Детонация это – Детонация — это… Что такое Детонация?

Детонация — это… Что такое Детонация?

        процесс химического превращения взрывчатого вещества, сопровождающийся освобождением энергии и распространяющийся по веществу в виде волны от одного слоя к другому со сверхзвуковой скоростью. Химическая реакция вводится интенсивной ударной волной (См. Ударная волна), образующей передний фронт детонационной волны. Благодаря резкому повышению температуры и давления за фронтом ударной волны химическое превращение протекает чрезвычайно быстро в очень тонком слое, непосредственно прилегающем к фронту волны (рис. 1, 2).

         Энергия, освобождающаяся в зоне химической реакции, непрерывно поддерживает высокое давление в ударной волне. Д., т. о., представляет собой самоподдерживающийся процесс.

         Возбуждение Д. является обычным способом осуществления Взрывов. Д. в заряде взрывчатого вещества создаётся интенсивным механическим или тепловым воздействием (удар, искровой разряд, взрыв металлической проволочки под действием электрического тока и т.п.). Сила воздействия, необходимого для возбуждения Д., зависит от химической природы взрывчатого вещества. К механическому воздействию чувствительны, например, так называемые инициирующие взрывчатые вещества (гремучая ртуть, азид свинца и др.), которые обычно входят в состав капсюлей-детонаторов, используемых для возбуждения Д. вторичных (менее чувствительных) взрывчатых веществ.

         В однородном взрывчатом веществе Д. обычно распространяется с постоянной скоростью, которая среди возможных для данного вещества скоростей распространения детонационной волны является минимальной. В детонационной волне, распространяющейся с минимальной скоростью, зона химической реакции перемещается относительно продуктов реакции со скоростью звука (но со сверхзвуковой скоростью относительно исходного вещества). Благодаря этому волны разрежения, возникающие при расширении газообразных продуктов химической реакции, не могут проникнуть в зону реакции и ослабить бегущую впереди ударную волну. Д., отвечающая указанным выше условиям, называется процессом Чепмена — Жуге; соответствующая ей минимальная скорость распространения принимается в качестве характеристики взрывчатого вещества (см. табл.). Давление, которое создаётся при распространении детонационной волны в газообразных взрывчатых смесях, составляет десятки атмосфер, а в жидких и твёрдых взрывчатых веществах измеряется сотнями тысяч атмосфер.

         При определённых условиях во взрывчатом веществе может быть возбуждена Д., скорость распространения которой превышает минимальную скорость Д. Так, взрыв заряда твёрдого взрывчатого вещества, помещённого в газообразную взрывчатую смесь, порождает в смеси ударную волну, интенсивность которой во много раз превосходит интенсивность волны, отвечающей режиму с минимальной скоростью. В результате в газовой смеси распространяется детонационная волна с повышенной скоростью. В этой волне, в отличие от процесса Чепмена — Жуге, зона химической реакции движется относительно продуктов реакции с дозвуковой скоростью. Поэтому по мере удаления такой волны от места её возникновения ударная волна постепенно ослабевает (сказывается влияние волн разрежения) и скорость распространения Д. снижается до минимального значения.

         Детонационную волну с повышенной скоростью распространения можно также получить в неоднородном взрывчатом веществе при движении волны в направлении убывающей плотности. Ещё одним примером распространения Д. со скоростью, превышающей минимальное значение, может служить сферическая детонационная волна, сходящаяся к центру. Скорость волны с приближением к центру возрастает. В центре такая волна в течение короткого интервала времени создаёт давление, во много раз превышающее величину, характерную для режима Чепмена — Жуге.

         Устойчивый процесс Д. не всегда возможен. Например, волна Д. не может распространяться в цилиндрическом заряде взрывчатого вещества слишком малого диаметра (разлёт вещества через боковую поверхность вызывает прекращение химической реакции прежде, чем вещество успеет заметно прореагировать). Минимальный диаметр заряда, в котором возможен незатухающий процесс Д., пропорционален ширине зоны химической реакции. В газообразных взрывчатых смесях распространение Д. возможно лишь при условиях, когда концентрация горючего газа (или паров горючей жидкости) находится в определённых пределах. Эти пределы зависят от химической природы взрывчатой смеси, давления и температуры. Например, в смеси водорода с кислородом при комнатной температуре и атмосферном давлении волна Д. способна распространяться, если концентрация (по объёму) водорода находится в пределах от 20% до 90%.

         Исследование волны Д. в газах показывает, что при понижении начального давления химическая реакция приобретает характер пульсаций. Неравномерное протекание реакции вызывает искажения движущейся впереди ударной волны (рис. 3). Наконец, при достаточно низком давлении осуществляется режим так называемой спиновой Д., при котором на фронте детонационной волны возникает излом, вращающийся по винтовой линии (рис. 4). Дальнейшее снижение давления приводит к затуханию Д.

         Кроме Д., во взрывчатом веществе возможен др. тип волны химической реакции — Горение. Волны горения всегда распространяются с дозвуковой скоростью (обычно значительно меньшей, чем скорость звука в исходном веществе). Движение волны горения обусловлено сравнительно медленными процессами теплопроводности (См. Теплопроводность) и диффузии (См. Диффузия). При некоторых условиях горение может перейти в Д.

         Во многих случаях, например при горении топливной смеси в двигателях внутреннего сгорания или реактивного двигателя, при горении пороха в стволе артиллерийского орудия и др., Д. недопустима. В связи с этим подбираются такие условия горения и химический состав используемых веществ, чтобы возникновение Д. с характерным для неё чрезвычайно резким повышением давления было исключено.

