Цилиндр компрессора: Расположение цилиндров в компрессоре

Содержание

Компрессоры цилиндрах — Справочник химика 21

    Цилиндры. Они бывают различной конструкции в зависимости от давления, производительности, схемы и назначения компрессора. Цилиндры на давление до 50 ат отливаются из чугуна, на дав-лени 50—150 ат— из стального литья, а иа давление выше 150 ат выполняются из поковок углеродистой и легированной сталей. Рабочая поверхность стальных цилиндров образуется запрессованной втулкой ( сухого типа), изготовленной из перлитового чугуна. Для облегчения запрессовки внешнюю поверхность втулки делают ступенчатой. Применяют также свободную посадку втулок втулку изготовляют с таким зазором, чтобы создалась напряженная посадка вследствие теплового расширения втулки во время работы компрессора. Крепится втулка в цилиндре только е одного конца буртом. Второй конец ее не закреплен и может перемещаться в осевом направлении при изменении температуры в цилиндре комп- [c.197]
    Шатуны двигателя 13 прицепные.
Они с помощью пальцев 18 присоединяются к головке главного (компрессорного) шатуна компрессора. Цилиндры двигателя, снабженные водяными рубашками 7, имеют продувочные и выпускные окна 9. В нижней части цилиндра имеется полость, сообщенная с ресивером фундаментной рамы и с продувочными окнами на зеркале цилиндра. Каналы выпускных окон выходят на боковую стенку цилиндра. [c.240]

    Концентрационные пределы воспламеняемости зависят от внешних условий диаметра трубы, направления распространения пламени, температуры, давления и других [159], однако в литературе нет определенных J численных характеристик влияния указанных факторов g на пределы воспламеняемости компрессорных смазок. -Большое значение имеют конструктивные особенности пневмосистемы. Теоретический расчет, учитывающий, что все вводимое в компрессор смазочное масло равномерно распределено в сжатом воздухе, показывает невозможность образования взрывоопасных концентраций на таких хорошо вентилируемых участках, как цилиндры, не только при полной загрузке компрессора [118], но даже и при значительно меньшей [155].

Из всех аварий в воздушных системах ни в одном случае не было взрыва самого компрессора (цилиндров). Взрываются нагнетательные трубопроводы, холодильники, ресиверы. Эти взрывы происходят в результате местных повышений концентраций масла в воздухе. Одним из факторов, способствующих образованию повышенных концентраций, является плохая вентиляция, например наличие застойных зон в сосудах и трубопроводах, глухих мешков, тупиковых отростков, сильно разветвленной и плохо контролируемой системы трубопроводов, отсутствие или нерегулярность продувки [45, 68, 79, 135, 151, 
[c.12]

    Вертикальные компрессоры (рис. IV.2) по сравнению с горизонтальными имеют несколько меньший и более равномерный по окружности износ поршней и цилиндров. Станины их отличаются более простой и легкой конструкцией, которая воспринимает преимущественно растягивающие и сжимающие напряжения, но не подвержена изгибу, как рамы горизонтальных компрессоров. Цилиндры вертикальных компрессоров не нуждаются в опорах.

Поршни удобно извлекаются из цилиндров с помощью крана. [c.107]

    Если в ряду компрессора расположить две ступени (схемы 5, 6, 7 и 8), то поршневые силы ряда вдвое больше, чем при одной ступени двойного действия. Во избежание перегрузки механизма движения в ряду, где находятся эти ступени, в них снижают отношение давлений либо сохраняют его, но дублируют ряды, помещая в двух рядах компрессора цилиндры половинного объема. 

[c.131]


    При пуске нового компрессора заменять масло следует 3—4 раза через 2—3 дня, в дальнейшем — через каждые 400—500 ч работы компрессора в зависимости от степени загрязнения масла. Необходимо внимательно следить за обеспечением нормального охлаждения цилиндров компрессора. Цилиндры охлаждаются водой, поступающей из водопровода. [c.124]

    У вертикальных компрессоров цилиндры и поршни смазываются с помощью шестеренчатых насосов, нагнетающих смазку из ванны компрессора по маслопроводам, доведенным до цилиндра.

[c.87]

    Рассмотрим, например, двухцилиндровый компрессор. Цилиндр позиция 1 на рис. 21.6 работает нормально, всасывает холодные пары из испарителя и нагнетает нагретые в результате сжатия пары. [c.105]

    В последнее время получили распространение оппозитные компрессоры со взаимно противоположным направлением движения поршней. В этих компрессорах цилиндры располагаются по обе стороны коленчатого вала. В оппозитных компрессорах скорость вращения вала может быть увеличена в 2-2,5 раза, что повышает производительность машины. [c.199]

    К специальным видам ремонтных работ в рассматриваемом примере следует отнести замену основных деталей корпусов компрессора, цилиндра турбины (диафрагмы, направляющих аппаратов и т. д.)  

[c.254]

    У поршней глав ным образом разрабатываются пазы для колец, отверстия тод пальцы, срабатывается наружная цилиндрическая поверхность. У вертикальных компрессоров цилиндри- [c. 162]

    Механизм движения смазывается с помощью шестеренчатого насоса. Насос высокого давления (лубрикатор) подает смазку в цилиндры, направляющие крейцкопфа и сальники компрессора. Цилиндры двигателя, подшипники распределительного вала, цепной привод распределительного вала и толкатели впускных и выпускных клапанов смазываются маслом, разбрызгиваемым коленчатым валом при работе компрессора. 

[c.243]

    Машины марок АО-600, АО-1200, ДАОН-175, ДАОН-350, ДАОН-375 и ДАО-750 — горизонтальные аммиачные компрессоры — предназначены для работы в холодильных установках химической, нефтеперерабатывающей промышленности. Указанные марки машин монтируют и на холодильниках, преимущественно в двухступенчатых схемах. Эти компрессоры изготовляют на базе компрессора М8. При этом используют двух- и четырехрядные модификации этой базы. Двухступенчатые машины строят на базе одноступенчатых с использованием для ступени высокого давления цилиндров одноступенчатого компрессора.

Цилиндры компрессора расположены по обе стороны фундаментной рамы. На консоль коленчатого вала насаживают ротор [c.152]

    Ответственные детали компрессора (цилиндры, втулки, валы, штоки, шатуны, корпусы крейцкопфов й их крепежные детали) после окончательной обработки необходимо проконтролировать методом неразрушающего контроля. [c.360]

    На одной базе с компрессором 4АУ-15 изготовляют аммиачный двухцилиндровый вертикальный компрессор 2АВ-15 и фреоновые компрессоры 2ФВ-19 и 4ФУ-19. Во фреоновых компрессорах цилиндры и поршни большего диаметра—190 мм, клапаны полосовые самопружинящие. Цилиндры без охлаждающей рубашки, так как фреон-12 не имеет высокой температуры в конце сжатия. Остальные части у аммиачных и фреоновых компрессоров одинаковые. 

[c.123]

    Рассмотрим цилиндр первой ступени шестиступенчатого газового компрессора. Цилиндр двойного действия, отлит из чугуна. Каждая полость цилиндра имеет по две всасывающие и две нагнетательные клапанные коробки. Цилиндр для охлаждения имеет водяную рубашку. С обеих сторон цилиндр закрыт крышками, снабженными сальниками. Крышки также охлаждаются водой. 

[c.146]

    Смазочные масла в технике низких температур используются для смазки цилиндров, сальников и механизмов, обеспечивающих движение поршневых компрессоров. Цилиндры и сальники воздушных компрессоров смазывают нефтяными компрессорными маслами (легкое и тяжелое). Цилиндры кислородных компрессоров смазывают дистиллированной водой (поршневые манжеты из фибры) или мыльной щелочной эмульсией (поршневые кольца из латуни). В последние годы стали применять синтетические масла (фтористые, углеводородные и кремнийорганические), имеющие высокую химическую и термическую стойкость. Детали кислородных насосов смазывают консистентными смазками ЦИАТИМ-201 или 

[c.64]

    У блок-картерных компрессоров цилиндры выполнены в одной отливке с картером. Рабочей поверхностью этих цилиндров [c.66]

    Из стали выполняют валы, шкивы, поршневые штоки насосов и компрессоров, цилиндры высокого давления шнеки экструзионных машин и большинство более мелких деталей машин и механизмов. Из листовой стали выполняют емкости, емкостные аппараты, корпуса сушилок, бункеров, циклонов. [c.41]

    Компаунд-компрессор. В этом компрессоре цилиндры расположены параллельно друг к другу. Каждый цилиндр имеет свой кривошипный механизм, но для всех цилиндров имеется общий главный вал. Тандем-компрессор. В этом компрессоре один 

[c.196]

    Подъем пластины клапана 1 мм, толщина ее 1,5 мм. Нагнетательные клапаны однокольцевые пластинчатые с пружиной расположены в ложной крышке, прижатой к корпусу цилиндра буферной пружиной (см. рис. 36). Подъем пластины нагнетательного клапана 1,3 мм. В корпусе цилиндров расположен пружинный шариковый предохранительный клапан, который при избыточном давлении 16 ати перепускает пары аммиака из полости нагнетания в полость вса-сывания по каналу, просверленному в корпусе цилиндра. Шатуны стальные с баббитовыми вкладышами в нижней разъемной головке и с бронзовыми втулками в верхней. С поршнем шатуны соединены полым плавающим пальцем, с коленчатым валом — разъемной головкой. Вал двухколенчатый, стальной, кованый, опирается на два коренных подшипника скольжения (чугунные втулки, залитые баббитом) и один выносной шариковый подшипник. Вал уплотнен пружинным сальником с металлическими кольцами. и масляным затвором. Смазка кривошипно-шатунного механизма и сальника производится под давлением от плунжерного насоса, расположенного в картере. Насос приводится в движение эксцентриком, надетым на вал. К местам трения масло подается по сверлениям в валу. На выходе масла к сальнику имеется обратный шариковый клапан, не допускающий обратную утечку масла из сальниковой камеры в период остановки компрессора. Цилиндры смазываются разбрызгиванием. Резервуаром для масла служит картер наблюдение за уровнем масла ведется через смотровое стекло. Шариковый подшипник смазывается через тавотницу. Компрессор приводится в движение от электродвигателя с помощью клиноременной передачи. Маховик насажен на выступающий конец вала и закреплен шпонкой. [c.97]

    В некоторых компрессорах цилиндры (нанример, для многоступенчатых компрессоров — это цилиндры I ступени) выполняются с устройством, позволяющим повышать величину мертвого пространства (рис. 10.28). В этом случае происходит увеличение мертвого пространства, что приводит к снижению количества газа, поступающего в цилиндр I ступени, с Уу до Уу и уменьшению объема газа, подаваемого в напорную линию, с При определенном значении объема мертвого пространства создается такое условие, при котором объем расширившегося в нем газа займет все пространство цилиндра. В этом случае не будет никакой производительности, а процессы сжатия и расширения будут характеризоваться общей кривой 1—3 (см. рис. 10.28). [c.239]

    В компрессорах типа КТ6 подведение масла к гнездам трения коленчатого вала и шатунов производится под давлением, создаваемым насосом компрессора. Цилиндры смазываются маслом, стекающим из нижних и верхних подшипников шатунов и разбрызгиваемым при их движении. Давление масла в смазочной системе компрессора должно быть не ниже 1,47 МПа (1,5 кгс/см ) при п-— 400 об/мин и 1,96 МПа (2,0 кгс/см ) при = 850 об/мин. [c.73]

    В ряде конструкций компрессоров цилиндры выполняются со сменными чугунными втулками мокрого типа (втулки, омываемые снаружи охлаждаю- [c. 289]

    Компрессоры повышенной производительности выполняют иногда с двумя, тремя и четырьмя параллельно действующими мембранными блоками. Возможно также комбинированное выполнение компрессоров цилиндры первых ступеней с фторопластовым уплотнением и последней — в мембранном блоке. Толщину мембран из стали 1Х18Н9Т обычно выбирают в пределах 0,3—0,5 мм. Для повышения надежности применяют многослойные мембраны на ступенях низкого давления —двуслойные и на ступенях высокого давления — с числом слоев три и более. [c.245]

    При этом методом периодического микрометрирова-ния и повторного взвешивания изучены характер и величина износа наиболее ответственных деталей компрессора (цилиндров, поршневых колец, штоков), определяющих межремонтные сроки работы компрессорной установки. [c.220]

    В угловых крейцкопфных однокривошипных компрессорах цилиндры далеко отстоят друг от друга. При этом клапаны у вертикальных и наклонных цилиндров могут быть свободно расположены по всей окружности. У цилиндров, лежащих горизонтально, доступ к клапанам снизу неудобен, поэтому в горизонтальных рядах обычно находятся цилиндры более высокого давления, не имеющие нижних клапанов. [c.132]

    Смазка механизма движения осуществляется при помощи шестеренного насоса. Насос высокого давления (лубрикатор) подает смазку в цилиндры и сальники компрессора. Цилиндры двигателя, подшипники распределительного вала и направляющие крейцкопфов смазываются маслом, разбрызгиваемым коленчатым валом при работе компрессора. Компрессоры такого тина выпускают завод Двигатель революции , а также фирмы Ипгер-сол-Ранд и Куиер-Бессемер. [c.332]

    Хромоникелевые стали — 20ХН, 50ХН, 12ХНЗ, ЗОХНЗ и др. — содержат 0,15 — 0,55% углерода, 0,25 — 0,80% марганца, 0,15 — 0,37% кремния, 0,45 — 1,10% хрома, 0,30 — 3,25% никеля и незначительные примеси серы и фосфора. Из хромоникелевых сталей делают аппараты и машины, работающие при высоких давлениях и повышенных температурах (колонны синтеза аммиака и метанола, цилиндры высокого давления газовых компрессоров, цилиндры циркуляционных насосов и др. ). Эти стали обладают повышенной стойкостью к водородной и карбонильной коррозии. [c.18]

    Цилиндр является одной из основных частей компрессора, в котором происходит засасывание и сжатие паров аммиака. У современных горизонтальных компрессоров цилиндры преимущественно двойного действия. Эти цилиндры и крышки отливаются из чугуна марки С421-40. Фланцы для присоединения всасывающей и нагнетательной линии расположены по бокам, в средней части — по длине цилиндра. С одной стороны цилиндр закрывается глухой крышкой, с другой — крышкой, в которой расподожена камера сальника. Цилиндры не закрепляются на [c.47]

    В последнее время все большее распространение получают горизонтальные компрессоры со встречнодвижущи-мися поршнями. В этих компрессорах цилиндры расположены по обе стороны коленчатого вала, а поршни в них движутся навстречу друг другу. Такие машины более быстроходны, меньше весят, занимают меньшую площадь. Поршневые и инерционные силы в них взаимно уравновешены.[c.141]

    Основной элемент конструкции компрессора — цилиндр 5 верхней части которого эксцентрично расположен ротор 6 с асботекстолитовыми пластинами 13. Цилиндр с торцов закрыт крышками 4 и 8. Уплотняется вал ротора сальником 12. [c.57]

    В производственных условиях процесс компримирования хлора (как и других промышленных газов) протекает политропически, т. е. одновременно с изменением объема и давления при сжатии газа происходят повышение его температуры и отвод тепла в межступенчатых холодильниках. Часть тепла отводится также путем охлаждения корпусов компрессоров, цилиндров в поршневых компрессорах, роторов в винтовых компрессорах. [c.18]

    В угловых компрессорах цилиндры значительно удалены друг от друга. У У-образных компрессоров обычно оси цилиндров располагают под углом 90° (иногда, для уменьшения ширины машины, под углом 70°), а у У-образных — под углом 60° (или 70 ). Эго дает возможность создать (орошее воздушное охлаждение цилиндра, что важно для передвижных установок.[c.116]


Запчасти для компрессоров

Полезная информация

Fiac, Remeza, Fubag, Abac, ACO — это бренды, которые производят не только компрессорное оборудование, но и запчасти для него. Главной деталью в структуре этих устройств является компрессорная головка. Именно от нее зависит работа оборудования, среди мастеров она получила название «сердце компрессора». Это название лаконично объясняет важность детали.

Причины поломок

Компрессоры – это сложный механизм, который время от времени выходит из строя. Главные узлы любого поршневого компрессора – блок, цилиндр, двигатель и картер. В процессе использования, некоторые детали подвергаются высоким нагрузкам и отрабатывают свой ресурс. Вследствие этого, возникает необходимость их замены. Поршневой блок является узлом, который подвергается износу в наибольшей степени, без этого элемента компрессор полностью выходит из строя и не может продолжить работу. От своевременного ухода за компрессорной головкой зависит срок службы компрессора.

 

Но, помимо естественных процессов изнашивания, существуют и другие причины, вызывающие неполадки в работе компрессоров:

  • Неправильное обращение с техникой и несоблюдение инструкций по эксплуатации; 
  • Грубые нарушения регламента и отказ от своевременной проверки состояния агрегатов;
  • При перебоях в подаче энергии, из-за перепадов постоянного тока, возможно перегорание деталей компрессора.

Важно своевременно выявить причину поломки, и заменить неисправные детали. Стоимость замены запчастей в разы дешевле, чем покупка нового компрессора.

На нашем сайте можно найти запчасти для компрессора от вышеуказанных производителей. Вне зависимости от степени и типа поломки, каждый желающий сможет найти именно то, что ему необходимо. Наши специалисты помогут определиться с выбором и проведут консультацию в случае необходимости. Для получения дополнительной информации просим обращаться к нам в офис по указанным на сайте номерам.

Цилиндр поршневого компрессора BOGE

Артикул

Наименование по-русски (английски)

117004300KP

Цилиндр поршня

CYLINDER D 95 CPL.

117004966P

Цилиндр поршня

CYLINDER D 42 MOBIMAX 110/120

117005066P

Цилиндр поршня

CYLINDER D 47 MOBIMAX 120

117005166P

Цилиндр поршня

CYLINDER D 47 MOBIMAX 200

117005167P

Цилиндр поршня

CYLINDER D 47 MOBIMAX 200/400

1170052661P

Цилиндр поршня

CYLINDER D 60 MOBIMAX 250

117005366P

Цилиндр поршня

CYLINDER D 70 MOBIMAX 340

117005400KP

Цилиндр поршня

CYLINDER D 72 CPL.

117005500KP

Цилиндр поршня

cylinder D 63 cpl.

117005600KP

Цилиндр поршня

CYLINDER D 48 CPL.

117006211P

Цилиндр поршня

CYLINDER D 82 L134,7 ALSI9MG HART-COAT

117006212P

Цилиндр поршня

CYLINDER D 82 L127,7 ALSI9MG HART-COAT

117006214P

Цилиндр поршня

cylinder D 82 L135.1 II ALSI9MG HART-COAT

117006300KP

Цилиндр поршня

Cylinder D 45 cpl.

117006566P

Цилиндр поршня

CYLINDER D 50

117006866P

Цилиндр поршня

CYLINDER D 70 MOBIMAX 340

117007000KP

Цилиндр поршня

CYLINDER D80 CPL (LONG) GG-25

117007100KP

Цилиндр поршня

CYLINDER D 80 CPL (SHORT) GG-25

117007200P

Цилиндр поршня

CYLINDER D 50 CPL

117007366P

Цилиндр поршня

CYLINDER D60 Mobimax 250

117007800KP

Цилиндр поршня

Cylinder D 45 long cpl. (GG-25)

117007900KP

Цилиндр поршня

Cylinder D 45 short cpl. (GG-25)

117008911P

Цилиндр поршня

cylinder D 45 L135.1 II ALSI9MG/AlMgSi1 Hart-coat

117010511P

Цилиндр поршня

cylinder D 82 L135

117012301P

Цилиндр поршня

Cylinder

117012303P

Цилиндр поршня

Cylinder D82

117700800P

Цилиндр поршня

CYLINDER D 36 KM20-71 cyl. Cast

117701600P

Цилиндр поршня

CYLINDER D 72 KM35A-71

117703000P

Цилиндр поршня

CYLINDER D 48 KM50A-71

117703200P

Цилиндр поршня

CYLINDER D135 K130-71 cyl. Cast

117706100P

Цилиндр поршня

CYLINDER D 72 K20-U16 CPL.

117706200P

Цилиндр поршня

CYLINDER D 36 KM20-U16 CPL.

117706900P

Цилиндр поршня

CYLINDER D 63 KM25B-U16 cpl.

117707000P

Цилиндр поршня

CYLINDER D 72 KM35A-71

117707200P

Цилиндр поршня

CYLINDER D 42 KM36A-U16

117707300KP

Цилиндр поршня

Cylinder D 95 K50A-U16 cpl.

117707400P

Цилиндр поршня

CYLINDER D 48 KM50A-U16 CPL.

117707500P

Цилиндр поршня

CYLINDER D 135 K130-U16 CPL.

117707600P

Цилиндр поршня

CYLINDER D 95 KM213A-U16 CPL.

117707700P

Цилиндр поршня

CYLINDER Kh313-U16 CPL.

117707800P

Цилиндр поршня

Ремонт компрессора своими руками

Компрессор достаточно сложное техническое оборудование, по мере эксплуатации он имеет право изнашиваться и ломаться. В данной статье рассмотрим все методы обслуживания и эксплуатации для его максимального продления жизни. Выполнить ремонт компрессора своими руками, если он всё таки сломался, возможно.

Надёжность компрессорного оборудования во многом зависит от своевременного и качественного технического обслуживания. Большое число поломок поршневых компрессоров является следствием некачественной очистки сжимаемого воздуха (абразивной пыли, воды, и других включений). Применение и своевременная замена и очистка фильтрующих элементов, отсрочит ремонт компрессора на долгое время.

Основные причины по которым воздушный поршневой компрессор выходит из строя:

  • Неблагоприятные условия эксплуатации
  • Не производится плановое обслуживание
  • Не грамотный обслуживающий персонал

Для обеспечения качественного технического обслуживания, эксплуатации и ремонта компрессора своими руками, необходимо решить все выше приведённые пункты.

Основное отличие технического обслуживания от ремонта компрессора заключается в том, что при ремонте производится принудительная замена определённых деталей, а при техническом обслуживании замена деталей производится по мере необходимости в зависимости от их фактического состояния.


Принцип работы и составные части

Компрессор это устройство для повышения давления и перемещения газа к требуемому источнику (краскопульт, шлифовальные машинки, гайковёрты, аэрографы и любому другому пневматическому оборудованию). Основным востребованным оборудованием в кузовном ремонте стал компрессор поршневого, масляного типа. В поршневых, объём рабочих камер изменяется с помощью поршней, совершающих возвратно-поступательное движение.

Имеют разное количество рабочих цилиндров и различают их по следующему конструктивному расположению:

  • Горизонтальное
  • Вертикальное
  • Оппозитную
  • Прямоугольную
  • V и W образные
  • Звездообразные

Основные конструктивные недостатки: неполная уравновешенность их движущих частей, наличие большого числа пар трения и т.д. Всё это является причиной выхода из строя и последующего ремонта.

Перед тем как выполнять ремонт компрессора своими руками, необходимо изучить его техническое строение. На фото ниже схема одноступенчатого компрессора, поршневая группа.

  1. Коленчатый вал
  2. Корпус
  3. Шатун
  4. Палец поршня
  5. Поршень
  6. Цилиндр
  7. Клапана
  8. Головка цилиндра
  9. Клапанная плита
  10. Маховик
  11. Сальники
  12. Подшипники коленвала

На корпусе возле электро двигателя имеется блок автоматики называемый пресостат. При помощи него можно производить регулировку компрессора. Возможно понижать накачиваемое давление или повышать.


Неисправности поршневого компрессора

При обнаружении каких-либо дефектов (появления стуков, заеданий трущихся частей, сильного нагрева, повышенного расхода смазочного материала и д.р.), необходимо производить ремонт.

Определение вида и объёма ремонта важно установить на шаге диагностирования состояния объекта перед ремонтом. Неисправности компрессора можно разделить на две группы: технические неисправности (рабочая часть поршневая группа и неисправности электрооборудования). Ниже представлены наиболее распространенные поломки:

  • Компрессор (электродвигатель) не запускается
  • Электродвигатель гудит и не вращается
  • Компрессор не набирает обороты
  • Стук в цилиндро-поршневой группе
  • Слишком сильно нагревается цилиндр
  • Упала производительность
  • Сильная вибрация

Компрессор (электродвигатель) не запускается

Компрессор не включается, самая распространённая неполадка. Основное и банальное, что может быть в этой поломке, это нет напряжения в сети. Первое что следует проверить, вилку и провод на обрыв, питающие электродвигатель. При помощи специальной «отвёртки тестера» проверьте подаётся ли напряжение на всех фазах. Проверьте предохранитель, если он имеется. Убедитесь в работоспособности пусковых конденсаторов (у однофазных компрессоров напряжение 220В).

Обратите внимание на уровень давления в баке (ресивере). Возможно давление достаточное и автоматика не запускает компрессор, как только давление упадёт до определённого уровня, электродвигатель запустится автоматически. Это не является поломкой, многие забывают про этот нюанс и переживают раньше времени.

Обратный клапан, также может стать проблемой если компрессор не включается. Также неисправный блок автоматики (пресостат), влияет на поломку(включения, выключения), возможно пришла в негодность кнопка на самом блоке.

Если электродвигатель не запускается гудит, жужжит не набирает нужные обороты или останавливается во время работы, это не всегда означает его поломку.

