном баке, ограничительный клапан остается закрытым. Воздух выжимается поступающим топливом из системы
  5. Головка блока
  6. Магистрали. Через дроссельное отверстие отводятся пары топлива, которые могут быть в питающей магистрали
  7. Топливный насос подает топливо из топливного бака через фильтр к насос-форсункам
  8. Сетка-фильтр улавливает пузырьки воздуха и газа в питающей магистрали. Затем они отводятся через дроссельное отверстие и сливную магистраль
  9. Ограничительный клапан регулирует давление топлива в питающей магистрали. При давлении топлива более 7,5 бар клапан открывается, и топливо направляется в зону всасывания топливного насоса
  10. Обратный клапан предотвращает слив топлива от топливного насоса в топливный бак при остановке двигателя (давление открытия топлива 0,2 бар)
  11. Топливный фильтр защищает топливный контур от загрязнения и попадания в него инородных частиц и воды
  12. Топливный бак

Топливный насос расположен непосредственно за вакуумным насосом на головке блока цилиндров. Топливный насос подает топливо из бака к насос- форсункам. Оба насоса имеют общий привод от распределительного вала и поэтому обозначаются как единый тандемный насос.

www.carluck.ru

Ваш электронный адрес не будет опубликован.