         Скорости v детонации некоторых взрывчатых веществ

        ————————————————————————————————————————————————

        | Вещество                                                      vм/сек                                                          |

        |————————————————————————————————————————————————|

        | 2Н2+02 (газовая смесь) …………………….       | 2820                                                              

 |

        |————————————————————————————————————————————————|

        | CH4+2O(газовая смесь) …………………..      | 2320                                                               |

        |————————————————————————————————————————————————|

        | CS2+3O(газовая смесь) …………………..      | 1800                                                              

 |

        |————————————————————————————————————————————————|

        | Нитроглицерин, СзН5(ОNО2)3 (жид-                 | 7750                                                               |

        | кость, плотность d=l,60 г/см3) ……………        |                                                                       |

        |————————————————————————————————————————————————|

        | Тринитротолуол (тротил, тол),                        |                                                                       |

        | C7H5(NО2)3СНз (твёрдое вещество,                | 6950                                                               |

        | d=1,62 г/см3) ………………………………..        |                                                                       |

        |————————————————————————————————————————————————|

        | Пентаэритриттетранитрат (ТЭН)                     |                                                                       |

        | С5Н8(ONO2)4 (твёрдое вещество,                    | 8500                                                               |

        | d=1,77 г/см3) ………………………………..        |                                                                       |

        |————————————————————————————————————————————————|

        |                                                                       |                                                                       |

        | Циклотриметилентринитроамин (гексоген),     | 8850                                                               |

        | C3H6O6N6 (твёрдое ве-                                    |                                                                       |

        | щество, d=l,80 г/см3) ………………………..      |                                                                       |

        ————————————————————————————————————————————————

        

         Лит.: Зельдович Я. Б., Компанеец А. С., Теория детонации, М., 1955; Щёлкин К. И., Трошин Я. К., Газодинамика горения, М., 1963; Компанеец А. С., Ударные волны, М., 1963.

         К. Е. Губкин.

        Рис. 1. Схема детонационной волны: А — фронт ударной волны; заштрихованная область — зона хим. реакции. Стрелкой показано направление распространения волны.

        Рис. 1. Схема детонационной волны: А — фронт ударной волны; заштрихованная область — зона хим. реакции. Стрелкой показано направление распространения волны.

        Рис. 2. Мгновенная фотография распространяющейся (сверху вниз) волны детонации в цилиндрическом заряде взрывчатого вещества: АА — фронт детонации; ВВ — взрывчатое вещество; ПВ — разлетающиеся газообразные продукты взрыва.

        Рис. 2. Мгновенная фотография распространяющейся (сверху вниз) волны детонации в цилиндрическом заряде взрывчатого вещества: АА — фронт детонации; ВВ — взрывчатое вещество; ПВ — разлетающиеся газообразные продукты взрыва.

        Рис. 2. Мгновенная фотография распространяющейся (сверху вниз) волны детонации в цилиндрическом заряде взрывчатого вещества: АА — фронт детонации; ВВ — взрывчатое вещество; ПВ — разлетающиеся газообразные продукты взрыва.

        Рис. 3. Фотография следов, оставленных фронтом волны детонации на закопченной пластинке, помещенной на торце трубы. В трубе прошла детонация смеси водорода с кислородом (2H2 + O2) при начальном давлении 300 мм рт. ст.

        Рис. 4. Фотография распространяющейся в трубе спиновой детонации (в газовой смеси). Фотографирование производилось через щель, параллельную оси трубы, на движущуюся плёнку. Вращающийся по винтовой линии излом на фронте волны периодически появлялся перед щелью.

        Рис. 4. Фотография распространяющейся в трубе спиновой детонации (в газовой смеси). Фотографирование производилось через щель, параллельную оси трубы, на движущуюся плёнку. Вращающийся по винтовой линии излом на фронте волны периодически появлялся перед щелью.

dic.academic.ru

Детонация

Детонация – это процесс химического превращения взрывчатого вещества, сопровождающийся освобождением энергии (тепла) и распространяющийся по веществу в виде волны от одного слоя к другому со сверхзвуковой скоростью.

Химическая реакция вводится интенсивной ударной волной, образующей передний фронт детонационной волны. Благодаря резкому повышению температуры и давления за фронтом химическое превращение протекает с постоянной скоростью, превышающей скорость звука в данном веществе, и в очень тонком слое, непосредственно прилегающем к фронту волны. Энергия, освобождающаяся в зоне превращения, непрерывно поддерживает высокое давление в ударной волне, т.е. обеспечивает самоподдерживающийся процесс. Благодаря высокой скорости детонации (в газовых смесях 1000-3500 м/с, в твердых и жидких взрывчатых веществах — до 9000 м/с) давление в газообразных взрывчатых смесях составляет десятки атмосфер, а в жидких и твердых телах достигает нескольких сотен тыс. атмосфер. При расширении сжатых продуктов детонации происходит взрыв. Этим объясняется огромное разрушающее действие подобных процессов.

В однородном веществе детонация распространяется с постоянной скоростью, которая среди возможных для данного вещества скоростей распространения детонационной волны является минимальной. В такой волне зона химической реакции перемещается относительно продуктов реакции со скоростью звука (но со сверхзвуковой скоростью относительно исходного вещества). Скорости детонации некоторых взрывчатых веществ представлены в табл.

Благодаря этому волны разрежения, возникающие при расширении газообразных продуктов химической реакции, не могут проникнуть в зону реакции и ослабить бегущую впереди ударную волну. Минимальная скорость распространения детонации принимается в качестве характеристики взрывчатого вещества. Энергия, выделяемая в зоне химической реакции, непрерывно поддерживает высокое давление в ударной волне.