Основные неисправности электродвигателя которые могут мешать ему правильной бесперебойной работе:

  • Низкое питание двигателя (недостаточное напряжение сети)
  • Неплотные соединения, плохой контакт
  • Вышел из строя обратный клапан (протекает), тем самым создающий обратное давление
  • Неправильный запуск компрессора (смотрите инструкцию по эксплуатации)
  • Заклинила поршневая группа (из-за недостатка уровня масла, перегрузка)

Если электро двигатель компрессора совсем не включается и не издаёт звуков, то это свидетельствует о следующем:

  • Сработал предохранитель питания электрической сети
  • Сработала защита от перегрузки
  • Плохой контакт в электрической цепи (неполадки с электропроводкой)
  • Самое плохое, сгорел электродвигатель (зачастую бывает характерный запах)

Стук и грохот в цилиндре и поршневой группе

Одной из причин поломки компрессора является неисправная поршневая группа. Распознать дефект данной системы достаточно просто. Обычно они сопровождаются стуком, грохотом, скрежетом и другими звуками металлического характера. Если компрессор стучит, значит неисправна его нагнетательная часть, где много металлических деталей, которые взаимодействуют друг с другом. Из-за их трения и износа появляются посторонние шумы и неприятные звуки.

Не стоит запускать с такой поломкой, по возможности необходимо устранить, как только вы услышали первые признаки их проявления. Основные неисправности если компрессор начал стучать и громко работать, чем прежде:

  • Разбились износились подшипники, втулки шатуна
  • Вышли из строя подшипники на коленчатом вале.
  • Износился поршень, кольца, палец на поршне
  • Изношен цилиндр
  • Ослабли болты крепления цилиндра и головки
  • Попала твёрдая частица в цилиндр
  • Охлаждающая крыльчатка разболталась на шкиву

Чтобы отремонтировать данные поломки, в простых случаях достаточно протянуть все болты и гайки. Если износились поршень, цилиндр коленвал или шатун, то здесь необходим комплексный капитальный ремонта. При ремонте поршневой группы возможно придётся растачивать цилиндр, если он сильно изношен и имеет внешние дефекты, подбирать по новым размерам ремонтный поршень. Ниже приведены возможные дефекты поршневой системы:

  • Изменение диаметра поршня, цилиндра
  • Искажение формы формы зеркала цилиндра
  • Риски, царапины, задиры на стенках цилиндра
  • Трещины основной рабочей части
  • Трещины и поломки фланцев

При длительной эксплуатации вследствие износа появляются риски на зеркале цилиндра, увеличивается внутренний диаметр втулки под эксцентриковый вал. При ремонте цилиндры восстанавливают путём запрессовки в них гильз. Изношенные втулки под эксцентриковый вал заменяют. Данный ремонт достаточно сложно выполнить своими руками без необходимого инструмента и оборудования. Так как наиболее трудоёмким и ответственным этапом является восстановление цилиндра. Растачивание выполняется на вертикально-расточном станке с использованием специального приспособления.

Это, что касалось цилиндра, ниже рассмотрим основные неисправности картера компрессора.

  • Трещины в стенках полостей блока картера
  • Отклонения размеров и формы посадочных площадок
  • Коробление посадочных мест
  • Разбились посадочные места под подшипники коленчатого вала

При износе данных узлов, они подлежат замене на новые. Отверстие под подшипники растачивают на горизонтально-расточном станке под больший диаметр подшипников или под запрессовку втулки с последующей расточкой запрессованной втулки под необходимый диаметр. Ремонт компрессора такой сложности стоит выполнять квалифицированными специалистами.

Ниже, запчасти «ремкомплект» для проведения капитального ремонта компрессора, поршневой группы.


Компрессор сильно греется

Если компрессор сильно греется, то это сигнализирует о его какой-то неисправности. Причин перегрева может быть несколько. Начиная с простой, это заблокирован обдув воздуха цилиндра и картера. Проверьте не закрыта ли крыльчатка посторонними предметами.

Одной из основных причин греющегося компрессора является недостаток уровня масла. Рабочие узлы работают на износ, создаётся высокое трение в следствие сильно греется. При дальнейшей такой работе оборудование быстро выйдет из строя. Проверьте уровень масла, если его недостаточно, необходимо долить до нужного уровня.

Неисправности клапанов, в результате карбонизированного загрязнения или их ослабления. Также могут быть забитые воздушные каналы.

Посмотрите уровень давления , возможно сломалась автоматика и компрессор «молотит» до большого давления, это и вызывает перегрев. Возможно требуется ремонт или замена предохранительного клапана.

Старайтесь располагать компрессор в прохладном, просторном месте, особенно в жаркое время года. Какое бы охлаждение у него не было, нагреваться будет гораздо меньше, что скажется на его положительной и долговечной работе. » Также не стоит забывать, что чем воздух холодней тем в нём меньше влаги и масляных примесей.


Упала производительность

Падение производительности может быть связанно с несколькими причинами. Забит, засорён всасывающий воздушный фильтр. Снимите и прочистите фильтр сжатым воздухом или замените его. В основном в поршневых компрессорах он выполнен из обычного поролона.

Возможно, что где-то утечка воздуха. Обследуйте все подходящие и выходящие трубки и шланги. Также как и в предыдущем случае возможен износ и неправильная работа клапанов, это сильно влияет на производительность. При достаточно длительном использовании изнашиваются поршневые кольца, пропадает герметизация. В более серьезных случаях изношены цилиндр и поршни, поцарапаны или имеют другие внешние дефекты, что влечёт потерю компрессии и компрессор перестаёт накачивать воздух.

Стоит проверить силу натяжки ремня, соединяющий электро двигатель и коленвал поршневой системы. При ослаблении возможны проскальзывание и компрессор перестаёт качать воздух должным образом.


Масло попадает в рабочую камеру

Если масло попадает в рабочую камеру, достаточно плохие признаки, конечно полному выходу из строя компрессора это не приведёт, но принести вред покрасочным работам и возникновению дефектам при покраске, очень даже может. Основные причины попадания масла, туда куда ему не нужно: Залито масло низкой вязкости, то есть масло слишком жидкое, оно просачивается сквозь уплотнения и кольца. Уровень масла слишком высок. Из-за избытка масла оно с силой выдавливается и попадает в камеру. Используется несоответствующее масло. Заливайте только специальное компрессорное масло.

Износились поршня и кольца в блоке цилиндра. Также износ самого цилиндра влияет на попадания масла в рабочую камеру. Для устранения неисправности, требуется ремонт компрессора поршневой группы, которые описан выше.

Эксплуатация и обслуживание компрессора

Поршневой компрессор как и любое техническое оборудование требует определённого обслуживания. Правильная эксплуатация поможет продлить жизнь вашего компрессорного оборудования. Рассмотрим основные мероприятия по обслуживанию, ремонту и эксплуатации компрессора.

1. Замена и очистка воздушного фильтра. Фильтрующий элемент в основном сделан из нетканого материала, поролон или синтонин. Если компрессор стоит там же где осуществляется покраска автомобиля, то от сильно забивается (налипает) опылом от краски, лака и другого лакокрасочного материала. Фильтр предотвращает попадание абразивной пыли в цилиндр, поршень и цилиндр изнашиваются меньше. Как можно чаще меняёте и очищайте фильтр, так как это значительно увеличит ресурс и отсрочит ремонт компрессора.

2. Замена масла, очень важный пункт. Следите за уровнем масла, на специальном индикаторе (окошке) в картере компрессора. Работа на малом уровне или без масла влечёт к серьезному капитальному ремонту. Доливайте до необходимого уровня, если его не хватает. Периодически необходимо полностью сливать и заливать новое. Используйте только специальное компрессорное масло. Масло для поршневого компрессора Mobil, Fubug, Shell VDL 100, КС 19, 46 или любое другое фирменное.

3. Слив конденсата. Важный пункт в обслуживании компрессора. Воздух насыщен влагой, она неизбежно попадает с всасываемым воздухом в ресивер. Со временем накапливается в большом количестве. При большом содержании конденсата возможен его выброс в воздушные шланги, что влечёт к дефектам при покраске. Так же из-за конденсата начинается коррозия внутри ресивера. Сливайте конденсат как можно чаще, минимум раз в неделю, особенно в жаркое и влажное время года.

4. Следите за общим состоянием, периодически продувайте от пыли и других загрязнений. Уделите особое внимание крыльчатке на электродвигателе, рёбрам цилиндра, воздушного радиатора, по мере эксплуатации на них налипает пыль и опыл от краски, что уменьшает охлаждающие способности.

5. Осматривайте на износ и натяжение ременной привод. При нажатие на ремень в средней точки он не должен прогинаться более чем на 12 -15 мм. Делайте протяжку всех болтов и гаек. Периодически проверяйте работоспособность предохранительного клапана, который служит для защиты от избыточного давления, из-за поломки строя реле давления.

Соблюдайте все выше перечисленные методы и ремонт компрессора Вы отсрочите на долгое время.

Как определить неисправность клапана поршневого компрессора?

В поршневом воздушном компрессоре клапаны являются одной из наиболее важных частей регулирования и подачи сжатого воздуха. Когда клапан находится в оптимальном рабочем состоянии, сжатый воздух распределяется равномерно и эффективно. Однако, если клапан выходит из строя, система сжатого воздуха перестает эффективно работать.

При использовании воздушного поршневого компрессора важно убедиться, что он работает в благоприятной среде. Если это не так, можно столкнуться с различными проблемами в работе компрессора, значительно снижающими естественный срок службы системы. В целом, неисправность клапана вызвана одним из двух факторов — внешними воздействиями окружающей среды или механическими воздействиями внутри компрессора.

Отказ клапана по причине внешних воздействий окружающей среды

Отказ клапана поршневого компрессора иногда кроется в проблемах, которые возникают из-за негативного воздействия окружающей среды. Если воздушный компрессор находится в постоянном контакте с грязью и с масляным туманом, клапаны и другие компоненты в какой-то момент времени могут быть повреждены, особенно если не предпринимаются какие-либо меры по устранению неисправности. Следующие факторы являются одними из наиболее распространенных экологических причин отказа клапана:

Коррозионные загрязнители

Если клапаны вступают в контакт с коррозийными элементами, металл постепенно изнашивается, и клапан теряет способность выполнять свою функцию. Коррозия разъедает поверхности металлических деталей и в конечном итоге может распространиться на прилегающие детали. Коррозия может образовывать сквозные отверстия непосредственно в металле.

Инородный материал

Как и любой компонент в системе сжатого воздуха, клапан может быть загрязнен посторонними элементами, которые могут затруднить поток воздуха. Если воздушный компрессор находится в пыльной или сильно загрязненной рабочей среде, загрязнения могут представлять угрозу чистоте и функциональности клапана поршневого компрессора.

Жидкостные пробки

В клапанах, которые подвержены воздействию потока жидкости (вода и масло), неравномерность потока жидкости может оказывать разрушительное воздействие на внутреннюю часть клапана, особенно в течение многих лет воздействия.

Неподходящая или старая смазка

Если клапан поршневого компрессора вступает в контакт с неподходящей или старой смазкой, это может повредить клапан. Хотя применение смазки необходимо, это также может быть вредным, если срок годности смазки уже истек. Если смазка смешивается с коррозийными элементами, она может приобрести кислотные свойства. Если смазка затвердевает, она не выполнит никакой полезной функции в воздушном компрессоре. Смазка также может быть вредна при нанесении чрезмерно большого ее количества.

Отказ клапана в результате механических воздействий

Отказ клапана компрессора также может быть результатом механических воздействий, некоторые из которых могут развиваться внутренне без ведома оператора, а другие — из-за его халатности. Если клапан подвергается чрезмерным нагрузкам из-за перегрузки или перегрева системы, он будет быстрее изнашиваться и потеряет свои первоначальные свойства. Если воздушный компрессор используется таким образом, который противоречит рекомендациям производителя, это также может привести к поломке клапана. Следующие факторы являются одними из наиболее распространенных механических воздействий на отказ клапана:

Перегруженность воздушного компрессора

Если поршневой воздушный компрессор работает с высокими нагрузками в течение длительных периодов времени, это может сказаться на различных компонентах системы, включая клапаны. Если Вы постоянно запускаете воздушный компрессор с настройками на максимальное давление, Вам следует следить за клапанами. Если вы работаете с воздушным компрессором без перерыва в течение нескольких часов подряд при высокой нагрузке, Вам также следует чаще проверять клапаны.

Использование компрессора не по назначению

Когда речь идет о поршневых воздушных компрессорах, каждая модель рассчитана на конкретную сферу применения. Если компрессор используется не по назначению, можно столкнуться с проблемами после нескольких недель или месяцев такого использования. Если воздушный компрессор использовался таким образом, который противоречит рекомендациям производителя, проблемы с компрессором могут стать результатом отказа клапана.

Удары по компрессору

Если воздушный компрессор выдержал один или несколько ударов, это может отразиться на всей системе и ее различных компонентах, включая клапаны. Независимо от того, каким является характер ударов, клапан может легко изнашиваться из-за повторяющихся ударных воздействий. Если воздушный компрессор, например, случайно упал, в конечном итоге это может привести к поломке клапанов.

Износ пружины клапана

Если пружина в клапане износилась, клапан не будет функционировать должным образом. Пружины разработаны с определенными уровнями гибкости. Если пружина становится слишком мягкой или слишком твердой, она теряет свою работоспособность. Если работа клапана основана на сжатии пружины, выход ее из строя будет иметь пагубное влияние на клапан.

Пульсации

Пульсации воздушного потока могут повредить клапан компрессора. Поршневой воздушный компрессор предназначен для создания давления воздуха на определенных частотах вращения, и каждая часть в системе настроена на определенный уровень согласованности производительности. Если система внезапно начинает работать с пульсациями давления, клапаны будут подвержены повышенному износу.

Распространенные признаки отказа клапана

Проблемы с поршневым клапаном компрессора могут проявляться множеством способов. Таким образом, симптомы многочисленны. Признаки отказа клапана могут быть обнаружены на самом компрессоре, а также по результатам различных процессов.

Например, если компрессор сильно нагревается или работает с чрезмерным шумом, это может свидетельствовать о неисправном клапане. Нехарактерные нагрузки также могут быть связаны с отказом клапана. Плохая производительность системы и нарушенная работа конечных потребителей также являются общими признаками отказа клапана компрессора. Наиболее распространенные признаки отказа клапана:

Давление всасывания выше номинального

Случаи отказа клапана иногда приводят к нехарактерно высокому давлению всасывания. Отличительным признаком является то, что скачки давления всасывания сочетаются с давлением нагнетания ниже номинального, потому что здесь у Вас есть две взаимосвязанные, зависящие от клапана функции, которые не работают согласованно.

Низкое давление нагнетания

Если давление нагнетания поршневого воздушного компрессора слишком низкое, вероятным виновником являются клапаны. Компрессор для сжатия воздуха с определенным давлением в соответствии с настройками системы. Когда этого не происходит или когда давление кажется недостаточным, проблема, вероятно, связана с препятствующим проходу воздуха клапаном. Ситуация наиболее очевидна при слабом давлении нагнетания в сочетании с избыточным давлением всасывания.

Компрессор работает очень тихо

Воздушный компрессор может работать тихо при небольшой загрузке. Однако это также может быть причиной для беспокойства, если при полной загрузке компрессор кажется слишком тихим. Если воздушный компрессор звучит так, как будто вот-вот остановится, скорее всего, существует проблема с клапанами.

Высокая температура нагнетания

Если нагнетательный клапан не герметично закрывается, это может привести к понижению давления в головке. Во время каждого хода поршня воздух будет выходить из цилиндра. В течение нескольких секунд воздух снова сожмется, и часть его возвратится обратно в цилиндр из-за не герметичного уплотнения клапана. Этот короткий цикл, через который проходит воздух, приводит к повышенным температурам нагнетания.

Угоревшее масло и его утечки

Когда нагнетательный клапан вынужден справляться с чрезвычайно высокими температурами, это может привести к повышенному угару масла. По мере распространения перегрева материал, из которого состоит клапан, может ускорить химическую реакцию. Клапан также может протечь в результате перегрева.

Загрязнение тарелки клапана

Другим побочным эффектом перегрева клапана является развитие загрязнения, которое может образоваться на тарелке клапана в результате химической реакции от высокой температуры. Загрязнение происходит из-за смешивания угоревшего масла и пыли в воздухе под давлением, которые образуют осадок на тарелке клапана.

Увеличение счетов за электричество

Если на предприятии увеличились счета за электричество, несмотря на то, что оборудование не поменялось, это может свидетельствовать об увеличении затрат энергии для выполнения обычных функций. Когда воздушному компрессору внезапно требуется больше энергии для выполнения тех же самых задач, проблема может оказаться в неисправном клапане.

Компрессор перегревается

При повышении давления компрессор может перегреться из-за невозможности пропускания воздуха в соответствии с запрограммированным значением. Такие проблемы часто коренятся в неисправных клапанах.

Перегруженный воздушный компрессор

Если давление, создаваемое компрессором повышается, и система становится перегруженной, вероятно, имеется проблема с перекрывающимся потоком, что свидетельствует о возможной неисправности клапана.

Давления всасывания и нагнетания почти на одном уровне

В системе, основанной на поршневом воздушном компрессоре, давления всасывания и нагнетания не должны находиться в непосредственной близости друг от друга. Когда давления на сторонах всасывания и нагнетания становятся слишком приближенными друг к другу, это, как правило, является признаком потери производительности компрессора. В системе, где клапан вышел из строя, давление на стороне высокого давления часто будет нехарактерно низким, а значение на стороне низкого давления будет нехарактерно высоким.

Предотвращение отказа клапана

Во избежание выхода из строя клапана поршневого компрессора проведите надлежащее техническое обслуживание. Периодически проверяйте клапан и соответствующие компоненты системы. Графики и статистика могут дать Вам конкретную информацию о том, работает ли система должным образом. Также проверьте температуру системы и прислушайтесь к необычным звукам, поскольку они могут служить ключевыми индикаторами причины проблемы.

Проверьте температуры

Если Вы подозреваете, что Ваш воздушный компрессор имеет дефект, связанный с клапаном, проверьте график температуры. Изменялась ли температура в течение месяца? Или с тех пор, как Вы впервые заподозрили проблему с системой, произошел неожиданный скачок или падение температуры на графике?

Проверьте уровень потребляемого тока

Ваш воздушный компрессор потребляет нормальные уровни тока во время работы или были неполадки из-за невозможности работы системы? Если Вы заметили проблемы с производительностью, которые, как вы подозреваете, связаны с клапаном, подтверждающим фактором может быть низкое энергопотребление компрессора. Система, работающая без неисправностей должна потреблять энергию на нормальных уровнях.

Проверьте корпус компрессора не перегрев

Корпус компрессора более горячий, чем обычно? Проблемы с перегревом часто являются результатом давления в ресивере компрессора. Неисправность клапана может быть причиной такой проблемы.

Проверьте, нет ли звуков из клапана

Если после отключения воздушного компрессора клапан издает свистящие звуки, это значит, что он пропускает воздух. Клапан, который издает такие звуки, является неисправным.

Действия по устранению неисправности клапана

Проблемы с клапанами могут возникать из-за многочисленных проблем с компрессором, но у каждой из этих проблем есть определенные симптомы. Когда Вы знаете проблемы, связанные с каждым симптомом, связанным с клапаном, можно легче предпринять шаги для исправления ситуации. Устранение неисправности на ранних этапах до того, как проблема выйдет из-под контроля, можно сэкономить время и средства.

Стук клапанов или поршневых колец

Если клапаны и поршневые кольца издают стуки, проблема может быть связана с неправильной смазкой, недостаточным зазором головки или чрезмерным зазором поперечины. Чтобы устранить проблему, проверьте смазку и отрегулируйте головки. Смазка может быть старой или может быть нанесена в чрезмерном или недостаточном количестве. В любом случае сотрите старую смазку и нанесите новый слой смазки в рекомендуемом производителем количестве.

Вибрация

Если Вы заметили повышенную вибрацию, исходящую от воздушного компрессора, возможно, проблема связана с износом опор, шкивов или неисправной функцией разгрузки. Чтобы найти решение для устранения вибраций, осмотрите опоры компрессоры, шкивы и разгрузочный клапан на наличие признаков износа или поломки.

Высокое давление нагнетания

Если давление нагнетания поршневого воздушного компрессора слишком высокое, возможно, проблема связана с неисправным разгрузочным клапаном. С другой стороны, повышенное давление нагнетания может быть из-за превышения нагрузки на систему. Осмотрите систему разгрузки для возможного ответа на этот вопрос.

Низкое давление нагнетания

Если давление нагнетания воздушного компрессора нехарактерно низкое, возможно, проблема связана с неисправным разгрузочным клапаном или утечкой в ​​системе. Чтобы понять суть проблемы, проверьте систему на наличие утечек и износ клапанов.

Высокая температура нагнетания

Если температура нагнетания слишком высока, возможно, проблема связана с изношенным клапаном низкого давления или неисправным разгрузочным клапаном. Высокая температура также может быть результатом высокого давления нагнетания. Проверьте клапан низкого давления и систему разгрузки.

Горячая вода

Если температура охлаждающей воды в системе высокая, проблема может быть связана с низкой скоростью потока воды, изношенным клапаном низкого давления или загрязнением системы охлаждения. Для возможного ответа на этот вопрос осмотрите систему охлаждения.

Перегрев клапана

Если температура клапана нехарактерно высока, проблема может быть связана с износом клапана или высоким давлением нагнетания. Проверьте давление нагнетания, а также состояние клапана низкого давления.

Высокая температура в цилиндре

Если цилиндр воздушного компрессора слишком горячий, проблема может быть связана с любой из причин, таких как изношенный клапан низкого давления или избыточное давление нагнетания. Проверьте состояние клапана и давление нагнетания, чтобы локализовать неисправность.

Недостаточный расход воздуха

Если расход воздуха компрессорной системы нехарактерно низкий, проблема может быть связана с грязным всасывающим фильтром, изношенным клапаном низкого давления или неисправной системой разгрузки. Чтобы понять причину проблемы, осмотрите всасывающий фильтр и проверьте состояние клапана.

Ремонт компрессора пневмоподвески своими руками

В начале важно произвести должную диагностику проблемы и определить, какой вид неисправности компрессора обнаружен на вашем автомобиле. Сделать это вам будет несложно, ведь у каждой поломки имеются разные «симптомы».

Скажем прямо, не все поломки компрессора вынуждают водителя обращаться за помощью к специалистам. К примеру, произвести замену некоторых деталей, или же произвести простейшую чистку узлов агрегата от пыли можно и в домашних условиях, сэкономив при этом деньги. Для этого нужно лишь запастись малой долей желания и терпения, а также некоторыми инструментами. Говоря о двух наиболее распространённых неисправностях компрессора пневмоподвески, важно помнить, что эти неисправности носят отдельный характер и, следовательно, подлежат различным ремонтным работам.

Давайте сначала рассмотрим тот случай, когда сильно повреждена поршневая группа. Как известно, форма цилиндра компрессора слегка напоминает конус. Во время работы компрессора внутри цилиндра движется поршень, и при этом поршневое кольцо сжимается, повторяя форму вышеупомянутого цилиндра. В конечном итоге, в результате выработки на цилиндре поршневое кольцо не повторяет полностью его форму, что и приводит к тому, что поршневая группа не создает необходимой компрессии. Важно знать, что чем больше выработка на цилиндре, тем меньшее давление может произвести компрессор.

Для увеличения давления, производимого компрессором пневмоподвески, нужно заставить поршневое кольцо лучше повторять форму изношенного цилиндра. Для того чтобы сделать это, нужно подпружинить кольцо изнутри. Что вам понадобится для осуществления такого рода операции: конечно же, все необходимые инструменты для снятия компрессора с автомобильного транспорта, ключ torx T30, упаковка обычных бритвенных лезвий, а также какой-нибудь другой стандартный инструмент (к примеру пассатижи, отвертки и т.п.) Итак, начинаем проводить ряд операций…

Для начала, если это возможно, производим отсоединение всех пневматических трубок от компрессора. Важно знать, что для того чтобы извлечь трубку из быстроразъемного соединения, нужно осуществить нажатие на кольцо и извлечь трубку наружу. Если на практике кольцо не нажимается, в таком случае будет не лишним использовать шлицевую отвертку. Трогать закисшие быстроразъемные соединения не рекомендуется, но если разборка необходима, то очень важно провести тщательную очистку их, а также размачивание в мыльном растворе. Затем необходимо открутить два винта, которые крепят между собой цилиндр и электромотор компрессора.

После этого, проводим снятие поршневого кольца с поршня. Теперь возьмите бритвенное лезвие и из него изготовьте полоски, которые имеют ширину в 5-6 мм. Количество полосок используется в зависимости от толщины лезвия, а также от степени износа поршневого кольца и цилиндра, и в общем варьируется от двух до восьми штук. Итак, производим установку поршневого кольца на определенное место, при этом подкладываем под него вышеупомянутые полоски из лезвия. Наконец, устанавливаем цилиндр компрессора на место.

Как говорят специалисты, вышеуказанные экстренные меры, которые вы вовремя предпримете, помогут вам выиграть время от пары дней до пары месяцев, за которые вы сможете провести капитальный ремонт, установить ремкомплект компрессора пневмоподвески или заменить его на новый.

Кардинально иначе обстоят дела с ремонтом компрессора, который из-за перегрева двигателя дает сбои. В таком случае электродвигатель запускаться не будет, хотя и поршневая система будет пребывать в полнейшем порядке. Проверить данную неисправность возможно при подаче напряжения с аккумулятора напрямую на силовой электрический разъем компрессора. Если электродвигатель запускаться не захочет, то можно привести его на некоторое время в чувство. Для разборки электродвигателя вам понадобится выкрутить два винта, которые его стягивают.

В зависимости от типа используемых винтов, для проделывания данной операции вам, возможно, будет нужен либо небольшой разводной ключ, либо головка на 10. После того как вы выкрутите винты, вам необходимо проделать снятие заднего фланца двигателя. Важно отметить, что это довольно сложное задание, в том случае если электродвигатель сильно перегрелся, ведь расплавившийся лак обмоток крепко склеивает ротор со статором. В данной ситуации как раз кстати придется шлицевая отвертка, с помощью которой можно снять задний фланец. После того, как вы проделаете эту операцию, можете снимать с двигателя статор.

Как правило, расплавившийся лак внутри двигателя обладает волокнистой структурой. Он способен заполнять все пространство между ротором и статором, а также заливать коллектор и щеточный узел. Главной задачей автомобилиста, или же ремонтника, является удаление всего оплавившегося лака со щеточного узла и статора. В идеале, щетки должны двигаться в направляющих легко и без заеданий.

Для того чтобы удалить лак, нужно воспользоваться плоскостью ножа либо мелкой шкуркой. При удалении лака важно постараться не повредить коллекторные пластины. Перед тем как собрать электродвигатель, рекомендуется сделать проверку на наличие замыкания обмоток ротора с корпусом. Для данной проверки следует использовать мультиметр.

Как правило, после сборки электродвигатель свободно включается и хорошо работает, но существует большая вероятность того, что из-за межвиткового замыкания, которое имеет место в обмотках ротора, при небольших нагрузках электродвигатель может просто делать остановки. Важно знать, что вышеупомянутый двигатель ни в коем случае нельзя использовать. В таком случае, специалисты рекомендуют произвести замену компрессора на новый, или же отдать профессиональным ремонтникам.

Давайте теперь все же подытожим, к каким процедурам важно прибегать, дабы привести компрессор пневмоподвески в чувство.

Итак, как только вы, наконец, снимете компрессор со своего автомобиля и принесете его в гараж, вам крайне необходимо будет запастись разнообразными гаечными ключами, всевозможными отвертками, дрелью с различными сверлами, мыльным раствором, ветошью и ватой, а также многими другими инструментами. Исходя из того, что компрессоры бывают разные, а следовательно, имеют разные диаметры болтов и гаек, вам следует запастись как можно большим количеством всего этого «добра». Но, как правило, конструкция компрессоров остается более-менее стандартной.

Перед тем как приступать к ремонтным работам, важно хорошенько почистить компрессор. Для чего это нужно? В первую очередь для того, чтобы в пневмосистему не могла проникнуть какая-нибудь грязь, ведь в противном случае она может попросту засорить трубки, по которым подается воздух, которые принято называть воздушными магистралями. Делаем промывку компрессора мыльным раствором и жесткой щеткой.

Специалисты рекомендуют воздержаться от использования металлических щеток, а тем более от моек высокого давления. Более того, также не допускается и использование растворителей, имеющих высокую концентрацию различных химических средств – они попросту могут нанести вред резиновым и пластиковым деталям компрессора.

Далее, после тщательной очистки системы последует разборка компрессора пневмоподвески. Для начала вам необходимо снять цилиндр, который является единой деталью наряду с клапаном сброса и блоком осушителя. После того как цилиндр компрессора будет снят, можно приступить к снятию датчика регулирования температуры.

На сегодня некоторые версии компрессора предполагают наличие дополнительного фиксирующего болта, который удерживает датчик температуры. После того как мы получили полный доступ ко «внутренностям» компрессора, нам необходимо провести полную диагностику системы, обнаружить имеющиеся в ней неисправности и должным образом провести работу по их устранению. Итак, в первую очередь обращаем внимание на поршень, который производит вращательные движения на шатуне, а конкретнее на состояние данной конструкции и ее конкретных узлов.

Наиболее значимой проблемой, которая, скорее всего, способна привести к замене самого компрессора, является плавление обмоток ротора: в таком случае ротор попросту перестанет вращаться. Проверить компрессор на наличие данной неисправности довольно просто: важно попытаться прокрутить поршень, который, как правило, не должен заклинивать при оборотах и плавно, бесшумно вращаться. Если вращение происходит очень туго или не происходит вообще, можете не сомневаться , что проблема с обмоткой ротора вас все-таки коснулась, и вам нужно обратиться к специалистам.

Ремонт компрессоров | Ремонт компрессоров

Цилиндры. Цилиндр является одним из важных органов поршневого компрессора. В нем под действием совершающегося возвратно-поступательного движения поршня происходит сжатие газа. На крышке цилиндра установлены органы газораспределения. К цилиндру прикреплены нагнетательный и всасывающий трубопроводы. При сжатии газа в стенках и крышке цилиндра возникают значительные натяжения. Поэтому цилиндры компрессоров среднего и высокого давления изготавливают из стального литья или поковок.

Рабочая поверхность («зеркало») цилиндра образуется за прессованной втулкой из перлитного чугуна, обладающего хорошими антифрикционными свойствами. Так как при работе компрессора в результате трения поршня о втулку может выделяться значительное количество теплоты, то для ее отвода между втулкой и корпусом цилиндра предусмотрено пространство, в котором циркулирует охлаждающая жидкость.

Цилиндры выполняют с двумя торцовыми крышками или с одной крышкой и глухой стенкой со стороны вала. Наибольшее распространение получили цилиндры с двумя торцовыми крышками и клапанами, размещенными на цилиндрических стенках.

В компрессорах низкого давления применяют составные цилиндры, состоящие из четырех частей (корпуса цилиндра, передней и задней крышек и «мокрой» втулки). Такая конструкция проста в изготовлении, но трудоемка при обеспечении уплотнения разъемов. Поэтому цилиндры компрессоров высокого давления изготавливают из монолитных поковок со съемной клапанной головкой. На рис. 141 показан составной цилиндр из стального литья. Внутрь стального корпуса / запрессована чугунная втулка 2. Охлаждающая рубашка 4 имеет фланцы 5 и 6 (один —для крепления к цилиндру соседней ступени, а другой для крепления головки цилиндра). Для создания герметичности в полости «водяной рубашки» установлено манжетное уплотнение 3. Всасывающий и нагнетательный клапаны (на чертеже не показаны) устанавливают в отверстиях 8 и 9, выполненных в головке 7, к ней же крепятся патрубки нагнетательного и всасывающего 10 трубопроводов.

У передвижных компрессоров цилиндры, как правило, имеют воздушное охлаждение. Для повышения интенсивности теплоот дачи наружные поверхности корпуса цилиндра и крышки выполняют оребренными (рис. 142), где S — шаг, h — толщина и R — радиус ребра.

 

Рис. 141. Составной цилиндр

 

Поршни. Поршень — подвижная деталь компрессора, плотно перекрывающая поперечное сечение цилиндра и совершающая возвратно-поступательное движение в направлении его оси. Под действием поршня перекачиваемому газу сообщается избыточ­ное давление.

Существуют три основных типа поршней: тронковые, дисковые и дифференциальные.

Тронковые поршни соединяют непосредственно с шатуном с помощью поршневого пальца. Цилиндрическая поверхность таких поршней состоит из верхнего пояса и юбки. В верхнем поя­се устанавливают уплотняющие поршневые кольца, в юбке — маслосъемные кольца, назначение которых заключается в удалении частиц масла, попадающего из картера. Тронковые поршни применяют обычно в ступенях одностороннего действия. Поэтому они воспринимают нормальные усилия, возникающие в процессе работы. Длина тронковых поршней

LT.П=(0,8-2,0) D,

где   D — максимальный    диаметр поршня.

Дисковые поршни имеют относительно небольшую длину и применяются в ступенях низкого давления двустороннего действия. Длина дискового поршня LД.П = (0,2-0,4) D.

 

На рис. 143 представлен дифференциальный поршень второй, третьей и пятой ступеней вертикального компрессора. Поршни второй и третьей ступеней чугунные, смонтированы на штоке. Поршень пятой ступени наборный.

В большинстве случаев дисковые поршни выполняют скользящими по всей несущей поверхности, которую заливают баб битом. В некоторых конструкциях несущая поверхность выполнена в виде бронзовой наплавки.

Дифференциальные поршни представляют собой комбинацию нескольких поршней разных диаметров, объединенных в одну деталь. Они применяются в компрессорах с несколькими ступенями в одном ряду.

На рис. 144 изображен дифференциальный поршень первой и третьей ступеней вертикального воздушного компрессора. В середине поршня первой ступе ни выполнено гнездо для установки под пятника сферической головки шатуна. Поршень имеет два уплотнительных кольца и одно маслосъемное. Поршень третьей ступени — наборный.

Как работает воздушный компрессор

Несколько лет назад в магазинах было обычным делом иметь центральный источник энергии, который приводил в действие все инструменты через систему ремней, колес и приводных валов. Электроэнергия передавалась по рабочему пространству механическими средствами. Хотя ремни и валы могут исчезнуть, многие магазины по-прежнему используют механическую систему для перемещения энергии по магазину. Он основан на энергии, хранящейся в воздухе под давлением, а сердце системы — воздушный компрессор.

Воздушные компрессоры используются в самых разных ситуациях — от угловых заправочных станций до крупных производственных предприятий. И все больше и больше воздушных компрессоров находят применение в домашних мастерских, подвалах и гаражах. Модели, рассчитанные на любую работу, от надувных игрушек для бассейнов до электроинструментов, таких как гвозди, шлифовальные машины, дрели, ударные гайковерты, степлеры и краскопульты, теперь доступны в местных домашних центрах, у дилеров инструментов и в каталогах по почте.

Большим преимуществом пневматической энергии является то, что для каждого инструмента не нужен собственный громоздкий двигатель. Вместо этого один двигатель компрессора преобразует электрическую энергию в кинетическую.Это позволяет создавать легкие, компактные, простые в обращении инструменты, которые работают тихо и содержат меньше изнашиваемых деталей.

Типы воздушных компрессоров

Хотя существуют компрессоры, в которых для создания давления воздуха используются вращающиеся рабочие колеса, компрессоры объемного действия более распространены и включают модели, используемые домовладельцами, деревообработчиками, механиками и подрядчиками. Здесь давление воздуха увеличивается за счет уменьшения размера пространства, содержащего воздух.Большинство компрессоров, с которыми вы столкнетесь, выполняют эту работу с возвратно-поступательным поршнем.

Как и небольшой двигатель внутреннего сгорания, обычный поршневой компрессор имеет коленчатый вал, шатун и поршень, цилиндр и головку клапана. Коленчатый вал приводится в движение электродвигателем или газовым двигателем. Хотя есть небольшие модели, которые состоят только из насоса и двигателя, большинство компрессоров имеют воздушный резервуар для удержания количества воздуха в пределах заданного диапазона давления. Сжатый воздух в резервуаре приводит в движение пневматические инструменты, а мотоцикл включается и выключается, чтобы автоматически поддерживать давление в резервуаре.

В верхней части цилиндра вы найдете головку клапана, которая удерживает впускной и выпускной клапаны. Оба представляют собой простые тонкие металлические заслонки — одна установлена ​​под ней, а другая — сверху. При движении поршня вниз над ним создается разрежение. Это позволяет наружному воздуху при атмосферном давлении толкать впускной клапан и заполнять область над поршнем. Когда поршень движется вверх, воздух над ним сжимается, закрывает впускной клапан и толкает выпускной клапан. Воздух движется из выпускного отверстия в резервуар.С каждым ходом в бак поступает больше воздуха, и давление повышается.

Типичные компрессоры выпускаются в 1- или 2-цилиндровых версиях в зависимости от требований инструментов, которые они приводят в действие. На уровне домовладельца / подрядчика большинство двухцилиндровых моделей работают так же, как одноцилиндровые, за исключением того, что на один оборот приходится два хода вместо одного. Некоторые коммерческие 2-цилиндровые компрессоры представляют собой 2-ступенчатые компрессоры: один поршень нагнетает воздух во второй цилиндр, что дополнительно увеличивает давление.

Компрессоры

используют реле давления для остановки двигателя, когда давление в баллоне достигает заданного предела — около 125 фунтов на квадратный дюйм для многих одноступенчатых моделей. Однако в большинстве случаев такое давление не требуется. Поэтому в воздуховоде будет регулятор, который вы настроите в соответствии с требованиями к давлению используемого вами инструмента. Манометр перед регулятором контролирует давление в баллоне, а манометр после регулятора контролирует давление в воздушной линии. Кроме того, в баке есть предохранительный клапан, который открывается при выходе из строя реле давления. Реле давления может также включать в себя разгрузочный клапан, который снижает давление в баллоне при выключенном компрессоре.

Многие компрессоры с шарнирно-поршневыми поршнями смазываются маслом. То есть они имеют масляную ванну, которая смазывает подшипники и стенки цилиндра разбрызгиванием при вращении кривошипа. У поршней есть кольца, которые помогают удерживать сжатый воздух наверху поршня и удерживают смазочное масло от воздуха. Однако кольца не совсем эффективны, поэтому некоторое количество масла попадет в сжатый воздух в виде аэрозоля.

Наличие масла в воздухе не обязательно является проблемой. Многие пневматические инструменты требуют смазки, и часто добавляются встроенные масленки, чтобы увеличить равномерность подачи к инструменту.С другой стороны, эти модели требуют регулярных проверок масла, периодической замены масла, и они должны работать на ровной поверхности. Прежде всего, есть некоторые инструменты и ситуации, в которых требуется безмасляный воздух. Распыление масла в воздушном потоке вызовет проблемы с отделкой. Многие новые инструменты для деревообработки, такие как гвоздезабиватели и шлифовальные машинки, не содержат масла, поэтому нет никаких шансов загрязнить деревянные поверхности маслом. В то время как решения проблемы с воздушным маслом включают использование маслоотделителя или фильтра в воздушной линии, лучше использовать безмасляный компрессор, в котором вместо масляной ванны используются подшипники с постоянной смазкой.

Разновидностью поршневого компрессора автомобильного типа является модель, в которой используется цельный поршень / шатун. Поскольку пальца отсутствует, поршень наклоняется из стороны в сторону, когда эксцентриковая шейка вала перемещает его вверх и вниз. Уплотнение вокруг поршня поддерживает контакт со стенками цилиндра и предотвращает утечку воздуха.

Там, где потребность в воздухе невысока, может быть эффективен диафрагменный компрессор. В этой конструкции мембрана между поршнем и камерой сжатия изолирует воздух и предотвращает утечку.

Мощность компрессора
Одним из факторов, используемых для определения мощности компрессора, является мощность двигателя. Однако это не лучший показатель. Вам действительно нужно знать количество воздуха, которое компрессор может подавать при определенном давлении.

Скорость, с которой компрессор может подавать объем воздуха, указывается в кубических футах в минуту (куб. Поскольку атмосферное давление играет роль в скорости движения воздуха в цилиндр, куб. Фут в минуту будет зависеть от атмосферного давления.Он также зависит от температуры и влажности воздуха. Чтобы создать равные условия игры, производители рассчитывают стандартные кубические футы в минуту (scfm) как cfm на уровне моря при температуре воздуха 68 градусов по Фаренгейту и относительной влажности 36%. Номинальные значения стандартных кубических футов в минуту приведены для конкретного давления, например, 3,0 кубических футов в минуту при 90 фунтах на квадратный дюйм. Если уменьшить давление, scfm повышается, и наоборот.

Вы также можете встретить рейтинг, называемый смещением куб. Футов в минуту. Этот показатель является произведением рабочего объема цилиндра и числа оборотов двигателя. По сравнению с scfm, это показатель эффективности компрессорного насоса.

Номинальные значения кубических футов в минуту и ​​фунтов на квадратный дюйм важны, поскольку они указывают на инструменты, которыми может управлять конкретный компрессор. Выбирая компрессор, убедитесь, что он может подавать такое количество воздуха и давление, которое необходимо вашим инструментам.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино. io

Цилиндр, поршень, шатун, коленчатый вал: детали поршневого компрессора

Введение

Теперь, когда мы увидели принцип работы поршневого компрессора, давайте посмотрим на различные части компрессора. Важными частями поршневого компрессора являются: цилиндр, поршень, поршневые кольца, шатун, коленчатый вал, всасывающий клапан, нагнетательный клапан, всасывающий порт, нагнетательный канал и т. Д. Все эти детали подробно описаны ниже (см. Изображение ниже):

Холодильный компрессор

  1. Цилиндр:

В небольших компрессорах цилиндр изготавливается путем прямого растачивания в основном корпусе компрессора, который обычно изготавливается из чугуна.В случае больших многоцилиндровых компрессоров цилиндр изготавливается отдельно и устанавливается в основной корпус компрессора. Этот тип цилиндра еще называют гильзой или гильзой. В таких компрессорах, если какой-либо из цилиндров изношен или поврежден, его можно легко заменить на новую гильзу без необходимости замены всего компрессора.

  1. Поршень:

Поршень совершает движение вверх и вниз внутри цилиндра, которое также называется возвратно-поступательным движением.Во время движения поршень обеспечивает всасывание и сжатие хладагента. Поршень изготовлен из чугуна или алюминия. При движении внутри цилиндра хладагент не должен просачиваться через зазор между стенками цилиндра и поршнем в картер, следовательно, поршень покрывается поршневыми кольцами. Поршневые кольца не требуются в компрессорах меньшего размера. Зазор между поршнем и цилиндром также заполнен смазочным маслом, что также предотвращает утечку сжатого хладагента в картер.

  1. Поршневые кольца:

Поршневые кольца расположены вокруг поршня. Когда поршень совершает возвратно-поступательное движение внутри цилиндра, именно поршневые кольца соприкасаются со стенками цилиндра. Между стенками цилиндра и поршневыми кольцами возникает сильное трение, поэтому их необходимо время от времени заменять для правильной работы компрессора. Это помогает увеличить срок службы поршня и предотвращает замену всего поршня.

  1. Коленчатый вал:

Поршень может совершать возвратно-поступательное движение внутри цилиндра из-за вращательного движения коленчатого вала. Коленчатый вал — это главный вал компрессора. С одной стороны, он соединен с электродвигателем напрямую муфтой или ремнем и шкивом. Вращение вала двигателя вызывает вращение коленчатого вала. С другой стороны коленчатый вал также соединен с шатуном, который затем соединяется с поршнем на другом конце.Вращательное движение коленчатого вала преобразуется в возвратно-поступательное движение поршня посредством шатуна. В случае многоцилиндровых компрессоров количество шатунов, соединенных с коленчатым валом, такое же, как и количество цилиндров.

  1. Шатун:

Шатун является связующим звеном между поршнем и коленчатым валом. Шатун с одной стороны соединен с поршнем поршневым пальцем, а с другой стороны — с коленчатым валом с помощью крышки шатуна. Оба эти соединения шатуна позволяют преобразовывать вращательное движение коленчатого вала в возвратно-поступательное движение поршня внутри цилиндра. Шатун обычно изготавливается из поковки из углеродистой стали.

  1. Всасывающий и нагнетательный клапан:

Через всасывающий клапан хладагент низкого давления всасывается внутри цилиндра, а через нагнетательный клапан сжатый хладагент высокого давления выходит в нагнетательную линию, откуда хладагент поступает в конденсатор.Всасывающий клапан работает так, что он открывается, когда поршень движется вниз, и закрывается, когда хладагент выходит. Выпускной клапан открывается только тогда, когда поршень достигает определенного уровня внутри цилиндра, а хладагент достигает желаемого уровня давления. Когда хладагент выходит из баллона, выпускной клапан закрывается.

  1. Всасывающий и нагнетательный трубопроводы:

По всасывающему трубопроводу хладагент низкого давления попадает внутрь цилиндра через всасывающий клапан. Высокое давление сжатого хладагента подается, хотя нагнетательная линия.

Изображение предоставлено

https://www.central-air-conditioner-and-refrigeration.com/Air_Conditioner_Compressors.html

Эта публикация является частью серии: Компрессоры для холодильных установок и кондиционеров

Цикл статей, в которых описаны различия между холодильными компрессорами и воздушными компрессорами, типы холодильных компрессоров, принцип работы поршневых компрессоров и детали поршневых компрессоров.

  1. Разница между холодильными компрессорами и воздушными компрессорами
  2. Типы компрессоров холодоснабжения и кондиционирования воздуха
  3. Принцип работы поршневых холодильных компрессоров
  4. Детали поршневого компрессора
  5. Степень сжатия, производительность и объемный КПД холодильного компрессора

Поршневой компрессор — PetroWiki

Поршневые компрессоры — это машины прямого вытеснения, в которых сжимающий и смещающий элемент представляет собой поршень, совершающий возвратно-поступательное движение внутри цилиндра. Обсуждение на этой странице поршневых компрессоров включает описание технологической конфигурации для многоступенчатых агрегатов, а также объяснение концепций:

  • Регулировка скорости
  • Дросселирование на входе
  • Переработка
  • Сброс давления
  • Продувка
  • Распорка для вентиляции и слива

Типы поршневых компрессоров

Есть два типа поршневых компрессоров:

  • Высокая скорость (разборная)
  • Низкая скорость (интегральная)

Категория высокой скорости также называется «отделяемой», а категория низкой скорости также известна как «интегральная».”

Американский институт нефти (API) разработал два отраслевых стандарта: стандарт API 11P и стандарт API 618 , которые часто используются при проектировании и производстве поршневых компрессоров.

Компрессоры раздельные

Термин «отделяемые» используется потому, что эта категория поршневых компрессоров отделена от своего привода. Отдельный компрессор обычно приводится в движение двигателем или электродвигателем. Часто в компрессорной линии требуется редуктор.Рабочая скорость обычно составляет от 900 до 1800 об / мин.

Отдельные блоки монтируются на салазках и являются автономными. Они просты в установке, имеют относительно небольшую начальную стоимость, легко перемещаются на разные площадки и доступны в размерах, подходящих для полевых работ — как на суше, так и на море. Однако отдельные компрессоры имеют более высокие затраты на техническое обслуживание, чем встроенные компрессоры.

Рис. 1 представляет собой поперечное сечение типичного отделяемого компрессора. На рис. 2 показан раздельный компрессорный агрегат с приводом от двигателя.

  • Рис. 1 — Поперечное сечение отделяемого компрессора (любезно предоставлено Dresser-Rand).

  • Рис. 2 — Съемный компрессорный агрегат двигателя (любезно предоставлен Dresser-Rand).

Компрессоры встраиваемые

Термин «встроенный» используется потому, что силовые цилиндры, приводящие в действие компрессор, смонтированы как одно целое с рамой, содержащей цилиндры компрессора. Встроенные блоки работают со скоростью от 200 до 600 об / мин.Они обычно используются на газовых заводах и в трубопроводах, где важны топливная экономичность и долгий срок службы. Интегральные компрессоры могут комплектоваться от двух до десяти компрессорных цилиндров мощностью от 140 до 12 000 л.с.

Встроенные компрессоры обеспечивают высокий КПД в широком диапазоне рабочих условий и требуют меньшего обслуживания, чем отдельные блоки. Однако интегральные блоки, как правило, должны монтироваться на месте и требуют тяжелого фундамента и высокой степени подавления вибрации и пульсаций.У них самая высокая начальная стоимость установки.

Рис. 3 представляет собой поперечное сечение типичного встроенного компрессора. На рис. 4 показан интегрированный компрессорный агрегат.

  • Рис. 3 — Поперечное сечение встроенного компрессора (любезно предоставлено Dresser-Rand).

  • Рис. 4 — Встроенный поршневой компрессорный агрегат (любезно предоставлен Dresser-Rand).

Основные компоненты

Поршневые компрессоры

доступны в различных конструкциях и вариантах исполнения.Основные компоненты типичного поршневого компрессора показаны на Рис. 5 .

  • Рис. 5 — Компоненты поршневого компрессора (любезно предоставлены Dresser-Rand).

Рамка

Рама представляет собой тяжелый прочный корпус, содержащий все вращающиеся детали, на котором установлены цилиндр и направляющая крейцкопфа. Производители компрессоров оценивают рамы для максимальной продолжительной мощности и нагрузки на раму (см. Раздел «Нагрузка на штангу» ниже).

Раздельные компрессоры обычно располагаются в уравновешенной оппозитной конфигурации, характеризующейся парой соседних ходов кривошипа, которые сдвинуты по фазе на 180 градусов и разделены только перемычкой кривошипа. Кривошипы расположены так, что движение каждого поршня уравновешивается движением противоположного поршня.

Встроенные компрессоры обычно имеют силовые цилиндры компрессора и двигателя, установленные на одной раме и приводимые в действие одним коленчатым валом. Цилиндры в встроенных компрессорах обычно расположены только на одной стороне рамы (т.е.е., не уравновешено-противопоставлено).

Цилиндр

Баллон представляет собой сосуд высокого давления, в котором находится газ в цикле сжатия. Цилиндры одностороннего действия сжимают газ только в одном направлении движения поршня. Они могут быть головными или кривошипными. Цилиндры двустороннего действия сжимают газ в обоих направлениях движения поршня (см. Рис. 6 ). В большинстве поршневых компрессоров используются цилиндры двустороннего действия.

  • Рис. 6 — Цилиндры двустороннего действия (любезно предоставлены Dresser-Rand).

Выбор материала баллона определяется рабочим давлением. Чугун обычно используется для давлений до 1000 фунтов на квадратный дюйм. Чугун с шаровидным графитом используется для давлений до 1500 фунтов на квадратный дюйм. Литая сталь обычно используется для давлений от 1500 до 2500 фунтов на квадратный дюйм. Кованая сталь выбирается для рабочих давлений в цилиндрах более 2500 фунтов на квадратный дюйм.