Скорости детонации

Вещество

ν, м/сек

2 + О2 (газовая смесь)

2820

СН4 + 2О2 (газовая смесь)

2320

CS2 + 3О2 (газовая смесь)

1800

Нитроглицерин, C3H5(ОNО2)3 (жидкость, плотность d=1,60 г/см3)

7750

Тринитротолуол (тротил, тол), C7H5(NО2)3CH3 (твердое вещество, d=1,62 г/см3)

6950

Пентаэритриттетранитрат (ТЭН) C5H8(ОNО2)4 (твердое вещество, d=1,77 г/см3)

8500

Циклотриметилентринитроамин (гексоген), C3H6О6N6 (твердое вещество, d=1,80 г/см3)

8850

Виды детонации

При анализе чрезвычайных ситуаций, связанных с проявлением детонации, различают несколько видов процесса.

Физическая детонация — процесс, возникающий при смешении жидкостей с разными температурами, когда температура одной из них значительно превышает температуру кипения другой.

Детонационный взрыв — при котором воспламенение последующих слоев взрывчатого вещества происходят в результате сжатия и нагрева ударной волной, когда ударная волна и зона химической реакции следуют неразрывно друг за другом с постоянной сверхзвуковой скоростью.

Дефлаграционный взрыв — при котором нагрев и воспламенение последующих слоев взрывчатого вещества происходит в результате диффузии и теплопередачи, когда фронт волны сжатия и фронт пламени движутся с дозвуковой скоростью.

Возбуждение детонации является обычным способом осуществления взрывов. Детонация в заряде взрывчатого вещества создается интенсивным механическим или тепловым воздействием (удар, искровой разряд, взрыв металлической проволочки под действием электрического тока, и т.п.). Сила воздействия, необходимого для возбуждения детонации, зависит от химической природы взрывчатого вещества. К механическому воздействию чувствительны, например, так называемые инициирующие взрывчатые вещества (гремучая ртуть, азид свинца и др.), которые входят в состав капсюлей-детонаторов, используемых для возбуждения детонации вторичных (менее чувствительных) взрывчатых веществ.

ДетонацияДетонацияПри определенных условиях во взрывчатом веществе может быть возбуждена детонация, скорость распространения которой превышает минимальную скорость, указанную в приведенной выше таблице. Так, взрыв заряда твердого взрывчатого вещества, помещенного в газообразную взрывчатую смесь, порождает в смеси ударную волну, интенсивность которой во много раз превосходит интенсивность волны, отвечающей режиму с минимальной скоростью. В результате в газовой смеси распространяется детонационная волна с повышенной скоростью. В этой волне зона химической реакции движется относительно продуктов реакции с дозвуковой скоростью. Поэтому по мере удаления такой волны от места ее возникновения ударная волна постепенно ослабевает (сказывается влияние волн разрежения) и скорость распространения детонации снижается до минимального значения. Детонационную волну с повышенной скоростью распространения можно также получить в неоднородном взрывчатом веществе при движении волны в направлении убывающей плотности. Еще одним примером распространения детонации со скоростью, превышающей минимальное значение, может служить сферическая детонационная волна, сходящаяся к центру. Скорость волны с приближением к центру возрастает. Устойчивый процесс детонации не всегда возможен. Например, волна детонации не может распространяться в цилиндрическом заряде взрывчатого вещества слишком малого диаметра (разлет вещества через боковую поверхность вызывает прекращение химической реакции прежде, чем вещество успеет заметно прореагировать). Минимальный диаметр заряда, в котором возможен незатухающий процесс детонации, пропорционален ширине зоны химической реакции. В газообразных взрывчатых смесях распространение детонации возможно лишь при условиях, когда концентрация горючего газа (или паров горючей жидкости) находится в определенных пределах. Эти пределы зависят от химической природы взрывчатой смеси, давления и температуры. Например, в смеси водорода с кислородом при комнатной температуре и атмосферном давлении волна детонации способна распространяться, если концентрация (по объему) водорода находится в пределах от 20 до 90 %. Исследование волны детонации в газах показывает, что при понижении начального давления химическая реакция приобретает характер пульсаций. Неравномерное протекание реакции вызывает искажения движущейся впереди ударной волны. Наконец, при достаточно низком давлении осуществляется режим так называемой спиновой детонации, при котором на фронте детонационной волны возникает излом, вращающийся по винтовой линии. Дальнейшее снижение давления приводит к затуханию детонации.

В двигателях внутреннего сгорания детонация — быстрый, приближающийся к взрыву процесс горения топливной смеси в цилиндре карбюраторного двигателя, сопровождающийся неустойчивой работой (металлический стук в цилиндре), износом и разрушением деталей. В результате детонации двигатель перегревается и его мощность падает. Детонация возникает, если топливо не соответствует конструкции или работе двигателя. Для каждого топлива существует определенная степень сжатия, при которой возникает детонация. Детонационную стойкость бензинов для бедных смесей характеризуют октановым числом, для богатых смесей — сортностью бензинов.

Детонационный взрыв и взрывное горение могут иметь разное назначение — причинять ущерб жизни и здоровью людей и животных, разрушать объекты инфраструктуры и повреждать окружающую среду, но и выполнять полезную работу по строительству тоннелей, каналов и дорог, по добыче полезных ископаемых и сносу строительных конструкций. Детонация является физической основой проведения специальных боевых операций. Одним из наиболее опасных проявлений детонации является использование ее разрушающего действия в большинстве террористических атак. Во многих случаях, например, при горении топливной смеси в двигателях внутреннего сгорания или реактивного двигателя, при горении пороха в стволе артиллерийского орудия и другого, детонация недопустима. В связи с этим подбираются такие условия горения и химический состав используемых веществ, чтобы возникновение детонации с характерным для нее чрезвычайно резким повышением давления было исключено.

Детонация и калильное зажигание

Источник: Детонация конденсированных и газовых систем. — М., 1986; Теория детонации. Зельдович Я.Б., Компанеец А.С. — М., 1955.

fireman.club

Детонация — это… Что такое Детонация?

  • ДЕТОНАЦИЯ — (лат., от tionare звучать). 1) в музыке уклонение от надлежащего тона. 2) в химии: мгновенный взрыв. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ДЕТОНАЦИЯ лат., от tonare, звучать. Уклонение от надлежащего тона …   Словарь иностранных слов русского языка

  • ДЕТОНАЦИЯ — взрывчатых веществ (Detonation) особый вид взрыва, производимый при помощи детонатора. Некоторые взрывчатые вещества, если их зажечь, сгорают постепенно. Если же такое взрывчатое вещество подвергнуть резкому удару или вставить в него капсюль… …   Морской словарь

  • ДЕТОНАЦИЯ — (франц. detoner взрываться от лат. detono гремлю), процесс химического превращения взрывчатого вещества, происходящий в очень тонком слое и распространяющийся со сверхзвуковой скоростью (до 9 км/с). Детонация представляет собой комплекс мощной… …   Большой Энциклопедический словарь

  • детонация — взрыв Словарь русских синонимов. детонация сущ., кол во синонимов: 1 • взрыв (15) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • детонация — и, ж. détonation f., нем. Detonation. хим. Детоннация. Вспышка в химии, выстрел, возгорание каких либо тел с громом. Ян. 1803. Лекс. Ян. 1803: детонация; САН 1895: детона/ция …   Исторический словарь галлицизмов русского языка

  • детонация — Распространение взрыва со сверхзвуковой скоростью, сопровождающееся выделением тепла и газов [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] детонация Распространение взрыва по взрывчатому веществу, обусловленное… …   Справочник технического переводчика

  • ДЕТОНАЦИЯ — ДЕТОНАЦИЯ, детонации, жен. (от лат. detono гремлю) (спец.). Мгновенный и разрушительный взрыв какого нибудь взрывчатого вещества под действием удара или воспламенения детонатора. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ДЕТОНАЦИЯ — ДЕТОНАЦИЯ, и, жен. (спец.). 1. Мгновенный взрыв вещества, вызванный взрывом другого вещества или сотрясением, ударом. 2. Быстрое и неполное сгорание топлива в двигателе внутреннего сгорания. Д. топлива. | прил. детонационный, ая, ое. Толковый… …   Толковый словарь Ожегова

  • ДЕТОНАЦИЯ — (франц. detoner взрываться, от лат. detono гремлю), процесс хим. превращения взрывчатого в ва (ВВ), сопровождающийся выделением теплоты и распространяющийся с пост. скоростью, превышающей скорость звука в данном в ве. В отличие от горения, где… …   Физическая энциклопедия

  • Детонация — режим сгорания парового облака, а также других взрывчатых веществ и смесей. В детонационных режиме возникает мощная самоподдерживающаяся ударная волна, сжимающая вещество и инициирующая химическое превращение с выделением энергии. Скорость… …   Словарь черезвычайных ситуаций

  • dic.academic.ru

    Детонация — Википедия. Что такое Детонация

    Детона́ция (от фр. détoner — «взрываться» и лат. detonare — «греметь»[1]) — это режим горения, в котором по веществу распространяется ударная волна, инициирующая химические реакции горения, в свою очередь, поддерживающие движение ударной волны за счёт выделяющегося в экзотермических реакциях тепла. Комплекс, состоящий из ударной волны и зоны экзотермических химических реакций за ней, распространяется по веществу со сверхзвуковой скоростью и называется детонационной волной[1]. Фронт детонационной волны — это поверхность гидродинамического нормального разрыва.

    Скорость распространения фронта детонационной волны относительно исходного неподвижного вещества называется скоростью детонации. Скорость детонации зависит только от состава и состояния детонирующего вещества и может достигать нескольких километров в секунду как в газах, так и в конденсированных системах (жидких или твёрдых взрывчатых веществах). Скорость детонации значительно превышает скорость медленного горения, которая всегда существенно меньше скорости звука в веществе и не превышает нескольких метров в секунду.

    Многие вещества способны как к медленному (дефлаграционноному) горению, так и к детонации. В таких веществах для распространения детонации её необходимо инициировать внешним воздействием (механическим или тепловым). В определённых условиях медленное горение может самопроизвольно переходить в детонацию.

    Детонацию, как физико-химическое явление, не следует отождествлять со взрывом. Взрыв — это процесс, в котором за короткое время в ограниченном объёме выделяется большое количество энергии и образуются газообразные продукты взрыва, способные совершить значительную механическую работу или вызвать разрушения в месте взрыва. Взрыв может иметь место и при воспламенении и быстром сгорании газовых смесей или взрывчатых веществ в ограниченном пространстве, хотя при этом детонационная волна не образуется. Так, быстрое (взрывное) сгорание пороха в стволе артиллерийского орудия в процессе выстрела не является детонацией.

    Стук, возникающий в двигателях внутреннего сгорания, также называют детонацией (англ. knock), однако это не детонация в строгом смысле этого слова. Стук вызывается преждевременным самовоспламенением топливовоздушной смеси с последующим быстрым её сгоранием в режиме взрывного горения, но без образования ударных волн. Детонационные волны в работающем двигателе (англ. superknock)[2] возникают крайне редко и только при нарушении условий эксплуатации, например из-за нештатного низкооктанового топлива. При этом двигатель очень быстро выходит из строя из-за разрушения конструкционных элементов ударными волнами.