Максимально допустимое рабочее давление (МДРД) баллона должно быть как минимум на 10% выше расчетного давления нагнетания (минимум 25 фунтов на кв. Дюйм).Дополнительное номинальное давление позволяет настроить датчик безопасности высокого давления (PSH) выше расчетного давления нагнетания, а для предохранительного клапана (PSV) — установить давление выше PSH.

Износостойкость трущихся деталей (поршневые кольца и отверстие цилиндра, шток поршня, уплотнительные кольца и т. Д.) Также является критерием выбора материалов. Цилиндры изнашиваются в месте контакта с поршневыми кольцами. При горизонтальном расположении из-за веса поршня наибольший износ цилиндра происходит внизу.Термопластические кольца и направляющие ленты используются в большинстве поршневых компрессоров для уменьшения такого износа.

Цилиндры часто поставляются с гильзами для снижения затрат на ремонт. Вкладыши прижимаются или усаживаются на месте, чтобы предотвратить скольжение. Замена гильзы цилиндра намного дешевле, чем замена всего цилиндра. Кроме того, производительность можно отрегулировать в соответствии с новыми требованиями путем изменения внутреннего диаметра гильзы. Однако гильзы цилиндра увеличивают зазор между клапаном и поршнем, снижают эффективность охлаждения рубашки и уменьшают производительность компрессора от заданного диаметра.

Распорка

Распорка обеспечивает разделение цилиндра компрессора и корпуса компрессора. На рис. 7 показаны распорные детали стандарта API 11P и стандарта API 618. Распорки могут быть одно- или двухкамерными. В однокамерной конструкции пространство между набивкой цилиндра и диафрагмой увеличено, так что никакая часть штока не входит как в картер, так и в сальник цилиндра.Масло перемещается между цилиндром и картером. Если загрязнение масла вызывает беспокойство, может быть предусмотрен маслоотражатель для предотвращения попадания смазочного масла в корпус компрессора. Для работы в токсичных условиях может использоваться двухкамерная конструкция. Никакая часть штока не входит ни в картер, ни в отсек, примыкающий к газовому баллону.

  • Рис. 7 — Распорка с двумя отсеками, показывающая расположение набивки и буферного газа (любезно предоставлено Dresser-Rand).

Из корпуса сальника следует удалить воздух в линию всасывания первой ступени или в систему удаления газа.Распорки содержат вентиляционное отверстие для отвода дополнительного технологического газа, вытекающего из набивки. Диафрагма и набивка предназначены для предотвращения попадания газа в картер. Эффективная вентиляция необходима для того, чтобы технологический газ не загрязнял картерное масло.

Каждый компрессор должен быть оборудован отдельной системой вентиляции и слива для проставок и набивки. Промежуточная вставка и вентиляционные отверстия уплотнения должны быть подключены к открытой вентиляционной системе, которая заканчивается снаружи и над корпусом компрессора на расстоянии не менее 25 футов по горизонтали от выхлопной трубы двигателя. Дренаж проставки должен быть подключен к отдельному поддону, который можно слить вручную. Отстойник должен вентилироваться снаружи и над корпусом компрессора. Смазочное масло из поддона может быть смешано с сырой нефтью или, при определенных обстоятельствах, должно быть отправлено на утилизацию или переработку.

Коленчатый вал

Коленчатый вал вращается вокруг оси рамы и приводит в движение шатун, шток поршня и поршень (см. Рис. 8 ).

  • Шатун соединяет коленчатый вал со штифтом крейцкопфа
  • Крейцкопф преобразует вращательное движение шатуна в линейное колебательное движение, которое приводит в движение поршень
  • Шток поршня соединяет крейцкопф с поршнем.
  • Рис. 8 — Коленчатый вал в сборе (любезно предоставлено Dresser-Rand).

Поршень

Поршень расположен на конце штока поршня и действует как подвижный барьер в цилиндре компрессора. Выбор материала зависит от прочности, веса и совместимости с сжимаемым газом. Поршень обычно изготавливается из легкого материала, например алюминия, чугуна или стали с полым центром для уменьшения веса.На поршни часто устанавливаются термопластичные износостойкие ленты (или направляющие) для увеличения срока службы колец и снижения риска контакта поршня с цилиндром. Чугун обычно обеспечивает удовлетворительно низкие характеристики трения, устраняя необходимость в отдельных лентах износа.

Износостойкие ленты распределяют вес поршня по нижней части цилиндра или стенки гильзы. Поршневые кольца сводят к минимуму утечку газа между поршнем и цилиндром или отверстием гильзы. Поршневые кольца изготовлены из более мягкого материала, чем стенки цилиндра или гильзы, и заменяются через регулярные интервалы технического обслуживания.Когда поршень проходит через питающее отверстие лубрикатора в стенке цилиндра, поршневое кольцо собирает масло и распределяет его по длине хода.

Подшипники

Подшипники, расположенные по всей раме компрессора, обеспечивают правильное радиальное и осевое расположение компонентов компрессора. Коренные подшипники установлены в раме, чтобы правильно установить коленчатый вал. Подшипники коленвала расположены между коленчатым валом и каждым шатуном. Подшипники пальца запястья расположены между каждым шатуном и пальцем крестовины.Подшипники крейцкопфа расположены вверху и внизу каждой крейцкопфа.

Большинство подшипников в поршневых компрессорах представляют собой подшипники с гидродинамической смазкой. Напорная масло подается на каждый подшипник через канавки подачи масла на поверхности подшипника. Размер канавок обеспечивает достаточный поток масла и предотвращает перегрев.

Набивка штока поршня обеспечивает динамическое уплотнение между цилиндром и штоком поршня. Набивка состоит из ряда неметаллических колец, установленных в корпусе и прикрученных к цилиндру.Набивочные кольца работают попарно и предназначены для автоматической компенсации износа. Поскольку каждая пара колец выдерживает ограниченный перепад давления, требуется несколько пар в зависимости от давления, необходимого для применения. Для безопасного удаления утечки газа через набивку вентиляционное отверстие обычно располагается между двумя узлами наружного кольца (см. Раздел «Распорка» выше).

Дополнительные присоединения к набивке могут потребоваться для:

  • Охлаждающая вода
  • Масло смазочное
  • Продувка азотом
  • Вентиляция
  • Измерение температуры

Смазка должна быть тщательно отфильтрована, чтобы избежать повреждений, которые могут возникнуть в результате попадания мелких твердых частиц в корпус.Смазочное масло обычно впрыскивается во второй кольцевой узел, при этом давление перемещает масло по валу.

Клапаны компрессора

Основная функция клапанов компрессора — пропускать поток газа в желаемом направлении и блокировать весь поток в противоположном (нежелательном) направлении. Каждый рабочий конец цилиндра компрессора должен иметь два набора клапанов. Комплект впускных (всасывающих) клапанов пропускает газ в баллон. Комплект нагнетательных клапанов предназначен для откачивания сжатого газа из баллона. Производитель компрессора обычно указывает тип и размер клапана.

Пластинчатые клапаны, состоящие из колец, соединенных перемычками в единую пластину, являются распространенным типом клапанов. В зависимости от материала уплотнительной пластины, пластинчатые клапаны способны выдерживать давление до 15 000 фунтов на квадратный дюйм, перепад давления до 10 000 фунтов на квадратный дюйм, скорость до 2000 об / мин и температуру до 500 ° F. Пластинчатые клапаны плохо работают в присутствии жидкостей.

Клапаны с концентрическим кольцом способны выдерживать давление до 15 000 фунтов на квадратный дюйм, перепад давления до 10 000 фунтов на квадратный дюйм, скорость до 2000 об / мин и температуру до 500 ° F.К преимуществам клапанов с концентрическими кольцами можно отнести:

  • Средняя стоимость запчастей
  • Низкая стоимость ремонта
  • Способность работать с жидкостями лучше, чем пластинчатые клапаны

Тарельчатые клапаны обычно обеспечивают производительность, превосходящую как пластинчатые, так и концентрические кольцевые клапаны. В тарельчатом стиле используются отдельные круглые тарелки для упора в отверстия в седле клапана. Этот тип клапана обеспечивает высокий подъем и низкий перепад давления, что приводит к более высокой топливной эффективности. Тарельчатые клапаны широко используются на объектах трубопроводов, подготовки газа и переработки.Металлические тарелки хорошо подходят:

  • Давление до 3000 фунтов на кв. Дюйм
  • Дифференциальное давление до 1400 фунтов на кв. Дюйм
  • Скорость до 450 об / мин
  • Температура до 500 ° F

Тарелки из термопласта могут применяться в следующих областях:

  • Давление до 3000 фунтов на кв. Дюйм
  • Дифференциальное давление до 1500 фунтов на кв. Дюйм
  • Скорость до 720 об / мин
  • Температура до 400 ° F

На большинстве компрессоров клапаны установлены в цилиндрах.Относительно новая концепция дизайна помещает клапаны в поршень. Конструкция «клапан в поршне» (, рис. 9, ) работает с низкими скоростями клапана и обеспечивает более длительный срок службы и сокращение времени обслуживания.

  • Рис. 9 — Конструкция клапана в поршне (любезно предоставлена ​​Dresser-Rand).

Производительность компрессора

Производительность и мощность компрессора зависят от рабочего объема поршня и зазора в цилиндре. Пропускная способность данного цилиндра является функцией рабочего объема поршня и объемного КПД.Объемный КПД зависит от зазора цилиндра, степени сжатия и свойств сжимаемого газа. Производительность компрессора можно рассчитать с помощью любого из следующих трех уравнений.

……………. (1)

……………. (2)

и

……………. (3)

где

q a = пропускная способность цилиндра при фактических условиях всасывания, Асф / мин,
E v = объемный КПД,
PD = Рабочий объем поршня, Асф / мин,
q г = впускная способность цилиндра, куб. Фут / мин,
и
Q г = входная емкость цилиндра, ммсф / д.

Рабочий объем поршня

Рабочий объем поршня определяется как фактический объем цилиндра, перемещаемый поршнем за единицу времени. Смещение обычно выражается в фактических кубических футах в минуту (акф / мин). Расчет рабочего объема поршня — простая процедура, которая зависит от типа конфигурации компрессора. Цилиндры одностороннего действия могут иметь смещение головки или коленчатого вала. Ур. 4 и 5 используются для расчета рабочего объема цилиндров одностороннего действия.Уравнение 4 для смещения головной части и уравнения. 5 — смещение кривошипа.

……………. (4)

……………. (5)

где

PD = Рабочий объем поршня, Асф / мин,
S = ход, дюйм,
N = частота вращения компрессора, об / мин,
d c = диаметр цилиндра, дюйм. ,
d r = диаметр стержня, дюйм.

Рабочий объем цилиндра двойного действия рассчитывается по формуле Eq. 6 .

……………. (6)

где

PD = Рабочий объем поршня, Асф / мин,
S = ход, дюйм,
N = частота вращения компрессора, об / мин,
d c = диаметр цилиндра, дюйм.,
и
d r = диаметр стержня, дюйм.

Методы, используемые для изменения рабочего объема поршня, включают изменение скорости компрессора, удаление или деактивацию всасывающих клапанов в цилиндре двойного действия и изменение диаметра гильзы цилиндра и поршня.

Разгрузка с одного конца может значительно снизить производительность цилиндра двустороннего действия. Лучший способ разгрузить баллон — отключить или снять всасывающие клапаны с одного конца, чтобы предотвратить сжатие газа на этом конце.В зависимости от частоты разгрузки и молекулярной массы газа разгрузчик с отверстием или пробкой является следующим лучшим методом разгрузки баллона. Пончик заменяет один всасывающий клапан из трех или более клапанов на угол, и для каждого конца цилиндра требуется только одно разгрузочное устройство. При использовании клапанов с концентрическими кольцами можно разместить разгрузочное устройство в центре всасывающего клапана для разгрузки. В зависимости от молекулярной массы газа разгрузочные устройства с портами и пробками снижают BHP / MMscf / D и значительно повышают надежность системы разгрузки.

Если всасывающий клапан удерживается открытым с помощью пальцевых депрессоров во время такта сжатия, газ будет течь через открытый клапан обратно в канал всасываемого газа, и газ не будет выпускаться из конца цилиндра, содержащего ненагруженный всасывающий клапан. Деактивация клапанов может выполняться вручную, когда компрессор выключен, или с помощью устройства разгрузки клапана или подъемника, когда компрессор работает. Управление разгрузчиком клапана может быть ручным или автоматическим с помощью диафрагмы, которая разгружает компрессор с помощью датчика давления всасывания.Мембранные приводы более надежны, чем ручные подъемники или разгрузчики.

Разгрузка обоих концов одного и того же цилиндра может вызвать его перегрев; таким образом, лучше всего разгружать только один конец цилиндра компрессора двойного действия. В большинстве случаев предпочтительнее снимать всасывающий клапан при разгрузке головной части цилиндра, чтобы обеспечить изменение нагрузки на штоки. (См. Раздел «Нагрузка на штангу» ниже)

Клиренсный объем

Свободный объем — это пространство, остающееся в цилиндре компрессора в конце хода.Зазор состоит из пространств в углублениях клапана и пространства между поршнем и концом цилиндра. По завершении каждого такта сжатия сжатый газ, захваченный в зазоре, расширяется по направлению к поршню и увеличивает силу обратного хода. Рис. 10 — это диаграмма зависимости давления от объема ( P-V ), иллюстрирующая влияние зазора.

  • Рис. 10 — Поршневой компрессор по схеме PV (любезно предоставлено Dresser-Rand).

Расширение газа, захваченного в зазоре, происходит до того, как всасывающий клапан откроется для впуска нового газа в цилиндр. В результате часть смещения поршня происходит до открытия всасывающего клапана. Процесс сжатия в поршневых компрессорах является почти изоэнтропическим, поэтому энергия, необходимая для сжатия газа в зазоре, восстанавливается, когда газ расширяется в конце такта сжатия. По этой причине изменение зазора не влияет на мощность компрессора.

Зазорный объем выражается в процентах от рабочего объема поршня с использованием одного из следующих зависимых от конфигурации уравнений:

  • Цилиндр одностороннего действия (зазор между головкой) [ Ур. 7 ]
  • Цилиндр одностороннего действия (зазор коленчатого вала) [ Ур. 8 ]
  • Цилиндр двойного действия (зазор между головкой и шатуном) [ Ур. 9 ]

……………. (7)

……………. (8)

……………. (9)

где

% С = зазор цилиндра,%,
C HE = зазор перед головкой, дюйм 3 ,
C CE = зазор коленвала, дюйм 3 ,
d c = внутренний диаметр цилиндра, дюймы,
d r = диаметр стержня, дюйм,
S = длина хода, дюймы
Приложение

Зазор может быть добавлен к цилиндру как:

  • Карманы фиксированного объема
  • Карманы с переменным зазором
  • Хомуты с разделительными клапанами
Карманы с фиксированным объемом

Свободный карман фиксированного объема обычно представляет собой объемный баллон, постоянно прикрепленный к баллону. Фиксированный объем также может быть добавлен за счет заглушки бокового прохода, состоящей из фланца с заглушкой переменной длины, вставленной в проход, встроенный в боковую часть цилиндра. Карман с фиксированным объемом может быть постоянно открытым или может быть открыт или закрыт. Управление может осуществляться ручным маховиком или автоматическим приводом. Управление приводом позволяет открывать или закрывать зазорный карман снаружи цилиндра во время работы компрессора.

Карманы с переменным зазором

Карманы с переменным зазором позволяют добавлять переменный зазор к цилиндру и могут быть прикреплены либо к головке, либо к стороне кривошипа цилиндра.Чаще всего карманы с переменным зазором прикрепляются к головному концу, как показано на Рис. 11 .

  • Рис. 11 — Карман с ручным регулированием объема (любезно предоставлен Dresser-Rand).

Хомуты распределительные

Чрезмерный зазор в цилиндре компрессора может вызвать захлопывание выпускных клапанов. Если имеется слишком большой зазор, выпуск газа не будет. Может произойти быстрый перегрев, поскольку в цилиндр не попадает холодный всасываемый газ.

Объемный КПД

Объемный КПД — это отношение фактического объема газа (Acf / min), втянутого в цилиндр, к рабочему объему поршня (cf / min). Это отношение меньше единицы из-за трех фундаментальных эффектов. Сначала газ нагревается при поступлении в баллон. Во-вторых, утечка через клапаны и поршневые кольца. И, в-третьих, происходит повторное расширение газа, захваченного в зазорном объеме от предыдущего хода. Из этих трех повторное расширение, безусловно, оказывает наибольшее влияние на объемную эффективность.

Производители компрессоров не достигли консенсуса по подходящему методу расчета, поскольку измерение этих эффектов чрезвычайно сложно. Признавая это, можно использовать следующее приближенное уравнение для оценки объемной эффективности.

……………. (10)

где

E v = объемный КПД,
R = степень сжатия,
С = зазор цилиндра,% от рабочего объема поршня,
Z s = коэффициент сжимаемости на входе,
Z d = коэффициент сжимаемости нагнетания,
d r = диаметр стержня, дюйм. ,
к = соотношение теплоемкости, C p / C v ,
L = проскальзывание газа мимо поршневых колец,% (1% для быстроразъемных, 5% для несмазанных компрессоров и 4% для пропановых),
и
96 = поправка на потери из-за падения давления в клапанах.

Нагрузка на штангу

Нагрузки на шток состоят из газовых нагрузок, вызванных давлением и инерционными нагрузками, которые возникают в результате ускорения и замедления поршня, штока поршня, крейцкопфа и примерно одной трети веса шатуна. Производители указывают максимальную нагрузку на шток для защиты компрессора, поскольку перегрузка штоков может серьезно повредить компрессор. Нагрузки необходимо оценивать для нормальных условий эксплуатации, а также для условий сбоя. Нагрузка на шток должна быть проверена при минимальном давлении всасывания и давлении предохранительного клапана, чтобы обеспечить достаточный запас прочности.

Реверс нагрузки на штангу должен быть достаточной величины, чтобы обеспечить смазку втулки пальца крейцкопфа. Втулки смазываются за счет перекачивающего действия открытия и закрытия зазора подшипника, которое происходит, когда нагрузка на шток меняется с растяжения на сжатие. Работа без переворота штоков также может серьезно повредить компрессор.

Нагрузки на штанги для различных конфигураций компрессора рассчитываются по следующим уравнениям:

  • Цилиндр одностороннего действия (головка)
  • Цилиндр одностороннего действия (со стороны кривошипа)
  • Цилиндр двустороннего действия
Цилиндр одностороннего действия (головка)

……………. (11)

……………. (12)

RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюймы 2 ,
a r = площадь поперечного сечения стержня, дюйм. 2 , г.
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
и
P u = давление в ненагруженном конце, фунт / кв.
Цилиндр одностороннего действия (со стороны кривошипа)

……………. (13)

……………. (14)

RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюймы 2 ,
a r = площадь поперечного сечения стержня, дюйм. 2 , г.
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
и
P u = давление в ненагруженном конце, фунт / кв.
Цилиндр двустороннего действия

……………. (15)

……………. (16)

RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюймы 2 ,
a r = площадь поперечного сечения стержня, дюйм. 2 , г.
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
и
P u = давление в ненагруженном конце, фунт / кв.

Прочие факторы производительности

Дополнительные соображения производительности включают:

  • Давление всасывания .При постоянном давлении нагнетания и степени сжатия более 2,0 степень сжатия уменьшается с увеличением давления всасывания. Уменьшение степени сжатия снижает потребность в мощности на единицу потока. Однако емкость цилиндра увеличивается с увеличением давления всасывания быстрее, что приводит к общему увеличению мощности. Чтобы избежать перегрузки водителя, необходимо добавить дополнительный зазор для уменьшения объема цилиндра.
  • Температура всасывания . Объем цилиндра обратно пропорционален абсолютной температуре всасывания.При понижении температуры цилиндр заполняется более стандартными кубическими футами. Таким образом, снижение температуры всасывания на 10 ° F увеличивает массовый расход компрессора почти на 2%. Предварительное охлаждение газа может быть эффективным способом увеличения объема баллона.
  • Давление нагнетания . Изменения давления нагнетания мало влияют на емкость цилиндра. Объемный КПД немного зависит от степени сжатия, а требуемая мощность прямо пропорциональна изменению степени сжатия.
  • Коэффициент теплоемкости (k) .Увеличение значения k приводит к увеличению объемного КПД, как определено уравнением Eq. 10 . Таким образом, данный цилиндр компрессора имеет более высокую фактическую производительность при сжатии природного газа ( k = 1,25) по сравнению с его производительностью при сжатии пропана ( k = 1,15). Более высокая производительность при сжатии природного газа по сравнению с пропаном также приводит к большему потреблению энергии.
  • Скорость . Объем цилиндра прямо пропорционален скорости компрессора.Обычной практикой является регулировка скорости компрессора (в разумных пределах) для поддержания желаемого давления всасывания. Снижение скорости водителя снижает расход топлива и эксплуатационные расходы.

Карты производительности

Карты рабочих характеристик могут быть разработаны для конкретного компрессора с постоянными базовыми условиями. Рис. 12 показывает, что по мере увеличения давления всасывания увеличивается и расход на входе, и мощность при постоянном давлении и температуре нагнетания. При очень низких соотношениях мощность может фактически уменьшаться с увеличением давления всасывания.

  • Рис. 12 — Схема поршневого компрессора с восемью ступенями разгрузки (любезно предоставлено Dresser-Rand).

Технологическая установка

Компрессор является неотъемлемой частью полной компрессорной системы. Рис. 13 — это типичная технологическая схема установки поршневого компрессора.

  • Рис. 13 — Технологическая схема компрессора со встроенным (пульсационная емкость) сепаратором (любезно предоставлено Dresser-Rand).

Обратный клапан

Давление на всасывании компрессора уменьшается по мере уменьшения расхода до тех пор, пока газ не расширится, чтобы обеспечить расход, необходимый для цилиндра. Увеличение степени сжатия, вызванное снижением давления всасывания, приводит к увеличению температуры нагнетания. Таким образом, рециркуляционный клапан в системе должен быть настроен так, чтобы низкое давление всасывания не создавало чрезмерной температуры нагнетания. Кроме того, пределы нагрузки на шток могут определять минимально допустимое давление всасывания для компрессорной установки.По возможности, рециркуляционный клапан должен располагаться после газоохладителей.

Клапан продувки

Клапан продувки сбрасывает остаточное давление, когда компрессор отключен для обслуживания. Управление клапаном обычно автоматическое, но иногда оно выполняется вручную на некоторых небольших береговых компрессорных установках.

Всасывающий скруббер

Попадание жидкости в компрессор через входящий поток газа может вызвать повреждение внутренних компонентов компрессора. По этой причине требуется всасывающий скруббер подходящего размера с приспособлениями для слива.Скруббер может быть частью контроля пульсации при правильном планировании (см. Раздел «Пульсация» ниже). Если входной поток близок к насыщению, рекомендуются горизонтально ориентированные цилиндры и нагнетательные сопла с нижним подключением.

Предохранительные клапаны

Клапаны сброса давления, установленные с запасом на 10% выше давления нагнетания наивысшей ступени или минимум на 15–25 фунтов на квадратный дюйм, обеспечивают защиту от статического давления для трубопроводов и охладителей. Настройка предохранительного клапана никогда не должна превышать максимально допустимое рабочее давление баллона (см. Раздел о баллонах выше).Следует проявлять осторожность, чтобы гарантировать, что все газовые трубопроводы, баллоны и предохранительные клапаны на стороне всасывания рассчитаны на расчетное давление в системах охлаждения с замкнутым контуром или при низких температурах газа.

Пульсация

Поток газа через поршневой компрессор по своей природе вызывает пульсацию, потому что всасывающий и нагнетательный клапаны не открываются на протяжении всего хода сжатия. Демпфирование пульсаций необходимо для создания более равномерного потока через компрессор, чтобы гарантировать равномерную нагрузку и снизить уровни вибрации трубопроводов.

Устройства контроля пульсации

Если могут быть предусмотрены длинные прямые участки трубопровода того же диаметра, что и соединение трубопровода цилиндра компрессора, и мощность ступени меньше 150 л.с., отдельные баллоны или резервуары для пульсации могут не потребоваться. В большинстве случаев объемные баллоны или пульсационные сосуды с внутренними перегородками и / или дроссельными трубками следует размещать как можно ближе к баллону для обеспечения оптимальной надежности клапана. Добавление отверстий в ключевых местах трубопровода также может снизить пульсации трубопровода.Доступно несколько различных формул определения размера бутылок. Типичные размеры бутылок в пять-десять раз превышают рабочий объем цилиндра.

Дизайн пульсации

Цифровой анализ пульсации трубопроводов — это относительно недорогой метод, позволяющий гарантировать, что система трубопроводов рассчитана на приемлемые уровни пульсации (обычно от 2 до 7% от пика до пика). Компоновка системы трубопроводов должна указывать расположение и объем выбивных бочек, бутылок, охладителей и предохранительных клапанов. Анализ должен включать первый основной резервуар или объем до и после компрессора.Следует проанализировать рабочие условия двойного и одностороннего действия (если применимо).

Учет вибрации

Неуравновешенность вращающихся элементов в компрессоре вызывает механическую вибрацию. Противовесы на коленчатом валу и расположение цилиндров попарно с обеих сторон коленчатого вала (на общем виде) могут минимизировать, но не устранить дисбаланс. Таким образом, всегда найдутся механические вибраторы, которые необходимо учитывать при проектировании фундамента.

Вибрация трубопровода

Трубопровод технологического газа компрессора должен быть правильно спроектирован и установлен, чтобы избежать проблем, связанных с чрезмерной вибрацией.Важно, чтобы собственная частота всех участков трубы была больше частоты пульсации компрессора. Частота пульсации компрессора рассчитывается по формуле Eq. 17 .