    История исследований явления

    Вероятно, впервые термин «детонация» был введён в научный обиход Лавуазье в «Трактате по элементарной химии» (фр. Traité élémentaire de chimie), опубликованном в Париже в 1789 году[3]. Во второй половине XIX века были синтезированы вторичные взрывчатые вещества, в основе действия которых лежит явление детонации. Однако из-за большой скорости детонационной волны и разрушительного действия взрыва научное изучение детонации оказалось чрезвычайно затруднено и началось с публикаций исследований явления детонации газовых смесей в трубах в 1881 году французскими химиками Малляром и Ле Шателье и независимо от них Бертло и Вьелем[4]. В 1890 году русский учёный В. А. Михельсон, опираясь на работы Гюгонио по ударным волнам, вывел уравнения для распространения детонационной волны и получил выражение для скорости детонации[5]. Дальнейшее развитие теории было выполнено Чепменом в 1899 году[6] и Жуге в 1905 году[7]. В теории Чепмена—Жуге, названной гидродинамической теорией детонации, детонационная волна рассматривалась как поверхность разрыва, а условие для определения скорости детонации, названное их именами (условие Чепмена—Жуге[en]), было введено как постулат.

    В 1940-е годы Я. Б. Зельдович разработал теорию детонации, в которой учитывается конечное время протекания химической реакции вслед за нагревом вещества ударной волной. В этой модели условие Чепмена—Жуге получило ясный физический смысл как правило отбора скорости детонации[8], а сама модель была названа моделью ZND[en] — по именам Зельдовича, Неймана и Дёринга, так как независимо от него к схожим результатам пришли фон Нейман[9] в США и Дёринг[10] в Германии.

    Модели Чепмена—Жуге и ZND позволили существенно продвинуться в понимании явления детонации, однако они по необходимости были одномерными и упрощёнными. С ростом возможностей экспериментального исследования детонации в 1926 году английскими исследователями Кэмпбеллом и Вудхедом был открыт эффект спирального продвижения фронта детонации по газовой смеси[11]. Это явление получило название «спиновой детонации» и впоследствии было обнаружено и в конденсированных системах[12].

    В 1959 году сотрудники ИХФ АН СССР Ю. Н. Денисов и Я. К. Трошин открыли явление ячеистой структуры и пульсирующих режимов распространения детонационной волны[13][14].

    Механизм детонации

    Детонация может возникать в газах, жидкостях, конденсированных веществах и гетерогенных средах. При прохождении фронта ударной волны вещество нагревается. Если ударная волна достаточно сильная, то температура за фронтом ударной волны может превысить температуру самовоспламенения вещества, и в веществе начинаются химические реакции горения. В ходе химических реакций выделяется энергия, подпитывающая ударную волну. Такое взаимодействие газодинамических и физико-химических факторов приводит к образованию комплекса из ударной волны и следующей за ней зоны химических реакций, называемого детонационной волной. Механизм превращения энергии в детонационной волне отличается от механизма в волне медленного горения (дефлаграции), движущейся с дозвуковой скоростью, в которой передача энергии в исходную смесь осуществляется в основном теплопроводностью[15].

    Гидродинамическая теория детонации

    Структура одномерной детонационной волны в газе (B) и конденсированных средах (C).

    Если характерные размеры системы заметно превышают толщину детонационной волны, то её можно считать поверхностью нормального разрыва между исходными компонентами и продуктами детонации. В этом случае законы сохранения массы, импульса и энергии по обеим сторонам разрыва в системе координат, где фронт волны неподвижен, выражаются следующими соотношениями:

    • ρ0D=ρ(D−u){\displaystyle \rho _{0}D=\rho (D-u)} — сохранение массы,
    • P0+ρ0D2=P+ρ(D−u)2{\displaystyle P_{0}+\rho _{0}D^{2}=P+\rho (D-u)^{2}} — сохранение импульса,
    • P0D+ρ0D(e0+D2/2)=P(D−u)+ρ(D−u)(e+(D−u)2/2){\displaystyle P_{0}D+\rho _{0}D(e_{0}+D^{2}/2)=P(D-u)+\rho (D-u)(e+(D-u)^{2}/2)} — сохранение энергии.

    Здесь D — скорость детонационной волны, (D — u) — скорость продуктов относительно детонационной волны, P — давление, ρ — плотность, e — удельная внутренняя энергия. Индексом 0 обозначены величины, относящиеся к исходному веществу. Исключая из этих уравнений u, имеем:

    • P−P0=(ρ0D)2(V0−V){\displaystyle P-P_{0}=(\rho _{0}D)^{2}(V_{0}-V)},
    • e−e0=12(P+P0)(V0−V){\displaystyle e-e_{0}={\frac {1}{2}}(P+P_{0})(V_{0}-V)}[16].

    Первое соотношение выражает линейную зависимость между давлением P и удельным объёмом V=1/ρ и называется прямой Михельсона (в зарубежной литературе — прямой Рэлея). Второе соотношение называется детонационной адиабатой или кривой Гюгонио (в зарубежной литературе также — Рэнкина—Гюгонио). Если известно уравнение состояния вещества, то внутренняя энергия может быть выражена через давление и объём, и кривая Гюгонио может быть также представлена как линия в координатах P и V[17].

    Модель Чепмена—Жуге

    Система двух уравнений (для прямой Михельсона и кривой Гюгонио) содержит три неизвестных (D, P и V), поэтому для определения скорости детонации D требуется дополнительное уравнение, которое невозможно получить только из термодинамических соображений. Поскольку детонационная волна устойчива, звуковые возмущения в продуктах не могут догонять фронт детонационной волны, иначе он будет разрушаться. Таким образом, скорость звука в продуктах детонации не может превышать скорость течения за фронтом детонационной волны.