……………. (17)

где

Коэффициент цилиндра
f p = частота пульсации компрессора, циклов / сек,
N = частота вращения компрессора, об / мин,
n =,
= 1 для цилиндра одностороннего действия
и
= 2 (для цилиндра двустороннего действия).

Трубопровод должен быть надежно связан с использованием коротких участков трубы неодинаковой длины. Адекватное гашение пульсаций помогает предотвратить проблемы, связанные с вибрацией трубопроводов.

Конструкция фундамента

Для крупных встроенных компрессоров или для компрессоров, установленных на сложных конструкциях или мягких грунтах, лучше всего выполнять динамический расчет с использованием сил дисбаланса, указанных производителем.

Для высокоскоростных компрессоров, установленных на участках с почвой, способной выдержать грузовик-пикап, полезны следующие правила.

  • Вес бетонного фундамента должен как минимум в три-пять раз превышать вес оборудования.
  • Используйте грунтовый подшипник для конструкции, которая менее чем на 50% допустима для статических условий.
  • Как правило, лучше увеличить длину и / или ширину, чем глубину, для соответствия требованиям веса.
  • Для прямоугольного блока не менее 40% высоты (но не менее 18 дюймов) должно быть заделано в ненарушенный грунт.
  • Бетон следует заливать в «аккуратный» котлован без образования боковых граней.

Цилиндр охлаждения

Теплота сжатия и трения между поршневыми кольцами и цилиндром нагревает цилиндр. Удаление части этого тепла полезно для производительности и надежности компрессора по нескольким причинам. Охлаждение цилиндра снижает потери мощности и мощности, вызванные предварительным нагревом всасываемого газа. Он также отводит тепло от газа, тем самым снижая температуру газа на выходе. Охлаждение цилиндра также способствует лучшей смазке, увеличению срока службы и сокращению затрат на техническое обслуживание.Когда вода используется в качестве охлаждающей среды, равномерная температура поддерживается по всей окружности цилиндра, что снижает вероятность термической деформации цилиндра.

Необходимо соблюдать осторожность, чтобы избежать конденсации, которая может возникнуть в результате чрезмерного охлаждения. Этого можно добиться, поддерживая температуру охлаждающей жидкости рубашки цилиндра как минимум на 10 ° F выше температуры всасываемого газа.

Недостаточное охлаждение может привести к снижению производительности и загрязнению цилиндров. По этой причине рекомендуется, чтобы температура в баллоне не превышала температуру всасываемого газа более чем на 30 ° F.

Системы охлаждения

Типы систем охлаждения включают:

  • С воздушным охлаждением . Системы с воздушным охлаждением используются при небольшой производительности и малых тепловых нагрузках. Ребра охлаждения обеспечивают достаточную площадь поверхности для охлаждения цилиндра.
  • Статический . Статические системы иногда используются на небольших компрессорах для поддержки систем с воздушным охлаждением. Охлаждающая жидкость действует как статический радиатор и действует больше как термостабилизатор, чем как система охлаждения. Некоторое количество тепла передается из системы в атмосферу.
  • Термосифон . Движущая сила термосифона возникает из-за изменения плотности охлаждающей жидкости от горячего к холодному участкам системы. Стандарт API 618 разрешает использование этой системы, когда температура нагнетаемого газа ниже 210 ° F или когда повышение температуры в цилиндре составляет менее 150 ° F.
  • Напорный . Системы охлаждения под давлением являются наиболее распространенными. В местах, где охлаждающая вода недоступна, может использоваться автономная замкнутая система охлаждающей жидкости.Система состоит из циркуляционного насоса, расширительного бачка и радиатора с вентиляторным охлаждением или теплообменника воздух-жидкость. Радиатор может иметь несколько секций — одну для охлаждающей жидкости цилиндра, одну для охлаждения смазочного масла и одну (или несколько) для охлаждения нагнетаемого газа. Охлаждающая жидкость — это вода или смесь воды и этиленгликоля. Коленчатый вал обычно приводит в действие циркуляционный насос.

Смазка

Смазка рамы

Система смазки рамы подает масло к подшипникам рамы, шатунным подшипникам и башмакам крейцкопфа.Некоторые системы смазки рамы также подают масло в набивку и цилиндры. Для большинства поршневых компрессоров система смазки встроена в раму.

Смазка разбрызгиванием

Системы смазки разбрызгиванием распределяют смазочное масло за счет разбрызгивания кривошипа через поверхность смазки в насосе. Для усиления эффекта к коленчатому валу могут быть прикреплены ковши. Системы разбрызгивания используются на небольших горизонтальных одноступенчатых компрессорах с потребляемой мощностью до 100 л.с.

Два основных преимущества систем разбрызгивания:

  • Низкая начальная стоимость
  • Минимальное присутствие оператора

Основными недостатками системы разбрызгивания являются:

  • Малые размеры рамы
  • Масло не фильтруется

Смазка под давлением

Самый распространенный тип смазки рамы — это система под давлением. Масло поступает в каналы, просверленные в коленчатом валу, и проходит через главный вал и подшипники кривошипных шатунов.Система смазки под давлением состоит из компонентов, обсуждаемых ниже.

Главный масляный насос

Главный масляный насос приводится в действие коленчатым валом или может иметь отдельный привод. Обычно он рассчитан на обеспечение 110% максимальной ожидаемой скорости потока. Когда для регулирования производительности используется снижение скорости, необходимо следить за тем, чтобы этот насос обеспечивал адекватную смазку при минимальной рабочей скорости.

Вспомогательный насос (опция)

Вспомогательный насос предназначен для поддержки основного насоса.Вспомогательный насос обычно приводится в действие электродвигателем и предназначен для автоматического запуска, когда давление в системе подачи масла падает ниже заданного уровня.

Насос предварительной смазки (опция)

Насос предварительной смазки подает масло к подшипникам перед запуском компрессора. Это гарантирует, что подшипники не будут сухими при запуске. Поскольку эту функцию обеспечивает дополнительный насос, насос предварительной смазки требуется только в том случае, если в системе нет вспомогательного насоса.

Масляный радиатор

Маслоохладитель гарантирует, что температура масла, подаваемого к подшипникам, не превышает максимального значения, необходимого для защиты подшипников от износа.Типичная максимальная температура подаваемого масла составляет 120 ° F. Охлаждающая вода рубашки охлаждения в кожухотрубном теплообменнике часто используется для охлаждения смазочного масла.

Фильтры масляные

Масляные фильтры защищают подшипники, удаляя твердые частицы из смазочного масла. Некоторые системы оснащены двойными полнопоточными масляными фильтрами с передаточными клапанами. Передаточные клапаны позволяют переключаться с одного фильтра на другой, так что фильтры можно чистить, не останавливая компрессор.

Накладной бак

Верхний бак подает масло к подшипникам, если насос выходит из строя.Масло из верхнего резервуара самотеком подается к подшипникам. Размер бака должен обеспечивать подачу масла до полного отключения компрессора. Бак обычно снабжен указателем уровня.

Трубопровод

Компоненты системы смазки соединены трубопроводами. Важными факторами являются чистота и устойчивость к коррозии. Следует избегать использования оцинкованных труб из-за возможной коррозии. Трубопроводы из углеродистой стали следует протравить или механически очистить и покрыть ингибитором ржавчины.После фильтров следует использовать трубопровод из нержавеющей стали. Система трубопроводов должна быть спроектирована таким образом, чтобы не было карманов, в которых может скапливаться грязь или мусор. По этой причине следует избегать использования труб, приваренных с помощью муфты. Перед первым запуском систему смазочного масла необходимо промыть смазочным маслом при температуре примерно 170 ° F. В систему необходимо добавить сетку с размером ячеек 200 меш, и промывку следует продолжать до тех пор, пока сетка не станет чистой. Контрольно-измерительные приборы должны включать датчик низкого уровня масла в картере, выключатель низкого давления масла и выключатель высокой температуры масла.

Для компрессоров со встроенным приводом двигателя рекомендуется смазывать компрессор и привод с помощью отдельных систем, чтобы газы сгорания двигателя не загрязняли смазочное масло. В этом случае смазка сальника и цилиндра обеспечивается системой смазки компрессора. При установке в очень холодных условиях следует рассмотреть возможность использования погружных или проточных нагревателей и специальных смазочных масел.

Смазка цилиндров и сальников

Количество масла, необходимое для смазки сальника и цилиндров, невелико по сравнению с требованиями к маслу подшипников.Хотя количество небольшое, давление масла, необходимое для подачи масла к набивке и цилиндрам, высокое. На каждой стадии сжатия используется небольшой плунжерный насос (лубрикатор с принудительной подачей). Разделительные блоки используются для распределения потока масла между цилиндрами и набивкой. Масло может подаваться либо из системы смазки рамы, либо из верхнего бака. Совместимость масла с технологическим газом должна быть проверена для защиты от загрязнения.

Номенклатура

Коэффициент цилиндра
q a = пропускная способность цилиндра при фактических условиях всасывания, Асф / мин,
E v = объемный КПД,
PD = Рабочий объем поршня, Асф / мин,
q г = впускная способность цилиндра, куб. Фут / мин,
Q г = входная емкость цилиндра, MMscf / D
PD = Рабочий объем поршня, Асф / мин,
S = ход, дюйм.,
N = частота вращения компрессора, об / мин,
d c = диаметр цилиндра, дюйм,
d r = диаметр стержня, дюйм.
% С = зазор цилиндра,%,
C HE = зазор перед головкой, дюйм. 3 , г.
C CE = зазор коленвала, дюйм 3 ,
d c = внутренний диаметр цилиндра, дюймы,
d r = диаметр стержня, дюйм,
S = длина хода, дюймы
E v = объемный КПД,
R = степень сжатия,
С = зазор цилиндра,% от рабочего объема поршня,
Z s = коэффициент сжимаемости на входе,
Z d = коэффициент сжимаемости нагнетания,
d r = диаметр стержня, дюйм. ,
к = соотношение теплоемкости, C p / C v ,
L = проскальзывание газа мимо поршневых колец,% (1% для быстроразъемных, 5% для несмазанных компрессоров и 4% для пропановых),
96 = Учет потерь из-за падения давления в клапанах
RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюйм. 2 , г.
a r = площадь поперечного сечения стержня, дюйм 2 ,
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
P u = Давление в ненагруженном конце, фунт / кв.
RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюйм. 2 , г.
a r = площадь поперечного сечения стержня, дюйм 2 ,
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
P u = Давление в ненагруженном конце, фунт / кв.
f p = частота пульсации компрессора, циклов / сек,
N = частота вращения компрессора, об / мин,
n =,
= 1 для цилиндра одностороннего действия
и
= 2 (для цилиндра двустороннего действия)

Список литературы

Используйте этот раздел для цитирования элементов, на которые есть ссылки в тексте, чтобы показать ваши источники. [Источники должны быть доступны читателю, т. Е. Не внутренний документ компании.]

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел, чтобы предоставить ссылки на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Компрессоры

Центробежный компрессор

Ротационные компрессоры прямого вытеснения

PEH: Компрессоры

Поршневой компрессор — PetroWiki

Поршневые компрессоры — это машины прямого вытеснения, в которых сжимающий и вытесняющий элемент представляет собой поршень, совершающий возвратно-поступательное движение внутри цилиндра.Обсуждение на этой странице поршневых компрессоров включает описание технологической конфигурации для многоступенчатых агрегатов, а также объяснение концепций:

  • Регулировка скорости
  • Дросселирование на входе
  • Переработка
  • Сброс давления
  • Продувка
  • Распорка для вентиляции и слива

Типы поршневых компрессоров

Есть два типа поршневых компрессоров:

  • Высокая скорость (разборная)
  • Низкая скорость (интегральная)

Категория высокой скорости также называется «отделяемой», а категория низкой скорости также известна как «интегральная».

Американский институт нефти (API) разработал два отраслевых стандарта: стандарт API 11P и стандарт API 618 , которые часто используются при проектировании и производстве поршневых компрессоров.

Компрессоры раздельные

Термин «отделяемые» используется потому, что эта категория поршневых компрессоров отделена от своего привода. Отдельный компрессор обычно приводится в движение двигателем или электродвигателем. Часто в компрессорной линии требуется редуктор.Рабочая скорость обычно составляет от 900 до 1800 об / мин.

Отдельные блоки монтируются на салазках и являются автономными. Они просты в установке, имеют относительно небольшую начальную стоимость, легко перемещаются на разные площадки и доступны в размерах, подходящих для полевых работ — как на суше, так и на море. Однако отдельные компрессоры имеют более высокие затраты на техническое обслуживание, чем встроенные компрессоры.

Рис. 1 представляет собой поперечное сечение типичного отделяемого компрессора. На рис. 2 показан раздельный компрессорный агрегат с приводом от двигателя.

  • Рис. 1 — Поперечное сечение отделяемого компрессора (любезно предоставлено Dresser-Rand).

  • Рис. 2 — Съемный компрессорный агрегат двигателя (любезно предоставлен Dresser-Rand).

Компрессоры встраиваемые

Термин «встроенный» используется потому, что силовые цилиндры, приводящие в действие компрессор, смонтированы как одно целое с рамой, содержащей цилиндры компрессора. Встроенные блоки работают со скоростью от 200 до 600 об / мин.Они обычно используются на газовых заводах и в трубопроводах, где важны топливная экономичность и долгий срок службы. Интегральные компрессоры могут комплектоваться от двух до десяти компрессорных цилиндров мощностью от 140 до 12 000 л.с.

Встроенные компрессоры обеспечивают высокий КПД в широком диапазоне рабочих условий и требуют меньшего обслуживания, чем отдельные блоки. Однако интегральные блоки, как правило, должны монтироваться на месте и требуют тяжелого фундамента и высокой степени подавления вибрации и пульсаций.У них самая высокая начальная стоимость установки.

Рис. 3 представляет собой поперечное сечение типичного встроенного компрессора. На рис. 4 показан интегрированный компрессорный агрегат.

  • Рис. 3 — Поперечное сечение встроенного компрессора (любезно предоставлено Dresser-Rand).

  • Рис. 4 — Встроенный поршневой компрессорный агрегат (любезно предоставлен Dresser-Rand).

Основные компоненты

Поршневые компрессоры

доступны в различных конструкциях и вариантах исполнения.Основные компоненты типичного поршневого компрессора показаны на Рис. 5 .

  • Рис. 5 — Компоненты поршневого компрессора (любезно предоставлены Dresser-Rand).

Рамка

Рама представляет собой тяжелый прочный корпус, содержащий все вращающиеся детали, на котором установлены цилиндр и направляющая крейцкопфа. Производители компрессоров оценивают рамы для максимальной продолжительной мощности и нагрузки на раму (см. Раздел «Нагрузка на штангу» ниже).

Раздельные компрессоры обычно располагаются в уравновешенной оппозитной конфигурации, характеризующейся парой соседних ходов кривошипа, которые сдвинуты по фазе на 180 градусов и разделены только перемычкой кривошипа. Кривошипы расположены так, что движение каждого поршня уравновешивается движением противоположного поршня.

Встроенные компрессоры обычно имеют силовые цилиндры компрессора и двигателя, установленные на одной раме и приводимые в действие одним коленчатым валом. Цилиндры в встроенных компрессорах обычно расположены только на одной стороне рамы (т.е.е., не уравновешено-противопоставлено).

Цилиндр

Баллон представляет собой сосуд высокого давления, в котором находится газ в цикле сжатия. Цилиндры одностороннего действия сжимают газ только в одном направлении движения поршня. Они могут быть головными или кривошипными. Цилиндры двустороннего действия сжимают газ в обоих направлениях движения поршня (см. Рис. 6 ). В большинстве поршневых компрессоров используются цилиндры двустороннего действия.

  • Рис. 6 — Цилиндры двустороннего действия (любезно предоставлены Dresser-Rand).

Выбор материала баллона определяется рабочим давлением. Чугун обычно используется для давлений до 1000 фунтов на квадратный дюйм. Чугун с шаровидным графитом используется для давлений до 1500 фунтов на квадратный дюйм. Литая сталь обычно используется для давлений от 1500 до 2500 фунтов на квадратный дюйм. Кованая сталь выбирается для рабочих давлений в цилиндрах более 2500 фунтов на квадратный дюйм.

Максимально допустимое рабочее давление (МДРД) баллона должно быть как минимум на 10% выше расчетного давления нагнетания (минимум 25 фунтов на кв. Дюйм).Дополнительное номинальное давление позволяет настроить датчик безопасности высокого давления (PSH) выше расчетного давления нагнетания, а для предохранительного клапана (PSV) — установить давление выше PSH.

Износостойкость трущихся деталей (поршневые кольца и отверстие цилиндра, шток поршня, уплотнительные кольца и т. Д.) Также является критерием выбора материалов. Цилиндры изнашиваются в месте контакта с поршневыми кольцами. При горизонтальном расположении из-за веса поршня наибольший износ цилиндра происходит внизу.Термопластические кольца и направляющие ленты используются в большинстве поршневых компрессоров для уменьшения такого износа.

Цилиндры часто поставляются с гильзами для снижения затрат на ремонт. Вкладыши прижимаются или усаживаются на месте, чтобы предотвратить скольжение. Замена гильзы цилиндра намного дешевле, чем замена всего цилиндра. Кроме того, производительность можно отрегулировать в соответствии с новыми требованиями путем изменения внутреннего диаметра гильзы. Однако гильзы цилиндра увеличивают зазор между клапаном и поршнем, снижают эффективность охлаждения рубашки и уменьшают производительность компрессора от заданного диаметра.

Распорка

Распорка обеспечивает разделение цилиндра компрессора и корпуса компрессора. На рис. 7 показаны распорные детали стандарта API 11P и стандарта API 618. Распорки могут быть одно- или двухкамерными. В однокамерной конструкции пространство между набивкой цилиндра и диафрагмой увеличено, так что никакая часть штока не входит как в картер, так и в сальник цилиндра.Масло перемещается между цилиндром и картером. Если загрязнение масла вызывает беспокойство, может быть предусмотрен маслоотражатель для предотвращения попадания смазочного масла в корпус компрессора. Для работы в токсичных условиях может использоваться двухкамерная конструкция. Никакая часть штока не входит ни в картер, ни в отсек, примыкающий к газовому баллону.

  • Рис. 7 — Распорка с двумя отсеками, показывающая расположение набивки и буферного газа (любезно предоставлено Dresser-Rand).

Из корпуса сальника следует удалить воздух в линию всасывания первой ступени или в систему удаления газа.Распорки содержат вентиляционное отверстие для отвода дополнительного технологического газа, вытекающего из набивки. Диафрагма и набивка предназначены для предотвращения попадания газа в картер. Эффективная вентиляция необходима для того, чтобы технологический газ не загрязнял картерное масло.

Каждый компрессор должен быть оборудован отдельной системой вентиляции и слива для проставок и набивки. Промежуточная вставка и вентиляционные отверстия уплотнения должны быть подключены к открытой вентиляционной системе, которая заканчивается снаружи и над корпусом компрессора на расстоянии не менее 25 футов по горизонтали от выхлопной трубы двигателя.Дренаж проставки должен быть подключен к отдельному поддону, который можно слить вручную. Отстойник должен вентилироваться снаружи и над корпусом компрессора. Смазочное масло из поддона может быть смешано с сырой нефтью или, при определенных обстоятельствах, должно быть отправлено на утилизацию или переработку.

Коленчатый вал

Коленчатый вал вращается вокруг оси рамы и приводит в движение шатун, шток поршня и поршень (см. Рис. 8 ).

  • Шатун соединяет коленчатый вал со штифтом крейцкопфа
  • Крейцкопф преобразует вращательное движение шатуна в линейное колебательное движение, которое приводит в движение поршень
  • Шток поршня соединяет крейцкопф с поршнем.
  • Рис. 8 — Коленчатый вал в сборе (любезно предоставлено Dresser-Rand).

Поршень

Поршень расположен на конце штока поршня и действует как подвижный барьер в цилиндре компрессора. Выбор материала зависит от прочности, веса и совместимости с сжимаемым газом. Поршень обычно изготавливается из легкого материала, например алюминия, чугуна или стали с полым центром для уменьшения веса.На поршни часто устанавливаются термопластичные износостойкие ленты (или направляющие) для увеличения срока службы колец и снижения риска контакта поршня с цилиндром. Чугун обычно обеспечивает удовлетворительно низкие характеристики трения, устраняя необходимость в отдельных лентах износа.

Износостойкие ленты распределяют вес поршня по нижней части цилиндра или стенки гильзы. Поршневые кольца сводят к минимуму утечку газа между поршнем и цилиндром или отверстием гильзы. Поршневые кольца изготовлены из более мягкого материала, чем стенки цилиндра или гильзы, и заменяются через регулярные интервалы технического обслуживания.Когда поршень проходит через питающее отверстие лубрикатора в стенке цилиндра, поршневое кольцо собирает масло и распределяет его по длине хода.

Подшипники

Подшипники, расположенные по всей раме компрессора, обеспечивают правильное радиальное и осевое расположение компонентов компрессора. Коренные подшипники установлены в раме, чтобы правильно установить коленчатый вал. Подшипники коленвала расположены между коленчатым валом и каждым шатуном. Подшипники пальца запястья расположены между каждым шатуном и пальцем крестовины.Подшипники крейцкопфа расположены вверху и внизу каждой крейцкопфа.

Большинство подшипников в поршневых компрессорах представляют собой подшипники с гидродинамической смазкой. Напорная масло подается на каждый подшипник через канавки подачи масла на поверхности подшипника. Размер канавок обеспечивает достаточный поток масла и предотвращает перегрев.

Набивка штока поршня обеспечивает динамическое уплотнение между цилиндром и штоком поршня. Набивка состоит из ряда неметаллических колец, установленных в корпусе и прикрученных к цилиндру.Набивочные кольца работают попарно и предназначены для автоматической компенсации износа. Поскольку каждая пара колец выдерживает ограниченный перепад давления, требуется несколько пар в зависимости от давления, необходимого для применения. Для безопасного удаления утечки газа через набивку вентиляционное отверстие обычно располагается между двумя узлами наружного кольца (см. Раздел «Распорка» выше).

Дополнительные присоединения к набивке могут потребоваться для:

  • Охлаждающая вода
  • Масло смазочное
  • Продувка азотом
  • Вентиляция
  • Измерение температуры

Смазка должна быть тщательно отфильтрована, чтобы избежать повреждений, которые могут возникнуть в результате попадания мелких твердых частиц в корпус. Смазочное масло обычно впрыскивается во второй кольцевой узел, при этом давление перемещает масло по валу.

Клапаны компрессора

Основная функция клапанов компрессора — пропускать поток газа в желаемом направлении и блокировать весь поток в противоположном (нежелательном) направлении. Каждый рабочий конец цилиндра компрессора должен иметь два набора клапанов. Комплект впускных (всасывающих) клапанов пропускает газ в баллон. Комплект нагнетательных клапанов предназначен для откачивания сжатого газа из баллона.Производитель компрессора обычно указывает тип и размер клапана.

Пластинчатые клапаны, состоящие из колец, соединенных перемычками в единую пластину, являются распространенным типом клапанов. В зависимости от материала уплотнительной пластины, пластинчатые клапаны способны выдерживать давление до 15 000 фунтов на квадратный дюйм, перепад давления до 10 000 фунтов на квадратный дюйм, скорость до 2000 об / мин и температуру до 500 ° F. Пластинчатые клапаны плохо работают в присутствии жидкостей.

Клапаны с концентрическим кольцом способны выдерживать давление до 15 000 фунтов на квадратный дюйм, перепад давления до 10 000 фунтов на квадратный дюйм, скорость до 2000 об / мин и температуру до 500 ° F.К преимуществам клапанов с концентрическими кольцами можно отнести:

  • Средняя стоимость запчастей
  • Низкая стоимость ремонта
  • Способность работать с жидкостями лучше, чем пластинчатые клапаны

Тарельчатые клапаны обычно обеспечивают производительность, превосходящую как пластинчатые, так и концентрические кольцевые клапаны. В тарельчатом стиле используются отдельные круглые тарелки для упора в отверстия в седле клапана. Этот тип клапана обеспечивает высокий подъем и низкий перепад давления, что приводит к более высокой топливной эффективности. Тарельчатые клапаны широко используются на объектах трубопроводов, подготовки газа и переработки.Металлические тарелки хорошо подходят:

  • Давление до 3000 фунтов на кв. Дюйм
  • Дифференциальное давление до 1400 фунтов на кв. Дюйм
  • Скорость до 450 об / мин
  • Температура до 500 ° F

Тарелки из термопласта могут применяться в следующих областях:

  • Давление до 3000 фунтов на кв. Дюйм
  • Дифференциальное давление до 1500 фунтов на кв. Дюйм
  • Скорость до 720 об / мин
  • Температура до 400 ° F

На большинстве компрессоров клапаны установлены в цилиндрах.Относительно новая концепция дизайна помещает клапаны в поршень. Конструкция «клапан в поршне» (, рис. 9, ) работает с низкими скоростями клапана и обеспечивает более длительный срок службы и сокращение времени обслуживания.

  • Рис. 9 — Конструкция клапана в поршне (любезно предоставлена ​​Dresser-Rand).

Производительность компрессора

Производительность и мощность компрессора зависят от рабочего объема поршня и зазора в цилиндре. Пропускная способность данного цилиндра является функцией рабочего объема поршня и объемного КПД. Объемный КПД зависит от зазора цилиндра, степени сжатия и свойств сжимаемого газа. Производительность компрессора можно рассчитать с помощью любого из следующих трех уравнений.