    На плоскости P, V прямая Михельсона и кривая Гюгонио могут пересекаться не более чем в двух точках. Чепмен и Жуге предположили, что скорость детонации определяется по условию касания прямой Михельсона и кривой Гюгонио для полностью прореагировавших продуктов (детонационной адиабаты). В этом случае прямая Михельсона является касательной к детонационной адиабате, и эти линии пересекаются ровно в одной точке, названной точкой Чепмена-Жуге (CJ). Это условие соответствует минимальному наклону прямой Михельсона и физически означает, что детонационная волна распространяется с минимально возможной скоростью, и скорость течения за фронтом детонационной волны в точности равна скорости звука в продуктах детонации[18].

    Модель Зельдовича, Неймана и Дёринга (ZND)

    Модель Чепмена-Жуге позволяет описать распространение детонационной волны как гидродинамического разрыва, но не даёт ответов на вопросы, связанные со структурой зоны химических реакций. Эти вопросы стали особенно актуальными в конце 1930-х годов в связи с быстрым развитием военной техники, боеприпасов и взрывчатых веществ. Независимо друг от друга Я. Б. Зельдович в СССР, Джон фон Нейман в США и Вернер Дёринг в Германии создали модель, названную впоследствии по их именам моделью ZND. Аналогичные результаты были получены и в кандидатской диссертации А. А. Гриба, выполненной в 1940 году в Томске[19].

    В этой модели считается, что при распространении детонации вещество сначала нагревается при прохождении фронта ударной волны, а химические реакции начинаются в веществе спустя некоторое время, равное задержке самовоспламенения. В ходе химических реакций выделяется тепло, которое приводит к дополнительному расширению продуктов и увеличению скорости их движения. Таким образом, зона химических реакций выступает в роли своего рода поршня, толкающего ведущую ударную волну и обеспечивающего её устойчивость[20].

    На диаграмме P, V эта модель условно отображается в виде процесса, первой стадией которого будет скачок по адиабате Гюгонио для исходного вещества в точку с максимальным давлением, с последующим постепенным спуском по прямой Михельсона до её касания с адиабатой Гюгонио для прореагировавшего вещества, то есть до точки Чепмена-Жуге[21]. В этой теории правило отбора скорости детонации и гипотеза Чепмена-Жуге получают своё физическое обоснование. Все состояния выше точки Чепмена-Жуге оказываются неустойчивыми, так как в них скорость звука в продуктах превышает скорость течения за фронтом детонационной волны. В состояния ниже точки Чепмена-Жуге попасть невозможно, так как скачок давления на фронте ударной волны всегда больше конечной разности давлений между продуктами детонации и исходным веществом[22].

    Однако такие режимы могут наблюдаться в эксперименте при искусственном ускорении детонационной волны, и они называются соответственно пересжатой или недосжатой детонацией[23].

    Детонация в технике

    В двигателях внутреннего сгорания детонацией часто называют взрывное горение в цилиндре (см. Стук в двигателе). Двигатели внутреннего сгорания, реализующие цикл Отто, рассчитаны на медленное горение горючей смеси без резких скачков давления. Быстрое сгорание смеси резко повышает давление в камере сгорания, что приводит к ударным нагрузкам на детали конструкции двигателя и быстрому выходу двигателя из строя. Топливо с более высоким октановым числом допускает большую степень сжатия и лучше противостоит детонации[24].

    Детонационное горение является наиболее термодинамически выгодным способом сжигания топлива и преобразования химической энергии топлива в полезную работу[25]. Поэтому детонация может применяться в рабочем процессе в камерах сгорания перспективных энергетических установок, таких как импульсный детонационный двигатель[26][27].

    Явление детонации лежит в основе действия взрывчатых веществ, широко применяемых как в военном деле, так и в гражданской хозяйственной деятельности при производстве взрывных работ[28].