……………. (1)

……………. (2)

и

……………. (3)

где

q a = пропускная способность цилиндра при фактических условиях всасывания, Асф / мин,
E v = объемный КПД,
PD = Рабочий объем поршня, Асф / мин,
q г = впускная способность цилиндра, куб. Фут / мин,
и
Q г = входная емкость цилиндра, ммсф / д.

Рабочий объем поршня

Рабочий объем поршня определяется как фактический объем цилиндра, перемещаемый поршнем за единицу времени. Смещение обычно выражается в фактических кубических футах в минуту (акф / мин). Расчет рабочего объема поршня — простая процедура, которая зависит от типа конфигурации компрессора. Цилиндры одностороннего действия могут иметь смещение головки или коленчатого вала. Ур. 4 и 5 используются для расчета рабочего объема цилиндров одностороннего действия.Уравнение 4 для смещения головной части и уравнения. 5 — смещение кривошипа.

……………. (4)

……………. (5)

где

PD = Рабочий объем поршня, Асф / мин,
S = ход, дюйм,
N = частота вращения компрессора, об / мин,
d c = диаметр цилиндра, дюйм.,
d r = диаметр стержня, дюйм.

Рабочий объем цилиндра двойного действия рассчитывается по формуле Eq. 6 .

……………. (6)

где

PD = Рабочий объем поршня, Асф / мин,
S = ход, дюйм,
N = частота вращения компрессора, об / мин,
d c = диаметр цилиндра, дюйм.,
и
d r = диаметр стержня, дюйм.

Методы, используемые для изменения рабочего объема поршня, включают изменение скорости компрессора, удаление или деактивацию всасывающих клапанов в цилиндре двойного действия и изменение диаметра гильзы цилиндра и поршня.

Разгрузка с одного конца может значительно снизить производительность цилиндра двустороннего действия. Лучший способ разгрузить баллон — отключить или снять всасывающие клапаны с одного конца, чтобы предотвратить сжатие газа на этом конце.В зависимости от частоты разгрузки и молекулярной массы газа разгрузчик с отверстием или пробкой является следующим лучшим методом разгрузки баллона. Пончик заменяет один всасывающий клапан из трех или более клапанов на угол, и для каждого конца цилиндра требуется только одно разгрузочное устройство. При использовании клапанов с концентрическими кольцами можно разместить разгрузочное устройство в центре всасывающего клапана для разгрузки. В зависимости от молекулярной массы газа разгрузочные устройства с портами и пробками снижают BHP / MMscf / D и значительно повышают надежность системы разгрузки.

Если всасывающий клапан удерживается открытым с помощью пальцевых депрессоров во время такта сжатия, газ будет течь через открытый клапан обратно в канал всасываемого газа, и газ не будет выпускаться из конца цилиндра, содержащего ненагруженный всасывающий клапан. Деактивация клапанов может выполняться вручную, когда компрессор выключен, или с помощью устройства разгрузки клапана или подъемника, когда компрессор работает. Управление разгрузчиком клапана может быть ручным или автоматическим с помощью диафрагмы, которая разгружает компрессор с помощью датчика давления всасывания.Мембранные приводы более надежны, чем ручные подъемники или разгрузчики.

Разгрузка обоих концов одного и того же цилиндра может вызвать его перегрев; таким образом, лучше всего разгружать только один конец цилиндра компрессора двойного действия. В большинстве случаев предпочтительнее снимать всасывающий клапан при разгрузке головной части цилиндра, чтобы обеспечить изменение нагрузки на штоки. (См. Раздел «Нагрузка на штангу» ниже)

Клиренсный объем

Свободный объем — это пространство, остающееся в цилиндре компрессора в конце хода.Зазор состоит из пространств в углублениях клапана и пространства между поршнем и концом цилиндра. По завершении каждого такта сжатия сжатый газ, захваченный в зазоре, расширяется по направлению к поршню и увеличивает силу обратного хода. Рис. 10 — это диаграмма зависимости давления от объема ( P-V ), иллюстрирующая влияние зазора.

  • Рис. 10 — Поршневой компрессор по схеме PV (любезно предоставлено Dresser-Rand).

Расширение газа, захваченного в зазоре, происходит до того, как всасывающий клапан откроется для впуска нового газа в цилиндр. В результате часть смещения поршня происходит до открытия всасывающего клапана. Процесс сжатия в поршневых компрессорах является почти изоэнтропическим, поэтому энергия, необходимая для сжатия газа в зазоре, восстанавливается, когда газ расширяется в конце такта сжатия. По этой причине изменение зазора не влияет на мощность компрессора.

Зазорный объем выражается в процентах от рабочего объема поршня с использованием одного из следующих зависимых от конфигурации уравнений:

  • Цилиндр одностороннего действия (зазор между головкой) [ Ур. 7 ]
  • Цилиндр одностороннего действия (зазор коленчатого вала) [ Ур. 8 ]
  • Цилиндр двойного действия (зазор между головкой и шатуном) [ Ур. 9 ]

……………. (7)

……………. (8)

……………. (9)

где

% С = зазор цилиндра,%,
C HE = зазор перед головкой, дюйм 3 ,
C CE = зазор коленвала, дюйм 3 ,
d c = внутренний диаметр цилиндра, дюймы,
d r = диаметр стержня, дюйм,
S = длина хода, дюймы
Приложение

Зазор может быть добавлен к цилиндру как:

  • Карманы фиксированного объема
  • Карманы с переменным зазором
  • Хомуты с разделительными клапанами
Карманы с фиксированным объемом

Свободный карман фиксированного объема обычно представляет собой объемный баллон, постоянно прикрепленный к баллону. Фиксированный объем также может быть добавлен за счет заглушки бокового прохода, состоящей из фланца с заглушкой переменной длины, вставленной в проход, встроенный в боковую часть цилиндра. Карман с фиксированным объемом может быть постоянно открытым или может быть открыт или закрыт. Управление может осуществляться ручным маховиком или автоматическим приводом. Управление приводом позволяет открывать или закрывать зазорный карман снаружи цилиндра во время работы компрессора.

Карманы с переменным зазором

Карманы с переменным зазором позволяют добавлять переменный зазор к цилиндру и могут быть прикреплены либо к головке, либо к стороне кривошипа цилиндра.Чаще всего карманы с переменным зазором прикрепляются к головному концу, как показано на Рис. 11 .

  • Рис. 11 — Карман с ручным регулированием объема (любезно предоставлен Dresser-Rand).

Хомуты распределительные

Чрезмерный зазор в цилиндре компрессора может вызвать захлопывание выпускных клапанов. Если имеется слишком большой зазор, выпуск газа не будет. Может произойти быстрый перегрев, поскольку в цилиндр не попадает холодный всасываемый газ.

Объемный КПД

Объемный КПД — это отношение фактического объема газа (Acf / min), втянутого в цилиндр, к рабочему объему поршня (cf / min). Это отношение меньше единицы из-за трех фундаментальных эффектов. Сначала газ нагревается при поступлении в баллон. Во-вторых, утечка через клапаны и поршневые кольца. И, в-третьих, происходит повторное расширение газа, захваченного в зазорном объеме от предыдущего хода. Из этих трех повторное расширение, безусловно, оказывает наибольшее влияние на объемную эффективность.

Производители компрессоров не достигли консенсуса по подходящему методу расчета, поскольку измерение этих эффектов чрезвычайно сложно. Признавая это, можно использовать следующее приближенное уравнение для оценки объемной эффективности.

……………. (10)

где

E v = объемный КПД,
R = степень сжатия,
С = зазор цилиндра,% от рабочего объема поршня,
Z s = коэффициент сжимаемости на входе,
Z d = коэффициент сжимаемости нагнетания,
d r = диаметр стержня, дюйм. ,
к = соотношение теплоемкости, C p / C v ,
L = проскальзывание газа мимо поршневых колец,% (1% для быстроразъемных, 5% для несмазанных компрессоров и 4% для пропановых),
и
96 = поправка на потери из-за падения давления в клапанах.

Нагрузка на штангу

Нагрузки на шток состоят из газовых нагрузок, вызванных давлением и инерционными нагрузками, которые возникают в результате ускорения и замедления поршня, штока поршня, крейцкопфа и примерно одной трети веса шатуна. Производители указывают максимальную нагрузку на шток для защиты компрессора, поскольку перегрузка штоков может серьезно повредить компрессор. Нагрузки необходимо оценивать для нормальных условий эксплуатации, а также для условий сбоя. Нагрузка на шток должна быть проверена при минимальном давлении всасывания и давлении предохранительного клапана, чтобы обеспечить достаточный запас прочности.

Реверс нагрузки на штангу должен быть достаточной величины, чтобы обеспечить смазку втулки пальца крейцкопфа. Втулки смазываются за счет перекачивающего действия открытия и закрытия зазора подшипника, которое происходит, когда нагрузка на шток меняется с растяжения на сжатие. Работа без переворота штоков также может серьезно повредить компрессор.

Нагрузки на штанги для различных конфигураций компрессора рассчитываются по следующим уравнениям:

  • Цилиндр одностороннего действия (головка)
  • Цилиндр одностороннего действия (со стороны кривошипа)
  • Цилиндр двустороннего действия
Цилиндр одностороннего действия (головка)

……………. (11)

……………. (12)

RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюймы 2 ,
a r = площадь поперечного сечения стержня, дюйм. 2 , г.
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
и
P u = давление в ненагруженном конце, фунт / кв.
Цилиндр одностороннего действия (со стороны кривошипа)

……………. (13)

……………. (14)

RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюймы 2 ,
a r = площадь поперечного сечения стержня, дюйм. 2 , г.
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
и
P u = давление в ненагруженном конце, фунт / кв.
Цилиндр двустороннего действия

……………. (15)

……………. (16)

RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюймы 2 ,
a r = площадь поперечного сечения стержня, дюйм. 2 , г.
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
и
P u = давление в ненагруженном конце, фунт / кв.

Прочие факторы производительности

Дополнительные соображения производительности включают:

  • Давление всасывания .При постоянном давлении нагнетания и степени сжатия более 2,0 степень сжатия уменьшается с увеличением давления всасывания. Уменьшение степени сжатия снижает потребность в мощности на единицу потока. Однако емкость цилиндра увеличивается с увеличением давления всасывания быстрее, что приводит к общему увеличению мощности. Чтобы избежать перегрузки водителя, необходимо добавить дополнительный зазор для уменьшения объема цилиндра.
  • Температура всасывания . Объем цилиндра обратно пропорционален абсолютной температуре всасывания.При понижении температуры цилиндр заполняется более стандартными кубическими футами. Таким образом, снижение температуры всасывания на 10 ° F увеличивает массовый расход компрессора почти на 2%. Предварительное охлаждение газа может быть эффективным способом увеличения объема баллона.
  • Давление нагнетания . Изменения давления нагнетания мало влияют на емкость цилиндра. Объемный КПД немного зависит от степени сжатия, а требуемая мощность прямо пропорциональна изменению степени сжатия.
  • Коэффициент теплоемкости (k) .Увеличение значения k приводит к увеличению объемного КПД, как определено уравнением Eq. 10 . Таким образом, данный цилиндр компрессора имеет более высокую фактическую производительность при сжатии природного газа ( k = 1,25) по сравнению с его производительностью при сжатии пропана ( k = 1,15). Более высокая производительность при сжатии природного газа по сравнению с пропаном также приводит к большему потреблению энергии.
  • Скорость . Объем цилиндра прямо пропорционален скорости компрессора.Обычной практикой является регулировка скорости компрессора (в разумных пределах) для поддержания желаемого давления всасывания. Снижение скорости водителя снижает расход топлива и эксплуатационные расходы.

Карты производительности

Карты рабочих характеристик могут быть разработаны для конкретного компрессора с постоянными базовыми условиями. Рис. 12 показывает, что по мере увеличения давления всасывания увеличивается и расход на входе, и мощность при постоянном давлении и температуре нагнетания. При очень низких соотношениях мощность может фактически уменьшаться с увеличением давления всасывания.

  • Рис. 12 — Схема поршневого компрессора с восемью ступенями разгрузки (любезно предоставлено Dresser-Rand).

Технологическая установка

Компрессор является неотъемлемой частью полной компрессорной системы. Рис. 13 — это типичная технологическая схема установки поршневого компрессора.

  • Рис. 13 — Технологическая схема компрессора со встроенным (пульсационная емкость) сепаратором (любезно предоставлено Dresser-Rand).

Обратный клапан

Давление на всасывании компрессора уменьшается по мере уменьшения расхода до тех пор, пока газ не расширится, чтобы обеспечить расход, необходимый для цилиндра. Увеличение степени сжатия, вызванное снижением давления всасывания, приводит к увеличению температуры нагнетания. Таким образом, рециркуляционный клапан в системе должен быть настроен так, чтобы низкое давление всасывания не создавало чрезмерной температуры нагнетания. Кроме того, пределы нагрузки на шток могут определять минимально допустимое давление всасывания для компрессорной установки.По возможности, рециркуляционный клапан должен располагаться после газоохладителей.

Клапан продувки

Клапан продувки сбрасывает остаточное давление, когда компрессор отключен для обслуживания. Управление клапаном обычно автоматическое, но иногда оно выполняется вручную на некоторых небольших береговых компрессорных установках.

Всасывающий скруббер

Попадание жидкости в компрессор через входящий поток газа может вызвать повреждение внутренних компонентов компрессора. По этой причине требуется всасывающий скруббер подходящего размера с приспособлениями для слива.Скруббер может быть частью контроля пульсации при правильном планировании (см. Раздел «Пульсация» ниже). Если входной поток близок к насыщению, рекомендуются горизонтально ориентированные цилиндры и нагнетательные сопла с нижним подключением.

Предохранительные клапаны

Клапаны сброса давления, установленные с запасом на 10% выше давления нагнетания наивысшей ступени или минимум на 15–25 фунтов на квадратный дюйм, обеспечивают защиту от статического давления для трубопроводов и охладителей. Настройка предохранительного клапана никогда не должна превышать максимально допустимое рабочее давление баллона (см. Раздел о баллонах выше).Следует проявлять осторожность, чтобы гарантировать, что все газовые трубопроводы, баллоны и предохранительные клапаны на стороне всасывания рассчитаны на расчетное давление в системах охлаждения с замкнутым контуром или при низких температурах газа.

Пульсация

Поток газа через поршневой компрессор по своей природе вызывает пульсацию, потому что всасывающий и нагнетательный клапаны не открываются на протяжении всего хода сжатия. Демпфирование пульсаций необходимо для создания более равномерного потока через компрессор, чтобы гарантировать равномерную нагрузку и снизить уровни вибрации трубопроводов.

Устройства контроля пульсации

Если могут быть предусмотрены длинные прямые участки трубопровода того же диаметра, что и соединение трубопровода цилиндра компрессора, и мощность ступени меньше 150 л.с., отдельные баллоны или резервуары для пульсации могут не потребоваться. В большинстве случаев объемные баллоны или пульсационные сосуды с внутренними перегородками и / или дроссельными трубками следует размещать как можно ближе к баллону для обеспечения оптимальной надежности клапана. Добавление отверстий в ключевых местах трубопровода также может снизить пульсации трубопровода.Доступно несколько различных формул определения размера бутылок. Типичные размеры бутылок в пять-десять раз превышают рабочий объем цилиндра.

Дизайн пульсации

Цифровой анализ пульсации трубопроводов — это относительно недорогой метод, позволяющий гарантировать, что система трубопроводов рассчитана на приемлемые уровни пульсации (обычно от 2 до 7% от пика до пика). Компоновка системы трубопроводов должна указывать расположение и объем выбивных бочек, бутылок, охладителей и предохранительных клапанов. Анализ должен включать первый основной резервуар или объем до и после компрессора.Следует проанализировать рабочие условия двойного и одностороннего действия (если применимо).

Учет вибрации

Неуравновешенность вращающихся элементов в компрессоре вызывает механическую вибрацию. Противовесы на коленчатом валу и расположение цилиндров попарно с обеих сторон коленчатого вала (на общем виде) могут минимизировать, но не устранить дисбаланс. Таким образом, всегда найдутся механические вибраторы, которые необходимо учитывать при проектировании фундамента.

Вибрация трубопровода

Трубопровод технологического газа компрессора должен быть правильно спроектирован и установлен, чтобы избежать проблем, связанных с чрезмерной вибрацией.Важно, чтобы собственная частота всех участков трубы была больше частоты пульсации компрессора. Частота пульсации компрессора рассчитывается по формуле Eq. 17 .

……………. (17)

где

Коэффициент цилиндра
f p = частота пульсации компрессора, циклов / сек,
N = частота вращения компрессора, об / мин,
n =,
= 1 для цилиндра одностороннего действия
и
= 2 (для цилиндра двустороннего действия).

Трубопровод должен быть надежно связан с использованием коротких участков трубы неодинаковой длины. Адекватное гашение пульсаций помогает предотвратить проблемы, связанные с вибрацией трубопроводов.

Конструкция фундамента

Для крупных встроенных компрессоров или для компрессоров, установленных на сложных конструкциях или мягких грунтах, лучше всего выполнять динамический расчет с использованием сил дисбаланса, указанных производителем.

Для высокоскоростных компрессоров, установленных на участках с почвой, способной выдержать грузовик-пикап, полезны следующие правила.

  • Вес бетонного фундамента должен как минимум в три-пять раз превышать вес оборудования.
  • Используйте грунтовый подшипник для конструкции, которая менее чем на 50% допустима для статических условий.
  • Как правило, лучше увеличить длину и / или ширину, чем глубину, для соответствия требованиям веса.
  • Для прямоугольного блока не менее 40% высоты (но не менее 18 дюймов) должно быть заделано в ненарушенный грунт.
  • Бетон следует заливать в «аккуратный» котлован без образования боковых граней.

Цилиндр охлаждения

Теплота сжатия и трения между поршневыми кольцами и цилиндром нагревает цилиндр. Удаление части этого тепла полезно для производительности и надежности компрессора по нескольким причинам. Охлаждение цилиндра снижает потери мощности и мощности, вызванные предварительным нагревом всасываемого газа. Он также отводит тепло от газа, тем самым снижая температуру газа на выходе. Охлаждение цилиндра также способствует лучшей смазке, увеличению срока службы и сокращению затрат на техническое обслуживание.Когда вода используется в качестве охлаждающей среды, равномерная температура поддерживается по всей окружности цилиндра, что снижает вероятность термической деформации цилиндра.

Необходимо соблюдать осторожность, чтобы избежать конденсации, которая может возникнуть в результате чрезмерного охлаждения. Этого можно добиться, поддерживая температуру охлаждающей жидкости рубашки цилиндра как минимум на 10 ° F выше температуры всасываемого газа.

Недостаточное охлаждение может привести к снижению производительности и загрязнению цилиндров. По этой причине рекомендуется, чтобы температура в баллоне не превышала температуру всасываемого газа более чем на 30 ° F.

Системы охлаждения

Типы систем охлаждения включают:

  • С воздушным охлаждением . Системы с воздушным охлаждением используются при небольшой производительности и малых тепловых нагрузках. Ребра охлаждения обеспечивают достаточную площадь поверхности для охлаждения цилиндра.
  • Статический . Статические системы иногда используются на небольших компрессорах для поддержки систем с воздушным охлаждением. Охлаждающая жидкость действует как статический радиатор и действует больше как термостабилизатор, чем как система охлаждения. Некоторое количество тепла передается из системы в атмосферу.
  • Термосифон . Движущая сила термосифона возникает из-за изменения плотности охлаждающей жидкости от горячего к холодному участкам системы. Стандарт API 618 разрешает использование этой системы, когда температура нагнетаемого газа ниже 210 ° F или когда повышение температуры в цилиндре составляет менее 150 ° F.
  • Напорный . Системы охлаждения под давлением являются наиболее распространенными. В местах, где охлаждающая вода недоступна, может использоваться автономная замкнутая система охлаждающей жидкости.Система состоит из циркуляционного насоса, расширительного бачка и радиатора с вентиляторным охлаждением или теплообменника воздух-жидкость. Радиатор может иметь несколько секций — одну для охлаждающей жидкости цилиндра, одну для охлаждения смазочного масла и одну (или несколько) для охлаждения нагнетаемого газа. Охлаждающая жидкость — это вода или смесь воды и этиленгликоля. Коленчатый вал обычно приводит в действие циркуляционный насос.

Смазка

Смазка рамы

Система смазки рамы подает масло к подшипникам рамы, шатунным подшипникам и башмакам крейцкопфа.Некоторые системы смазки рамы также подают масло в набивку и цилиндры. Для большинства поршневых компрессоров система смазки встроена в раму.

Смазка разбрызгиванием

Системы смазки разбрызгиванием распределяют смазочное масло за счет разбрызгивания кривошипа через поверхность смазки в насосе. Для усиления эффекта к коленчатому валу могут быть прикреплены ковши. Системы разбрызгивания используются на небольших горизонтальных одноступенчатых компрессорах с потребляемой мощностью до 100 л.с.

Два основных преимущества систем разбрызгивания:

  • Низкая начальная стоимость
  • Минимальное присутствие оператора

Основными недостатками системы разбрызгивания являются:

  • Малые размеры рамы
  • Масло не фильтруется

Смазка под давлением

Самый распространенный тип смазки рамы — это система под давлением. Масло поступает в каналы, просверленные в коленчатом валу, и проходит через главный вал и подшипники кривошипных шатунов.Система смазки под давлением состоит из компонентов, обсуждаемых ниже.

Главный масляный насос

Главный масляный насос приводится в действие коленчатым валом или может иметь отдельный привод. Обычно он рассчитан на обеспечение 110% максимальной ожидаемой скорости потока. Когда для регулирования производительности используется снижение скорости, необходимо следить за тем, чтобы этот насос обеспечивал адекватную смазку при минимальной рабочей скорости.

Вспомогательный насос (опция)

Вспомогательный насос предназначен для поддержки основного насоса.Вспомогательный насос обычно приводится в действие электродвигателем и предназначен для автоматического запуска, когда давление в системе подачи масла падает ниже заданного уровня.

Насос предварительной смазки (опция)

Насос предварительной смазки подает масло к подшипникам перед запуском компрессора. Это гарантирует, что подшипники не будут сухими при запуске. Поскольку эту функцию обеспечивает дополнительный насос, насос предварительной смазки требуется только в том случае, если в системе нет вспомогательного насоса.

Масляный радиатор

Маслоохладитель гарантирует, что температура масла, подаваемого к подшипникам, не превышает максимального значения, необходимого для защиты подшипников от износа.Типичная максимальная температура подаваемого масла составляет 120 ° F. Охлаждающая вода рубашки охлаждения в кожухотрубном теплообменнике часто используется для охлаждения смазочного масла.

Фильтры масляные

Масляные фильтры защищают подшипники, удаляя твердые частицы из смазочного масла. Некоторые системы оснащены двойными полнопоточными масляными фильтрами с передаточными клапанами. Передаточные клапаны позволяют переключаться с одного фильтра на другой, так что фильтры можно чистить, не останавливая компрессор.

Накладной бак

Верхний бак подает масло к подшипникам, если насос выходит из строя.Масло из верхнего резервуара самотеком подается к подшипникам. Размер бака должен обеспечивать подачу масла до полного отключения компрессора. Бак обычно снабжен указателем уровня.

Трубопровод

Компоненты системы смазки соединены трубопроводами. Важными факторами являются чистота и устойчивость к коррозии. Следует избегать использования оцинкованных труб из-за возможной коррозии. Трубопроводы из углеродистой стали следует протравить или механически очистить и покрыть ингибитором ржавчины.После фильтров следует использовать трубопровод из нержавеющей стали. Система трубопроводов должна быть спроектирована таким образом, чтобы не было карманов, в которых может скапливаться грязь или мусор. По этой причине следует избегать использования труб, приваренных с помощью муфты. Перед первым запуском систему смазочного масла необходимо промыть смазочным маслом при температуре примерно 170 ° F. В систему необходимо добавить сетку с размером ячеек 200 меш, и промывку следует продолжать до тех пор, пока сетка не станет чистой. Контрольно-измерительные приборы должны включать датчик низкого уровня масла в картере, выключатель низкого давления масла и выключатель высокой температуры масла.

Для компрессоров со встроенным приводом двигателя рекомендуется смазывать компрессор и привод с помощью отдельных систем, чтобы газы сгорания двигателя не загрязняли смазочное масло. В этом случае смазка сальника и цилиндра обеспечивается системой смазки компрессора. При установке в очень холодных условиях следует рассмотреть возможность использования погружных или проточных нагревателей и специальных смазочных масел.

Смазка цилиндров и сальников

Количество масла, необходимое для смазки сальника и цилиндров, невелико по сравнению с требованиями к маслу подшипников.Хотя количество небольшое, давление масла, необходимое для подачи масла к набивке и цилиндрам, высокое. На каждой стадии сжатия используется небольшой плунжерный насос (лубрикатор с принудительной подачей). Разделительные блоки используются для распределения потока масла между цилиндрами и набивкой. Масло может подаваться либо из системы смазки рамы, либо из верхнего бака. Совместимость масла с технологическим газом должна быть проверена для защиты от загрязнения.