    Примечания

    1. 1 2 БЭС, Детонация..
    2. Wang Z., Liu H., Song T., Qi Y., He X., Shuai S., Wang J. Relationship between super-knock and pre-ignition // International Journal of Engine Research. — 2014. — Vol. 16. — P. 166-180. — ISSN 1468-0874. — DOI:10.1177/1468087414530388.
    3. Долгобородов А. Ю. К истории «открытия» явления детонации // Горение и взрыв № 6. — 2013. — С. 329-332.
    4. ↑ Щёлкин, Трошин, Газодинамика горения, 1963, с. 13.
    5. ↑ Хитрин, Физика горения и взрыва, 1957, с. 262.
    6. Chapman D. L. On the rate of explosion in gases // Philosophical Magazine. — 1899. — Vol. 47. — 189. — P. 90—104.
    7. Jouguet Е. Sur la propagation des réactions chimiques dans les gaz // Journal des Mathématiques Pures et Appliquées. — 1905. — Vol. 1. — P. 347—425.
    8. Зельдович Я. Б. К теории распространения детонации в газообразных системах // Журнал экспериментальной и теоретической физики. — 1940. — Т. 10, вып. 5. — С. 542—568.
    9. von Neumann, J. John von Neumann: Collected Works, 1903-1957. — New York : Pergamon Press, 1963. — Vol. 6. — ISBN 978-0-08-009566-0.
    10. Döring, W. (1943). «Über Detonationsvorgang in Gasen» (German). Annalen der Physik 43 (6–7): 421–436. DOI:10.1002/andp.19434350605. ISSN 0003-4916.
    11. ↑ Щёлкин, Трошин, Газодинамика горения, 1963, с. 44.
    12. ↑ Дрёмин и др., Детонационные волны в конденсированных средах, 1970, с. 69.
    13. Денисов Ю. Н., Трошин Я. К. Пульсирующая и спиновая детонация газовых смесей в трубах // Доклады АН СССР. — 1959. — Т. 125, № 1. — С. 110-113.
    14. Денисов Ю. Н., Трошин Я. К. Механизм детонационного сгорания // Прикладная механика и техническая физика. — 1960. — Т. 1, № 1. — С. 21-35.
    15. ↑ Ландау, Лифшиц. Т. 6. Гидродинамика, 2001, § 129. Детонация, с. 668.
    16. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 10.
    17. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 11.
    18. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 71.
    19. Baudun G. La détonation: chronologie des travaux de modélisation dans les explosifs condensés. Sixièmes journées scientifiques Paul Vieille, ENSTA, Paris 7-8 octobre 2009 27 (2009). Проверено 22 апреля 2015. (недоступная ссылка)
    20. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 64.
    21. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 69.
    22. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 75.
    23. ↑ Зельдович, Компанеец, Теория детонации, 1955, с. 74.
    24. Октановое число — статья из энциклопедии «Кругосвет»
    25. Фролов С. М. Наука о горении и проблемы современной энергетики // Российский химический журнал (Журнал Российского химического общества им. Д. И. Менделеева). — 2008. — Т. LII, № 6. — С. 129-134.
    26. Kailasanath, K. (2000). «Review of Propulsion Applications of Detonation Waves». AIAA Journal 39 (9): 1698–1708. DOI:10.2514/2.1156. Bibcode: 2000AIAAJ..38.1698K.
    27. Norris, G. (2008). «Pulse Power: Pulse Detonation Engine-powered Flight Demonstration Marks Milestone in Mojave». Aviation Week & Space Technology 168 (7).
    28. Взрывчатые вещества — статья из энциклопедии «Кругосвет»

    Литература

    • Детонация // Большой энциклопедический словарь / Гл. ред. А. М. Прохоров. — 1-е изд. — М. : Большая российская энциклопедия, 1991. — ISBN 5-85270-160-2.
    • Зельдович Я. Б., Компанеец А. С. Теория детонации. — М.: Государственное издательство технико-теоретической литературы, 1955. — 268 с.
    • Хитрин Л. Н. Глава IV. Процесс распространения пламени. Детонация // Физика горения и взрыва. — М.: Издательство Московского университета, 1957. — С. 255-314. — 452 с. — 20 000 экз.
    • Щёлкин К. И., Трошин Я. К. Газодинамика горения. — М.: Издательство Академии наук СССР, 1963. — 254 с.
    • Дрёмин А. Н., Савров С. Д., Трофимов В. С., Шведов К. К. Детонационные волны в конденсированных средах. — М.: Наука, 1970. — 164 с.
    • Ландау, Л. Д., Лифшиц, Е. М. § 129. Детонация // Гидродинамика. — Издание 5-е, стереотипное. — М.: Физматлит, 2001. — С. 668. — 736 с. — («Теоретическая физика», том VI). — ISBN 5-9221-0121-8.
    • Dremin A. N. Toward Detonation Theory. — New York: Springer, 1999. — 156 p. — ISBN 978-1-4612-0563-0. — DOI:10.1007/978-1-4612-0563-0.

    wiki.sc

    ДЕТОНАЦИЯ — это… Что такое ДЕТОНАЦИЯ?

  • ДЕТОНАЦИЯ — взрывчатых веществ (Detonation) особый вид взрыва, производимый при помощи детонатора. Некоторые взрывчатые вещества, если их зажечь, сгорают постепенно. Если же такое взрывчатое вещество подвергнуть резкому удару или вставить в него капсюль… …   Морской словарь

  • ДЕТОНАЦИЯ — (франц. detoner взрываться от лат. detono гремлю), процесс химического превращения взрывчатого вещества, происходящий в очень тонком слое и распространяющийся со сверхзвуковой скоростью (до 9 км/с). Детонация представляет собой комплекс мощной… …   Большой Энциклопедический словарь

  • детонация — взрыв Словарь русских синонимов. детонация сущ., кол во синонимов: 1 • взрыв (15) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • детонация — и, ж. détonation f., нем. Detonation. хим. Детоннация. Вспышка в химии, выстрел, возгорание каких либо тел с громом. Ян. 1803. Лекс. Ян. 1803: детонация; САН 1895: детона/ция …   Исторический словарь галлицизмов русского языка

  • детонация — Распространение взрыва со сверхзвуковой скоростью, сопровождающееся выделением тепла и газов [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] детонация Распространение взрыва по взрывчатому веществу, обусловленное… …   Справочник технического переводчика

  • Детонация —         взрывчатых веществ (франц. detoner взрываться, от лат. detono гремлю * a. detonatiоn of explosives; н. Detonation von Sprengstoffen; ф. detonation des explosifs; и. detonacion de explosivos) процесс хим. превращения ВВ, сопровождающийся… …   Геологическая энциклопедия

  • ДЕТОНАЦИЯ — ДЕТОНАЦИЯ, детонации, жен. (от лат. detono гремлю) (спец.). Мгновенный и разрушительный взрыв какого нибудь взрывчатого вещества под действием удара или воспламенения детонатора. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ДЕТОНАЦИЯ — ДЕТОНАЦИЯ, и, жен. (спец.). 1. Мгновенный взрыв вещества, вызванный взрывом другого вещества или сотрясением, ударом. 2. Быстрое и неполное сгорание топлива в двигателе внутреннего сгорания. Д. топлива. | прил. детонационный, ая, ое. Толковый… …   Толковый словарь Ожегова

  • ДЕТОНАЦИЯ — (франц. detoner взрываться, от лат. detono гремлю), процесс хим. превращения взрывчатого в ва (ВВ), сопровождающийся выделением теплоты и распространяющийся с пост. скоростью, превышающей скорость звука в данном в ве. В отличие от горения, где… …   Физическая энциклопедия

  • Детонация — режим сгорания парового облака, а также других взрывчатых веществ и смесей. В детонационных режиме возникает мощная самоподдерживающаяся ударная волна, сжимающая вещество и инициирующая химическое превращение с выделением энергии. Скорость… …   Словарь черезвычайных ситуаций

  • dic.academic.ru

    Детонация — это… Что такое Детонация?