Номенклатура

Коэффициент цилиндра
q a = пропускная способность цилиндра при фактических условиях всасывания, Асф / мин,
E v = объемный КПД,
PD = Рабочий объем поршня, Асф / мин,
q г = впускная способность цилиндра, куб. Фут / мин,
Q г = входная емкость цилиндра, MMscf / D
PD = Рабочий объем поршня, Асф / мин,
S = ход, дюйм.,
N = частота вращения компрессора, об / мин,
d c = диаметр цилиндра, дюйм,
d r = диаметр стержня, дюйм.
% С = зазор цилиндра,%,
C HE = зазор перед головкой, дюйм. 3 , г.
C CE = зазор коленвала, дюйм 3 ,
d c = внутренний диаметр цилиндра, дюймы,
d r = диаметр стержня, дюйм,
S = длина хода, дюймы
E v = объемный КПД,
R = степень сжатия,
С = зазор цилиндра,% от рабочего объема поршня,
Z s = коэффициент сжимаемости на входе,
Z d = коэффициент сжимаемости нагнетания,
d r = диаметр стержня, дюйм. ,
к = соотношение теплоемкости, C p / C v ,
L = проскальзывание газа мимо поршневых колец,% (1% для быстроразъемных, 5% для несмазанных компрессоров и 4% для пропановых),
96 = Учет потерь из-за падения давления в клапанах
RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюйм. 2 , г.
a r = площадь поперечного сечения стержня, дюйм 2 ,
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
P u = Давление в ненагруженном конце, фунт / кв.
RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюйм. 2 , г.
a r = площадь поперечного сечения стержня, дюйм 2 ,
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
P u = Давление в ненагруженном конце, фунт / кв.
f p = частота пульсации компрессора, циклов / сек,
N = частота вращения компрессора, об / мин,
n =,
= 1 для цилиндра одностороннего действия
и
= 2 (для цилиндра двустороннего действия)

Список литературы

Используйте этот раздел для цитирования элементов, на которые есть ссылки в тексте, чтобы показать ваши источники. [Источники должны быть доступны читателю, т. Е. Не внутренний документ компании.]

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел, чтобы предоставить ссылки на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Компрессоры

Центробежный компрессор

Ротационные компрессоры прямого вытеснения

PEH: Компрессоры

Поршневой компрессор — PetroWiki

Поршневые компрессоры — это машины прямого вытеснения, в которых сжимающий и вытесняющий элемент представляет собой поршень, совершающий возвратно-поступательное движение внутри цилиндра.Обсуждение на этой странице поршневых компрессоров включает описание технологической конфигурации для многоступенчатых агрегатов, а также объяснение концепций:

  • Регулировка скорости
  • Дросселирование на входе
  • Переработка
  • Сброс давления
  • Продувка
  • Распорка для вентиляции и слива

Типы поршневых компрессоров

Есть два типа поршневых компрессоров:

  • Высокая скорость (разборная)
  • Низкая скорость (интегральная)

Категория высокой скорости также называется «отделяемой», а категория низкой скорости также известна как «интегральная».

Американский институт нефти (API) разработал два отраслевых стандарта: стандарт API 11P и стандарт API 618 , которые часто используются при проектировании и производстве поршневых компрессоров.

Компрессоры раздельные

Термин «отделяемые» используется потому, что эта категория поршневых компрессоров отделена от своего привода. Отдельный компрессор обычно приводится в движение двигателем или электродвигателем. Часто в компрессорной линии требуется редуктор.Рабочая скорость обычно составляет от 900 до 1800 об / мин.

Отдельные блоки монтируются на салазках и являются автономными. Они просты в установке, имеют относительно небольшую начальную стоимость, легко перемещаются на разные площадки и доступны в размерах, подходящих для полевых работ — как на суше, так и на море. Однако отдельные компрессоры имеют более высокие затраты на техническое обслуживание, чем встроенные компрессоры.

Рис. 1 представляет собой поперечное сечение типичного отделяемого компрессора. На рис. 2 показан раздельный компрессорный агрегат с приводом от двигателя.

  • Рис. 1 — Поперечное сечение отделяемого компрессора (любезно предоставлено Dresser-Rand).

  • Рис. 2 — Съемный компрессорный агрегат двигателя (любезно предоставлен Dresser-Rand).

Компрессоры встраиваемые

Термин «встроенный» используется потому, что силовые цилиндры, приводящие в действие компрессор, смонтированы как одно целое с рамой, содержащей цилиндры компрессора. Встроенные блоки работают со скоростью от 200 до 600 об / мин.Они обычно используются на газовых заводах и в трубопроводах, где важны топливная экономичность и долгий срок службы. Интегральные компрессоры могут комплектоваться от двух до десяти компрессорных цилиндров мощностью от 140 до 12 000 л.с.

Встроенные компрессоры обеспечивают высокий КПД в широком диапазоне рабочих условий и требуют меньшего обслуживания, чем отдельные блоки. Однако интегральные блоки, как правило, должны монтироваться на месте и требуют тяжелого фундамента и высокой степени подавления вибрации и пульсаций.У них самая высокая начальная стоимость установки.

Рис. 3 представляет собой поперечное сечение типичного встроенного компрессора. На рис. 4 показан интегрированный компрессорный агрегат.

  • Рис. 3 — Поперечное сечение встроенного компрессора (любезно предоставлено Dresser-Rand).

  • Рис. 4 — Встроенный поршневой компрессорный агрегат (любезно предоставлен Dresser-Rand).

Основные компоненты

Поршневые компрессоры

доступны в различных конструкциях и вариантах исполнения.Основные компоненты типичного поршневого компрессора показаны на Рис. 5 .

  • Рис. 5 — Компоненты поршневого компрессора (любезно предоставлены Dresser-Rand).

Рамка

Рама представляет собой тяжелый прочный корпус, содержащий все вращающиеся детали, на котором установлены цилиндр и направляющая крейцкопфа. Производители компрессоров оценивают рамы для максимальной продолжительной мощности и нагрузки на раму (см. Раздел «Нагрузка на штангу» ниже).

Раздельные компрессоры обычно располагаются в уравновешенной оппозитной конфигурации, характеризующейся парой соседних ходов кривошипа, которые сдвинуты по фазе на 180 градусов и разделены только перемычкой кривошипа. Кривошипы расположены так, что движение каждого поршня уравновешивается движением противоположного поршня.

Встроенные компрессоры обычно имеют силовые цилиндры компрессора и двигателя, установленные на одной раме и приводимые в действие одним коленчатым валом. Цилиндры в встроенных компрессорах обычно расположены только на одной стороне рамы (т.е.е., не уравновешено-противопоставлено).

Цилиндр

Баллон представляет собой сосуд высокого давления, в котором находится газ в цикле сжатия. Цилиндры одностороннего действия сжимают газ только в одном направлении движения поршня. Они могут быть головными или кривошипными. Цилиндры двустороннего действия сжимают газ в обоих направлениях движения поршня (см. Рис. 6 ). В большинстве поршневых компрессоров используются цилиндры двустороннего действия.

  • Рис. 6 — Цилиндры двустороннего действия (любезно предоставлены Dresser-Rand).

Выбор материала баллона определяется рабочим давлением. Чугун обычно используется для давлений до 1000 фунтов на квадратный дюйм. Чугун с шаровидным графитом используется для давлений до 1500 фунтов на квадратный дюйм. Литая сталь обычно используется для давлений от 1500 до 2500 фунтов на квадратный дюйм. Кованая сталь выбирается для рабочих давлений в цилиндрах более 2500 фунтов на квадратный дюйм.

Максимально допустимое рабочее давление (МДРД) баллона должно быть как минимум на 10% выше расчетного давления нагнетания (минимум 25 фунтов на кв. Дюйм).Дополнительное номинальное давление позволяет настроить датчик безопасности высокого давления (PSH) выше расчетного давления нагнетания, а для предохранительного клапана (PSV) — установить давление выше PSH.

Износостойкость трущихся деталей (поршневые кольца и отверстие цилиндра, шток поршня, уплотнительные кольца и т. Д.) Также является критерием выбора материалов. Цилиндры изнашиваются в месте контакта с поршневыми кольцами. При горизонтальном расположении из-за веса поршня наибольший износ цилиндра происходит внизу.Термопластические кольца и направляющие ленты используются в большинстве поршневых компрессоров для уменьшения такого износа.

Цилиндры часто поставляются с гильзами для снижения затрат на ремонт. Вкладыши прижимаются или усаживаются на месте, чтобы предотвратить скольжение. Замена гильзы цилиндра намного дешевле, чем замена всего цилиндра. Кроме того, производительность можно отрегулировать в соответствии с новыми требованиями путем изменения внутреннего диаметра гильзы. Однако гильзы цилиндра увеличивают зазор между клапаном и поршнем, снижают эффективность охлаждения рубашки и уменьшают производительность компрессора от заданного диаметра.

Распорка

Распорка обеспечивает разделение цилиндра компрессора и корпуса компрессора. На рис. 7 показаны распорные детали стандарта API 11P и стандарта API 618. Распорки могут быть одно- или двухкамерными. В однокамерной конструкции пространство между набивкой цилиндра и диафрагмой увеличено, так что никакая часть штока не входит как в картер, так и в сальник цилиндра.Масло перемещается между цилиндром и картером. Если загрязнение масла вызывает беспокойство, может быть предусмотрен маслоотражатель для предотвращения попадания смазочного масла в корпус компрессора. Для работы в токсичных условиях может использоваться двухкамерная конструкция. Никакая часть штока не входит ни в картер, ни в отсек, примыкающий к газовому баллону.

  • Рис. 7 — Распорка с двумя отсеками, показывающая расположение набивки и буферного газа (любезно предоставлено Dresser-Rand).

Из корпуса сальника следует удалить воздух в линию всасывания первой ступени или в систему удаления газа.Распорки содержат вентиляционное отверстие для отвода дополнительного технологического газа, вытекающего из набивки. Диафрагма и набивка предназначены для предотвращения попадания газа в картер. Эффективная вентиляция необходима для того, чтобы технологический газ не загрязнял картерное масло.

Каждый компрессор должен быть оборудован отдельной системой вентиляции и слива для проставок и набивки. Промежуточная вставка и вентиляционные отверстия уплотнения должны быть подключены к открытой вентиляционной системе, которая заканчивается снаружи и над корпусом компрессора на расстоянии не менее 25 футов по горизонтали от выхлопной трубы двигателя.Дренаж проставки должен быть подключен к отдельному поддону, который можно слить вручную. Отстойник должен вентилироваться снаружи и над корпусом компрессора. Смазочное масло из поддона может быть смешано с сырой нефтью или, при определенных обстоятельствах, должно быть отправлено на утилизацию или переработку.

Коленчатый вал

Коленчатый вал вращается вокруг оси рамы и приводит в движение шатун, шток поршня и поршень (см. Рис. 8 ).

  • Шатун соединяет коленчатый вал со штифтом крейцкопфа
  • Крейцкопф преобразует вращательное движение шатуна в линейное колебательное движение, которое приводит в движение поршень
  • Шток поршня соединяет крейцкопф с поршнем.
  • Рис. 8 — Коленчатый вал в сборе (любезно предоставлено Dresser-Rand).

Поршень

Поршень расположен на конце штока поршня и действует как подвижный барьер в цилиндре компрессора. Выбор материала зависит от прочности, веса и совместимости с сжимаемым газом. Поршень обычно изготавливается из легкого материала, например алюминия, чугуна или стали с полым центром для уменьшения веса.На поршни часто устанавливаются термопластичные износостойкие ленты (или направляющие) для увеличения срока службы колец и снижения риска контакта поршня с цилиндром. Чугун обычно обеспечивает удовлетворительно низкие характеристики трения, устраняя необходимость в отдельных лентах износа.

Износостойкие ленты распределяют вес поршня по нижней части цилиндра или стенки гильзы. Поршневые кольца сводят к минимуму утечку газа между поршнем и цилиндром или отверстием гильзы. Поршневые кольца изготовлены из более мягкого материала, чем стенки цилиндра или гильзы, и заменяются через регулярные интервалы технического обслуживания.Когда поршень проходит через питающее отверстие лубрикатора в стенке цилиндра, поршневое кольцо собирает масло и распределяет его по длине хода.

Подшипники

Подшипники, расположенные по всей раме компрессора, обеспечивают правильное радиальное и осевое расположение компонентов компрессора. Коренные подшипники установлены в раме, чтобы правильно установить коленчатый вал. Подшипники коленвала расположены между коленчатым валом и каждым шатуном. Подшипники пальца запястья расположены между каждым шатуном и пальцем крестовины.Подшипники крейцкопфа расположены вверху и внизу каждой крейцкопфа.

Большинство подшипников в поршневых компрессорах представляют собой подшипники с гидродинамической смазкой. Напорная масло подается на каждый подшипник через канавки подачи масла на поверхности подшипника. Размер канавок обеспечивает достаточный поток масла и предотвращает перегрев.

Набивка штока поршня обеспечивает динамическое уплотнение между цилиндром и штоком поршня. Набивка состоит из ряда неметаллических колец, установленных в корпусе и прикрученных к цилиндру.Набивочные кольца работают попарно и предназначены для автоматической компенсации износа. Поскольку каждая пара колец выдерживает ограниченный перепад давления, требуется несколько пар в зависимости от давления, необходимого для применения. Для безопасного удаления утечки газа через набивку вентиляционное отверстие обычно располагается между двумя узлами наружного кольца (см. Раздел «Распорка» выше).

Дополнительные присоединения к набивке могут потребоваться для:

  • Охлаждающая вода
  • Масло смазочное
  • Продувка азотом
  • Вентиляция
  • Измерение температуры

Смазка должна быть тщательно отфильтрована, чтобы избежать повреждений, которые могут возникнуть в результате попадания мелких твердых частиц в корпус. Смазочное масло обычно впрыскивается во второй кольцевой узел, при этом давление перемещает масло по валу.

Клапаны компрессора

Основная функция клапанов компрессора — пропускать поток газа в желаемом направлении и блокировать весь поток в противоположном (нежелательном) направлении. Каждый рабочий конец цилиндра компрессора должен иметь два набора клапанов. Комплект впускных (всасывающих) клапанов пропускает газ в баллон. Комплект нагнетательных клапанов предназначен для откачивания сжатого газа из баллона.Производитель компрессора обычно указывает тип и размер клапана.

Пластинчатые клапаны, состоящие из колец, соединенных перемычками в единую пластину, являются распространенным типом клапанов. В зависимости от материала уплотнительной пластины, пластинчатые клапаны способны выдерживать давление до 15 000 фунтов на квадратный дюйм, перепад давления до 10 000 фунтов на квадратный дюйм, скорость до 2000 об / мин и температуру до 500 ° F. Пластинчатые клапаны плохо работают в присутствии жидкостей.

Клапаны с концентрическим кольцом способны выдерживать давление до 15 000 фунтов на квадратный дюйм, перепад давления до 10 000 фунтов на квадратный дюйм, скорость до 2000 об / мин и температуру до 500 ° F.К преимуществам клапанов с концентрическими кольцами можно отнести:

  • Средняя стоимость запчастей
  • Низкая стоимость ремонта
  • Способность работать с жидкостями лучше, чем пластинчатые клапаны

Тарельчатые клапаны обычно обеспечивают производительность, превосходящую как пластинчатые, так и концентрические кольцевые клапаны. В тарельчатом стиле используются отдельные круглые тарелки для упора в отверстия в седле клапана. Этот тип клапана обеспечивает высокий подъем и низкий перепад давления, что приводит к более высокой топливной эффективности. Тарельчатые клапаны широко используются на объектах трубопроводов, подготовки газа и переработки.Металлические тарелки хорошо подходят:

  • Давление до 3000 фунтов на кв. Дюйм
  • Дифференциальное давление до 1400 фунтов на кв. Дюйм
  • Скорость до 450 об / мин
  • Температура до 500 ° F

Тарелки из термопласта могут применяться в следующих областях:

  • Давление до 3000 фунтов на кв. Дюйм
  • Дифференциальное давление до 1500 фунтов на кв. Дюйм
  • Скорость до 720 об / мин
  • Температура до 400 ° F

На большинстве компрессоров клапаны установлены в цилиндрах.Относительно новая концепция дизайна помещает клапаны в поршень. Конструкция «клапан в поршне» (, рис. 9, ) работает с низкими скоростями клапана и обеспечивает более длительный срок службы и сокращение времени обслуживания.

  • Рис. 9 — Конструкция клапана в поршне (любезно предоставлена ​​Dresser-Rand).

Производительность компрессора

Производительность и мощность компрессора зависят от рабочего объема поршня и зазора в цилиндре. Пропускная способность данного цилиндра является функцией рабочего объема поршня и объемного КПД.Объемный КПД зависит от зазора цилиндра, степени сжатия и свойств сжимаемого газа. Производительность компрессора можно рассчитать с помощью любого из следующих трех уравнений.

……………. (1)

……………. (2)

и

……………. (3)

где

q a = пропускная способность цилиндра при фактических условиях всасывания, Асф / мин,
E v = объемный КПД,
PD = Рабочий объем поршня, Асф / мин,
q г = впускная способность цилиндра, куб. Фут / мин,
и
Q г = входная емкость цилиндра, ммсф / д.

Рабочий объем поршня

Рабочий объем поршня определяется как фактический объем цилиндра, перемещаемый поршнем за единицу времени. Смещение обычно выражается в фактических кубических футах в минуту (акф / мин). Расчет рабочего объема поршня — простая процедура, которая зависит от типа конфигурации компрессора. Цилиндры одностороннего действия могут иметь смещение головки или коленчатого вала. Ур. 4 и 5 используются для расчета рабочего объема цилиндров одностороннего действия.Уравнение 4 для смещения головной части и уравнения. 5 — смещение кривошипа.

……………. (4)

……………. (5)

где

PD = Рабочий объем поршня, Асф / мин,
S = ход, дюйм,
N = частота вращения компрессора, об / мин,
d c = диаметр цилиндра, дюйм.,
d r = диаметр стержня, дюйм.

Рабочий объем цилиндра двойного действия рассчитывается по формуле Eq. 6 .

……………. (6)

где

PD = Рабочий объем поршня, Асф / мин,
S = ход, дюйм,
N = частота вращения компрессора, об / мин,
d c = диаметр цилиндра, дюйм.,
и
d r = диаметр стержня, дюйм.

Методы, используемые для изменения рабочего объема поршня, включают изменение скорости компрессора, удаление или деактивацию всасывающих клапанов в цилиндре двойного действия и изменение диаметра гильзы цилиндра и поршня.

Разгрузка с одного конца может значительно снизить производительность цилиндра двустороннего действия. Лучший способ разгрузить баллон — отключить или снять всасывающие клапаны с одного конца, чтобы предотвратить сжатие газа на этом конце.В зависимости от частоты разгрузки и молекулярной массы газа разгрузчик с отверстием или пробкой является следующим лучшим методом разгрузки баллона. Пончик заменяет один всасывающий клапан из трех или более клапанов на угол, и для каждого конца цилиндра требуется только одно разгрузочное устройство. При использовании клапанов с концентрическими кольцами можно разместить разгрузочное устройство в центре всасывающего клапана для разгрузки. В зависимости от молекулярной массы газа разгрузочные устройства с портами и пробками снижают BHP / MMscf / D и значительно повышают надежность системы разгрузки.

Если всасывающий клапан удерживается открытым с помощью пальцевых депрессоров во время такта сжатия, газ будет течь через открытый клапан обратно в канал всасываемого газа, и газ не будет выпускаться из конца цилиндра, содержащего ненагруженный всасывающий клапан. Деактивация клапанов может выполняться вручную, когда компрессор выключен, или с помощью устройства разгрузки клапана или подъемника, когда компрессор работает. Управление разгрузчиком клапана может быть ручным или автоматическим с помощью диафрагмы, которая разгружает компрессор с помощью датчика давления всасывания.Мембранные приводы более надежны, чем ручные подъемники или разгрузчики.

Разгрузка обоих концов одного и того же цилиндра может вызвать его перегрев; таким образом, лучше всего разгружать только один конец цилиндра компрессора двойного действия. В большинстве случаев предпочтительнее снимать всасывающий клапан при разгрузке головной части цилиндра, чтобы обеспечить изменение нагрузки на штоки. (См. Раздел «Нагрузка на штангу» ниже)

Клиренсный объем

Свободный объем — это пространство, остающееся в цилиндре компрессора в конце хода.Зазор состоит из пространств в углублениях клапана и пространства между поршнем и концом цилиндра. По завершении каждого такта сжатия сжатый газ, захваченный в зазоре, расширяется по направлению к поршню и увеличивает силу обратного хода. Рис. 10 — это диаграмма зависимости давления от объема ( P-V ), иллюстрирующая влияние зазора.

  • Рис. 10 — Поршневой компрессор по схеме PV (любезно предоставлено Dresser-Rand).

Расширение газа, захваченного в зазоре, происходит до того, как всасывающий клапан откроется для впуска нового газа в цилиндр. В результате часть смещения поршня происходит до открытия всасывающего клапана. Процесс сжатия в поршневых компрессорах является почти изоэнтропическим, поэтому энергия, необходимая для сжатия газа в зазоре, восстанавливается, когда газ расширяется в конце такта сжатия. По этой причине изменение зазора не влияет на мощность компрессора.

Зазорный объем выражается в процентах от рабочего объема поршня с использованием одного из следующих зависимых от конфигурации уравнений:

  • Цилиндр одностороннего действия (зазор между головкой) [ Ур. 7 ]
  • Цилиндр одностороннего действия (зазор коленчатого вала) [ Ур. 8 ]
  • Цилиндр двойного действия (зазор между головкой и шатуном) [ Ур. 9 ]

……………. (7)

……………. (8)

……………. (9)

где

% С = зазор цилиндра,%,
C HE = зазор перед головкой, дюйм 3 ,
C CE = зазор коленвала, дюйм 3 ,
d c = внутренний диаметр цилиндра, дюймы,
d r = диаметр стержня, дюйм,
S = длина хода, дюймы
Приложение

Зазор может быть добавлен к цилиндру как:

  • Карманы фиксированного объема
  • Карманы с переменным зазором
  • Хомуты с разделительными клапанами
Карманы с фиксированным объемом

Свободный карман фиксированного объема обычно представляет собой объемный баллон, постоянно прикрепленный к баллону.Фиксированный объем также может быть добавлен за счет заглушки бокового прохода, состоящей из фланца с заглушкой переменной длины, вставленной в проход, встроенный в боковую часть цилиндра. Карман с фиксированным объемом может быть постоянно открытым или может быть открыт или закрыт. Управление может осуществляться ручным маховиком или автоматическим приводом. Управление приводом позволяет открывать или закрывать зазорный карман снаружи цилиндра во время работы компрессора.

Карманы с переменным зазором

Карманы с переменным зазором позволяют добавлять переменный зазор к цилиндру и могут быть прикреплены либо к головке, либо к стороне кривошипа цилиндра.Чаще всего карманы с переменным зазором прикрепляются к головному концу, как показано на Рис. 11 .

  • Рис. 11 — Карман с ручным регулированием объема (любезно предоставлен Dresser-Rand).

Хомуты распределительные

Чрезмерный зазор в цилиндре компрессора может вызвать захлопывание выпускных клапанов. Если имеется слишком большой зазор, выпуск газа не будет. Может произойти быстрый перегрев, поскольку в цилиндр не попадает холодный всасываемый газ.

Объемный КПД

Объемный КПД — это отношение фактического объема газа (Acf / min), втянутого в цилиндр, к рабочему объему поршня (cf / min). Это отношение меньше единицы из-за трех фундаментальных эффектов. Сначала газ нагревается при поступлении в баллон. Во-вторых, утечка через клапаны и поршневые кольца. И, в-третьих, происходит повторное расширение газа, захваченного в зазорном объеме от предыдущего хода. Из этих трех повторное расширение, безусловно, оказывает наибольшее влияние на объемную эффективность.

Производители компрессоров не достигли консенсуса по подходящему методу расчета, поскольку измерение этих эффектов чрезвычайно сложно. Признавая это, можно использовать следующее приближенное уравнение для оценки объемной эффективности.

……………. (10)

где

E v = объемный КПД,
R = степень сжатия,
С = зазор цилиндра,% от рабочего объема поршня,
Z s = коэффициент сжимаемости на входе,
Z d = коэффициент сжимаемости нагнетания,
d r = диаметр стержня, дюйм.,
к = соотношение теплоемкости, C p / C v ,
L = проскальзывание газа мимо поршневых колец,% (1% для быстроразъемных, 5% для несмазанных компрессоров и 4% для пропановых),
и
96 = поправка на потери из-за падения давления в клапанах.

Нагрузка на штангу

Нагрузки на шток состоят из газовых нагрузок, вызванных давлением и инерционными нагрузками, которые возникают в результате ускорения и замедления поршня, штока поршня, крейцкопфа и примерно одной трети веса шатуна. Производители указывают максимальную нагрузку на шток для защиты компрессора, поскольку перегрузка штоков может серьезно повредить компрессор. Нагрузки необходимо оценивать для нормальных условий эксплуатации, а также для условий сбоя. Нагрузка на шток должна быть проверена при минимальном давлении всасывания и давлении предохранительного клапана, чтобы обеспечить достаточный запас прочности.

Реверс нагрузки на штангу должен быть достаточной величины, чтобы обеспечить смазку втулки пальца крейцкопфа. Втулки смазываются за счет перекачивающего действия открытия и закрытия зазора подшипника, которое происходит, когда нагрузка на шток меняется с растяжения на сжатие. Работа без переворота штоков также может серьезно повредить компрессор.