    Детона́ция (нормальная) — гидродинамический волновой процесс распространения по веществу зоны химической реакции со сверхзвуковой скоростью. Другое определение — сверхзвуковой комплекс, состоящий из ударной волны и экзотермической химической реакции за ней.
    Механизм превращения энергии на фронте детонационной волны существенно отличается от механизма дефлаграции — волны медленного горения, сопровождающейся дозвуковыми течениями.

    Принципиальная возможность явления детонации следует из того, что при прохождении через любое вещество фронта ударной волны оно нагревается. Если ударная волна достаточно сильна, то это нагревание может поджечь горючую смесь, что и приводит к детонации. Возникающая при этом поверхность нормального разрыва называется детонационной волной. Изменение термодинамических параметров среды при прохождении через фронт детонационной волны описывается детонационной адиабатой.

    Чаще всего в обычной жизни детонация встречается в автомобильных моторах. Двигатели внутреннего сгорания, реализующие цикл Отто, при детонации быстро разрушаются, так как рассчитаны на медленное горение горючей смеси. Быстрое детонационное сгорание резко повышает давление в камере сгорания, что приводит к быстрому выходу двигателя из строя. При сильной детонации — меньше чем за минуту. Топливо с более высоким октановым числом лучше противостоит детонации.

    Явление детонации лежит в основе действия бризантных взрывчатых веществ, широко применяемых как в военном деле, так и в гражданской хозяйственной деятельности при производстве взрывных работ.

    Ряд важных результатов в теории детонации принадлежит советскому физику-теоретику Якову Борисовичу Зельдовичу.

    См. также

    Question book-4.svg В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
    Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
    Эта отметка установлена 27 августа 2011.

    dic.academic.ru

    ДЕТОНАЦИЯ — это… Что такое ДЕТОНАЦИЯ?


            (франц. detoner — взрываться, от лат. detono — гремлю), процесс хим. превращения взрывчатого в-ва (ВВ), сопровождающийся выделением теплоты и распространяющийся с пост. скоростью, превышающей скорость звука в данном в-ве. В отличие от горения, где распространение пламени обусловлено медленными процессами диффузии и теплопроводности, Д. представляет собой комплекс мощной ударной волны и следующей за её фронтом зоны хим. превращения в-ва (детонационная волна). Ударная волна (рис. 1) сжимает и нагревает ВВ, вызывая в нём хим. реакцию, продукты к-рой сильно расширяются — происходит взрыв. С другой стороны, энергия, выделяющаяся в результате хим. реакции, поддерживает ударную волну, не давая ей затухать.ДЕТОНАЦИЯ1 Рис. 1. Распределение давления р в детонац. волне (х — пространств. координата): 1 — зона исходного в-ва: 2 — фронт волны; 3 — зона хим. реакции; 4 — зона продуктов детонации; р0 — нач. давление.

    Скорость детонац. волн постоянна для каждого ВВ, принимается в кач-ве его хар-ки и достигает 1—3 км/с в газовых смесях и 8—9 км/с в конденсированных ВВ; давление на фронте ударной волны составляет =1 — 5 МПа (=10 — 50 атм) и =10 ГПа (=105 атм) соответственно.

    Гидродинамич. теория Д. позволяет рассчитать значение её скорости и распределение давления, плотности и темп-ры в детонац. волне на основе законов сохранения массы, импульса и энергии, ур-ния состояния в-ва, а также требования равенства скорости детонац. волны относительно продуктов реакции и скорости звука в них. На рис. 2 адиабата А В отвечает ударной волне, бегущей в газе (р — давление, V — объём) и не вызывающей хим. реакции; CD — адиабата, построенная в предположении, что хим. реакция завершилась. При Д. сначала происходит ударный переход 1—2 (адиабатический процесс), затем хим. реакция переводит в-во из состояния 2 в состояние 3 по прямой, касающейся адиабаты CD. Дальнейшее расширение в-ва идёт по адиабате CD. Скорость v газовой Д. выражается через тепловой эффект q реакции (на 1 г в-ва) и показатель адиабаты g :

    v=?(2q(g2-1)).

    ДЕТОНАЦИЯ2

    Рис. 2.

    Кроме рассмотренной классич. Д. интенсивно исследуются т. н. спиновая Д., характеризующаяся движением детонац. волны по спирали, Д. в гетерогенных системах, малоскоростная Д.

    Устойчивый процесс Д. не всегда возможен. Так, Д. не может распространяться в цилиндрич. заряде малого диаметра (в-во разлетается через боковую поверхность, что вызывает прекращение хим. реакции) или при концентрациях ВВ ниже или выше нек-рых предельных значений, зависящих от давления и темп-ры. Д. создаётся в ВВ интенсивным механнч. или тепловым воздействием (удар, искра) и служит для возбуждения взрыва с помощью детонаторов. Во мн. случаях (напр., при горении топливной смеси в двигателях внутр. сгорания) Д. недопустима, поэтому подбираются определ. условия её сгорания, исключающие Д.

    Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.

    dic.academic.ru

    Ваш электронный адрес не будет опубликован.