Нагрузки на штанги для различных конфигураций компрессора рассчитываются по следующим уравнениям:

  • Цилиндр одностороннего действия (головка)
  • Цилиндр одностороннего действия (со стороны кривошипа)
  • Цилиндр двустороннего действия
Цилиндр одностороннего действия (головка)

……………. (11)

……………. (12)

RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюймы 2 ,
a r = площадь поперечного сечения стержня, дюйм. 2 , г.
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
и
P u = давление в ненагруженном конце, фунт / кв.
Цилиндр одностороннего действия (со стороны кривошипа)

……………. (13)

……………. (14)

RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюймы 2 ,
a r = площадь поперечного сечения стержня, дюйм. 2 , г.
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
и
P u = давление в ненагруженном конце, фунт / кв.
Цилиндр двустороннего действия

……………. (15)

……………. (16)

RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюймы 2 ,
a r = площадь поперечного сечения стержня, дюйм. 2 , г.
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
и
P u = давление в ненагруженном конце, фунт / кв.

Прочие факторы производительности

Дополнительные соображения производительности включают:

  • Давление всасывания .При постоянном давлении нагнетания и степени сжатия более 2,0 степень сжатия уменьшается с увеличением давления всасывания. Уменьшение степени сжатия снижает потребность в мощности на единицу потока. Однако емкость цилиндра увеличивается с увеличением давления всасывания быстрее, что приводит к общему увеличению мощности. Чтобы избежать перегрузки водителя, необходимо добавить дополнительный зазор для уменьшения объема цилиндра.
  • Температура всасывания . Объем цилиндра обратно пропорционален абсолютной температуре всасывания.При понижении температуры цилиндр заполняется более стандартными кубическими футами. Таким образом, снижение температуры всасывания на 10 ° F увеличивает массовый расход компрессора почти на 2%. Предварительное охлаждение газа может быть эффективным способом увеличения объема баллона.
  • Давление нагнетания . Изменения давления нагнетания мало влияют на емкость цилиндра. Объемный КПД немного зависит от степени сжатия, а требуемая мощность прямо пропорциональна изменению степени сжатия.
  • Коэффициент теплоемкости (k) .Увеличение значения k приводит к увеличению объемного КПД, как определено уравнением Eq. 10 . Таким образом, данный цилиндр компрессора имеет более высокую фактическую производительность при сжатии природного газа ( k = 1,25) по сравнению с его производительностью при сжатии пропана ( k = 1,15). Более высокая производительность при сжатии природного газа по сравнению с пропаном также приводит к большему потреблению энергии.
  • Скорость . Объем цилиндра прямо пропорционален скорости компрессора.Обычной практикой является регулировка скорости компрессора (в разумных пределах) для поддержания желаемого давления всасывания. Снижение скорости водителя снижает расход топлива и эксплуатационные расходы.

Карты производительности

Карты рабочих характеристик могут быть разработаны для конкретного компрессора с постоянными базовыми условиями. Рис. 12 показывает, что по мере увеличения давления всасывания увеличивается и расход на входе, и мощность при постоянном давлении и температуре нагнетания. При очень низких соотношениях мощность может фактически уменьшаться с увеличением давления всасывания.

  • Рис. 12 — Схема поршневого компрессора с восемью ступенями разгрузки (любезно предоставлено Dresser-Rand).

Технологическая установка

Компрессор является неотъемлемой частью полной компрессорной системы. Рис. 13 — это типичная технологическая схема установки поршневого компрессора.

  • Рис. 13 — Технологическая схема компрессора со встроенным (пульсационная емкость) сепаратором (любезно предоставлено Dresser-Rand).

Обратный клапан

Давление на всасывании компрессора уменьшается по мере уменьшения расхода до тех пор, пока газ не расширится, чтобы обеспечить расход, необходимый для цилиндра. Увеличение степени сжатия, вызванное снижением давления всасывания, приводит к увеличению температуры нагнетания. Таким образом, рециркуляционный клапан в системе должен быть настроен так, чтобы низкое давление всасывания не создавало чрезмерной температуры нагнетания. Кроме того, пределы нагрузки на шток могут определять минимально допустимое давление всасывания для компрессорной установки.По возможности, рециркуляционный клапан должен располагаться после газоохладителей.

Клапан продувки

Клапан продувки сбрасывает остаточное давление, когда компрессор отключен для обслуживания. Управление клапаном обычно автоматическое, но иногда оно выполняется вручную на некоторых небольших береговых компрессорных установках.

Всасывающий скруббер

Попадание жидкости в компрессор через входящий поток газа может вызвать повреждение внутренних компонентов компрессора. По этой причине требуется всасывающий скруббер подходящего размера с приспособлениями для слива.Скруббер может быть частью контроля пульсации при правильном планировании (см. Раздел «Пульсация» ниже). Если входной поток близок к насыщению, рекомендуются горизонтально ориентированные цилиндры и нагнетательные сопла с нижним подключением.

Предохранительные клапаны

Клапаны сброса давления, установленные с запасом на 10% выше давления нагнетания наивысшей ступени или минимум на 15–25 фунтов на квадратный дюйм, обеспечивают защиту от статического давления для трубопроводов и охладителей. Настройка предохранительного клапана никогда не должна превышать максимально допустимое рабочее давление баллона (см. Раздел о баллонах выше).Следует проявлять осторожность, чтобы гарантировать, что все газовые трубопроводы, баллоны и предохранительные клапаны на стороне всасывания рассчитаны на расчетное давление в системах охлаждения с замкнутым контуром или при низких температурах газа.

Пульсация

Поток газа через поршневой компрессор по своей природе вызывает пульсацию, потому что всасывающий и нагнетательный клапаны не открываются на протяжении всего хода сжатия. Демпфирование пульсаций необходимо для создания более равномерного потока через компрессор, чтобы гарантировать равномерную нагрузку и снизить уровни вибрации трубопроводов.

Устройства контроля пульсации

Если могут быть предусмотрены длинные прямые участки трубопровода того же диаметра, что и соединение трубопровода цилиндра компрессора, и мощность ступени меньше 150 л.с., отдельные баллоны или резервуары для пульсации могут не потребоваться. В большинстве случаев объемные баллоны или пульсационные сосуды с внутренними перегородками и / или дроссельными трубками следует размещать как можно ближе к баллону для обеспечения оптимальной надежности клапана. Добавление отверстий в ключевых местах трубопровода также может снизить пульсации трубопровода.Доступно несколько различных формул определения размера бутылок. Типичные размеры бутылок в пять-десять раз превышают рабочий объем цилиндра.

Дизайн пульсации

Цифровой анализ пульсации трубопроводов — это относительно недорогой метод, позволяющий гарантировать, что система трубопроводов рассчитана на приемлемые уровни пульсации (обычно от 2 до 7% от пика до пика). Компоновка системы трубопроводов должна указывать расположение и объем выбивных бочек, бутылок, охладителей и предохранительных клапанов. Анализ должен включать первый основной резервуар или объем до и после компрессора.Следует проанализировать рабочие условия двойного и одностороннего действия (если применимо).

Учет вибрации

Неуравновешенность вращающихся элементов в компрессоре вызывает механическую вибрацию. Противовесы на коленчатом валу и расположение цилиндров попарно с обеих сторон коленчатого вала (на общем виде) могут минимизировать, но не устранить дисбаланс. Таким образом, всегда найдутся механические вибраторы, которые необходимо учитывать при проектировании фундамента.

Вибрация трубопровода

Трубопровод технологического газа компрессора должен быть правильно спроектирован и установлен, чтобы избежать проблем, связанных с чрезмерной вибрацией.Важно, чтобы собственная частота всех участков трубы была больше частоты пульсации компрессора. Частота пульсации компрессора рассчитывается по формуле Eq. 17 .

……………. (17)

где

Коэффициент цилиндра
f p = частота пульсации компрессора, циклов / сек,
N = частота вращения компрессора, об / мин,
n =,
= 1 для цилиндра одностороннего действия
и
= 2 (для цилиндра двустороннего действия).

Трубопровод должен быть надежно связан с использованием коротких участков трубы неодинаковой длины. Адекватное гашение пульсаций помогает предотвратить проблемы, связанные с вибрацией трубопроводов.

Конструкция фундамента

Для крупных встроенных компрессоров или для компрессоров, установленных на сложных конструкциях или мягких грунтах, лучше всего выполнять динамический расчет с использованием сил дисбаланса, указанных производителем.

Для высокоскоростных компрессоров, установленных на участках с почвой, способной выдержать грузовик-пикап, полезны следующие правила.

  • Вес бетонного фундамента должен как минимум в три-пять раз превышать вес оборудования.
  • Используйте грунтовый подшипник для конструкции, которая менее чем на 50% допустима для статических условий.
  • Как правило, лучше увеличить длину и / или ширину, чем глубину, для соответствия требованиям веса.
  • Для прямоугольного блока не менее 40% высоты (но не менее 18 дюймов) должно быть заделано в ненарушенный грунт.
  • Бетон следует заливать в «аккуратный» котлован без образования боковых граней.

Цилиндр охлаждения

Теплота сжатия и трения между поршневыми кольцами и цилиндром нагревает цилиндр. Удаление части этого тепла полезно для производительности и надежности компрессора по нескольким причинам. Охлаждение цилиндра снижает потери мощности и мощности, вызванные предварительным нагревом всасываемого газа. Он также отводит тепло от газа, тем самым снижая температуру газа на выходе. Охлаждение цилиндра также способствует лучшей смазке, увеличению срока службы и сокращению затрат на техническое обслуживание.Когда вода используется в качестве охлаждающей среды, равномерная температура поддерживается по всей окружности цилиндра, что снижает вероятность термической деформации цилиндра.

Необходимо соблюдать осторожность, чтобы избежать конденсации, которая может возникнуть в результате чрезмерного охлаждения. Этого можно добиться, поддерживая температуру охлаждающей жидкости рубашки цилиндра как минимум на 10 ° F выше температуры всасываемого газа.

Недостаточное охлаждение может привести к снижению производительности и загрязнению цилиндров. По этой причине рекомендуется, чтобы температура в баллоне не превышала температуру всасываемого газа более чем на 30 ° F.

Системы охлаждения

Типы систем охлаждения включают:

  • С воздушным охлаждением . Системы с воздушным охлаждением используются при небольшой производительности и малых тепловых нагрузках. Ребра охлаждения обеспечивают достаточную площадь поверхности для охлаждения цилиндра.
  • Статический . Статические системы иногда используются на небольших компрессорах для поддержки систем с воздушным охлаждением. Охлаждающая жидкость действует как статический радиатор и действует больше как термостабилизатор, чем как система охлаждения. Некоторое количество тепла передается из системы в атмосферу.
  • Термосифон . Движущая сила термосифона возникает из-за изменения плотности охлаждающей жидкости от горячего к холодному участкам системы. Стандарт API 618 разрешает использование этой системы, когда температура нагнетаемого газа ниже 210 ° F или когда повышение температуры в цилиндре составляет менее 150 ° F.
  • Напорный . Системы охлаждения под давлением являются наиболее распространенными. В местах, где охлаждающая вода недоступна, может использоваться автономная замкнутая система охлаждающей жидкости.Система состоит из циркуляционного насоса, расширительного бачка и радиатора с вентиляторным охлаждением или теплообменника воздух-жидкость. Радиатор может иметь несколько секций — одну для охлаждающей жидкости цилиндра, одну для охлаждения смазочного масла и одну (или несколько) для охлаждения нагнетаемого газа. Охлаждающая жидкость — это вода или смесь воды и этиленгликоля. Коленчатый вал обычно приводит в действие циркуляционный насос.

Смазка

Смазка рамы

Система смазки рамы подает масло к подшипникам рамы, шатунным подшипникам и башмакам крейцкопфа.Некоторые системы смазки рамы также подают масло в набивку и цилиндры. Для большинства поршневых компрессоров система смазки встроена в раму.

Смазка разбрызгиванием

Системы смазки разбрызгиванием распределяют смазочное масло за счет разбрызгивания кривошипа через поверхность смазки в насосе. Для усиления эффекта к коленчатому валу могут быть прикреплены ковши. Системы разбрызгивания используются на небольших горизонтальных одноступенчатых компрессорах с потребляемой мощностью до 100 л.с.

Два основных преимущества систем разбрызгивания:

  • Низкая начальная стоимость
  • Минимальное присутствие оператора

Основными недостатками системы разбрызгивания являются:

  • Малые размеры рамы
  • Масло не фильтруется

Смазка под давлением

Самый распространенный тип смазки рамы — это система под давлением. Масло поступает в каналы, просверленные в коленчатом валу, и проходит через главный вал и подшипники кривошипных шатунов.Система смазки под давлением состоит из компонентов, обсуждаемых ниже.

Главный масляный насос

Главный масляный насос приводится в действие коленчатым валом или может иметь отдельный привод. Обычно он рассчитан на обеспечение 110% максимальной ожидаемой скорости потока. Когда для регулирования производительности используется снижение скорости, необходимо следить за тем, чтобы этот насос обеспечивал адекватную смазку при минимальной рабочей скорости.

Вспомогательный насос (опция)

Вспомогательный насос предназначен для поддержки основного насоса.Вспомогательный насос обычно приводится в действие электродвигателем и предназначен для автоматического запуска, когда давление в системе подачи масла падает ниже заданного уровня.

Насос предварительной смазки (опция)

Насос предварительной смазки подает масло к подшипникам перед запуском компрессора. Это гарантирует, что подшипники не будут сухими при запуске. Поскольку эту функцию обеспечивает дополнительный насос, насос предварительной смазки требуется только в том случае, если в системе нет вспомогательного насоса.

Масляный радиатор

Маслоохладитель гарантирует, что температура масла, подаваемого к подшипникам, не превышает максимального значения, необходимого для защиты подшипников от износа.Типичная максимальная температура подаваемого масла составляет 120 ° F. Охлаждающая вода рубашки охлаждения в кожухотрубном теплообменнике часто используется для охлаждения смазочного масла.

Фильтры масляные

Масляные фильтры защищают подшипники, удаляя твердые частицы из смазочного масла. Некоторые системы оснащены двойными полнопоточными масляными фильтрами с передаточными клапанами. Передаточные клапаны позволяют переключаться с одного фильтра на другой, так что фильтры можно чистить, не останавливая компрессор.

Накладной бак

Верхний бак подает масло к подшипникам, если насос выходит из строя.Масло из верхнего резервуара самотеком подается к подшипникам. Размер бака должен обеспечивать подачу масла до полного отключения компрессора. Бак обычно снабжен указателем уровня.

Трубопровод

Компоненты системы смазки соединены трубопроводами. Важными факторами являются чистота и устойчивость к коррозии. Следует избегать использования оцинкованных труб из-за возможной коррозии. Трубопроводы из углеродистой стали следует протравить или механически очистить и покрыть ингибитором ржавчины.После фильтров следует использовать трубопровод из нержавеющей стали. Система трубопроводов должна быть спроектирована таким образом, чтобы не было карманов, в которых может скапливаться грязь или мусор. По этой причине следует избегать использования труб, приваренных с помощью муфты. Перед первым запуском систему смазочного масла необходимо промыть смазочным маслом при температуре примерно 170 ° F. В систему необходимо добавить сетку с размером ячеек 200 меш, и промывку следует продолжать до тех пор, пока сетка не станет чистой. Контрольно-измерительные приборы должны включать датчик низкого уровня масла в картере, выключатель низкого давления масла и выключатель высокой температуры масла.

Для компрессоров со встроенным приводом двигателя рекомендуется смазывать компрессор и привод с помощью отдельных систем, чтобы газы сгорания двигателя не загрязняли смазочное масло. В этом случае смазка сальника и цилиндра обеспечивается системой смазки компрессора. При установке в очень холодных условиях следует рассмотреть возможность использования погружных или проточных нагревателей и специальных смазочных масел.

Смазка цилиндров и сальников

Количество масла, необходимое для смазки сальника и цилиндров, невелико по сравнению с требованиями к маслу подшипников.Хотя количество небольшое, давление масла, необходимое для подачи масла к набивке и цилиндрам, высокое. На каждой стадии сжатия используется небольшой плунжерный насос (лубрикатор с принудительной подачей). Разделительные блоки используются для распределения потока масла между цилиндрами и набивкой. Масло может подаваться либо из системы смазки рамы, либо из верхнего бака. Совместимость масла с технологическим газом должна быть проверена для защиты от загрязнения.

Номенклатура

Коэффициент цилиндра
q a = пропускная способность цилиндра при фактических условиях всасывания, Асф / мин,
E v = объемный КПД,
PD = Рабочий объем поршня, Асф / мин,
q г = впускная способность цилиндра, куб. Фут / мин,
Q г = входная емкость цилиндра, MMscf / D
PD = Рабочий объем поршня, Асф / мин,
S = ход, дюйм.,
N = частота вращения компрессора, об / мин,
d c = диаметр цилиндра, дюйм,
d r = диаметр стержня, дюйм.
% С = зазор цилиндра,%,
C HE = зазор перед головкой, дюйм. 3 , г.
C CE = зазор коленвала, дюйм 3 ,
d c = внутренний диаметр цилиндра, дюймы,
d r = диаметр стержня, дюйм,
S = длина хода, дюймы
E v = объемный КПД,
R = степень сжатия,
С = зазор цилиндра,% от рабочего объема поршня,
Z s = коэффициент сжимаемости на входе,
Z d = коэффициент сжимаемости нагнетания,
d r = диаметр стержня, дюйм.,
к = соотношение теплоемкости, C p / C v ,
L = проскальзывание газа мимо поршневых колец,% (1% для быстроразъемных, 5% для несмазанных компрессоров и 4% для пропановых),
96 = Учет потерь из-за падения давления в клапанах
RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюйм. 2 , г.
a r = площадь поперечного сечения стержня, дюйм 2 ,
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
P u = Давление в ненагруженном конце, фунт / кв.
RL c = нагрузка на шток при сжатии, фунт-сила,
RL т = нагрузка на шток при растяжении, фунт-сила,
= площадь поперечного сечения поршня, дюйм. 2 , г.
a r = площадь поперечного сечения стержня, дюйм 2 ,
P d = давление нагнетания, psia,
P s = давление всасывания, psia,
P u = Давление в ненагруженном конце, фунт / кв.
f p = частота пульсации компрессора, циклов / сек,
N = частота вращения компрессора, об / мин,
n =,
= 1 для цилиндра одностороннего действия
и
= 2 (для цилиндра двустороннего действия)

Список литературы

Используйте этот раздел для цитирования элементов, на которые есть ссылки в тексте, чтобы показать ваши источники.[Источники должны быть доступны читателю, т. Е. Не внутренний документ компании.]

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел, чтобы предоставить ссылки на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Компрессоры

Центробежный компрессор

Ротационные компрессоры прямого вытеснения

PEH: Компрессоры

Puma 3-цилиндровый одноступенчатый чугунный насос воздушного компрессора 22SCFM — источник компрессора

Совершенно новый Puma, чугун, 3-цилиндровый, одноступенчатый, максимальное давление 140 PSI, насос воздушного компрессора.Этот воздушный компрессорный насос имеет полностью чугунный корпус, цилиндры и чугунные головки, что обеспечивает долгий срок службы даже в самых тяжелых условиях работы. Это насос с масляной смазкой с головками в форме буквы W, что позволяет цилиндрам оставаться более холодными, чем традиционные воздушные насосы. Если вам нужна качественная, долговечная и надежная помпа, это отличный вариант. Компрессор оснащен плавающими стальными язычковыми клапанами, которые рассчитаны на долговечность и производительность. В зависимости от оборотов, которые вы будете вращать этот насос, которые могут быть в диапазоне от 650 до 1000 об / мин, он будет выдавать от 14 до 22 SCFM.На насосе установлен маховик 10,5 дюйма, для которого требуются два ремня A-секции (не входят в комплект), которые вы можете найти в нашей секции ремня. Это высококачественный насос, который может обеспечить годы надежной работы в большом количестве приложений.


Это универсальный насос, который может использоваться с бензиновыми или электродвигателями мощностью не менее 5 л.с. Как вы можете видеть на картинке, у этого насоса есть небольшая медная линия, идущая от одной головки к другой. Эта линия предназначена для использования в системах с двойным управлением или в газовых двигателях.Использование этой линии с пилотным клапаном позволит насосу свободно вращаться при повышенном давлении без постоянной перекачки воздуха и тепла здания. Это значительно увеличивает срок службы насоса. Если вы используете этот насос со стандартным электродвигателем, вы можете оставить эти линии подключенными без каких-либо подключений к ним, и насос будет работать нормально. Или вы можете удалить медные провода и заглушить верхнюю часть каждого цилиндра заглушкой 1/8 дюйма NPT. Для получения дополнительной информации об этом насосе или лучшего понимания того, как он будет работать в вашем приложении, вы можете связаться с нами.

Бренд: PUMA
Номер детали: PUK-65
Одноступенчатый
3-цилиндровый
Конструкция из цельного чугуна (корпус, цилиндры и головки)
Масляная смазка
Масло Easy View Смотровое стекло уровня
Маховик 10,5 «
Требуется 2 ремня A-секции (НЕ ВКЛЮЧЕНЫ)
650-1000 об / мин
14-22 SCFM
Может использоваться с газовым или электрическим двигателем
Дополнительное двойное управление
Цилиндры W-образной формы
Кожухи воздушного фильтра и элементы в комплекте

Основы поршневого компрессора

Поршневой компрессор — это объемная машина, в которой поршень используется для сжатия газа и подачи его под высоким давлением.

Часто они являются одними из самых важных и дорогих систем на производственном предприятии и заслуживают особого внимания. От этого типа оборудования зависят газопроводы, нефтехимические заводы, нефтеперерабатывающие заводы и многие другие отрасли промышленности.

Из-за множества факторов, включая, помимо прочего, качество исходной спецификации / дизайна, адекватность методов технического обслуживания и эксплуатационные факторы, промышленные предприятия могут ожидать от своих собственных установок сильно различающихся затрат на жизненный цикл и надежности.

Различные компрессоры можно найти практически на каждом промышленном объекте. Типы сжатых газов включают следующие:

  • Воздух для сжатого инструмента и систем сжатого воздуха

  • Водород, кислород и др. Для химической обработки

  • Фракции легких углеводородов в переработке

  • Различные газы для хранения или передачи

  • Другие приложения

Есть две основные классификации промышленных компрессоров: прерывистые (объемные), включая поршневые и ротационные; и непрерывный поток, включая центробежный и осевой типы потока.

Поршневые компрессоры обычно используются там, где требуется высокая степень сжатия (отношение давления нагнетания к давлению всасывания) на ступень без высоких скоростей потока, а технологическая жидкость относительно сухая.

Компрессоры влажного газа обычно бывают центробежными. Для применений с высоким расходом и низкой степенью сжатия лучше всего подходят осевые компрессоры. Роторные типы главным образом используются в системах со сжатым воздухом, хотя и другие типы компрессоров также используются в пневматических системах.

Базовая конструкция

Основные компоненты типичной поршневой компрессорной системы можно увидеть на рисунках 1 и 2. Следует отметить, что автор никогда не видел «типовой» компрессорной установки, и признает существование многих исключений.

Цилиндры сжатия (рис. 1), также известные как ступени, которых в конкретной конструкции может быть от одной до шести или более, обеспечивают удержание технологического газа во время сжатия.

Поршень совершает возвратно-поступательное движение для сжатия газа.Устройства могут быть одностороннего или двойного действия. (В конструкции двойного действия сжатие происходит с обеих сторон поршня как при движении вперед, так и назад.)

Некоторые цилиндры двойного действия в системах высокого давления будут иметь шток поршня с обеих сторон поршня для обеспечения равной площади поверхности и балансировки нагрузок. Тандемное расположение цилиндров помогает минимизировать динамические нагрузки за счет размещения цилиндров парами, соединенных с общим коленчатым валом, так, чтобы движения поршней противодействовали друг другу.

Давление газа ограничено, а износ дорогостоящих компонентов сведен к минимуму за счет использования одноразовых поршневых колец и направляющих лент соответственно. Они изготовлены из сравнительно мягких металлов по сравнению с металлами поршней и цилиндров / гильз или таких материалов, как политетрафторэтилен (ПТФЭ).

Рисунок 2 A. Двухходовая рама HSE и ходовая часть

Рисунок 2 B. Двухходовая рама и ходовая часть HSE

Большинство конструкций оборудования включает блочные системы смазки с принудительной подачей; однако при нулевом допуске технологического процесса на унос масла используются конструкции без смазки.

Цилиндры для более крупных применений (типичное значение отсечки составляет 300 л.с.) оснащены каналами для охлаждающей жидкости для термосифонных или циркуляционных систем типа охлаждающей жидкости, тогда как некоторые небольшие домашние и производственные компрессоры обычно имеют воздушное охлаждение. Цилиндры большого диаметра обычно снабжены сменными гильзами, которые запрессовываются в отверстие и могут включать стопорный штифт.

Технологический газ втягивается в цилиндр, сжимается, удерживается и затем выпускается механическими клапанами, которые обычно работают автоматически за счет перепада давления.В зависимости от конструкции системы цилиндры могут иметь один или несколько всасывающих и нагнетательных клапанов.

Разгрузочные устройства и зазоры представляют собой специальные клапаны, которые регулируют процент полной нагрузки, которую несет компрессор при заданной скорости вращения его привода. Разгрузчики управляют работой всасывающих клапанов, позволяя газу рециркулировать.

Клапаны с зазором в кармане изменяют пространство головки блока цилиндров (зазор). Они могут быть фиксированного или переменного объема. Эти устройства выходят за рамки данной статьи.

Распорка (иногда называемая собачьей будкой) представляет собой конструктивный элемент, соединяющий раму компрессора с цилиндром. Смешивание жидкостей между цилиндром и промежуточной частью следует избегать. Сальниковые кольца сдерживают давление газа внутри цилиндра и предотвращают попадание масла в цилиндр, вытирая масло со штока поршня по его ходу.

Через проставку обычно удаляется воздух из наиболее опасного материала в системе, которым часто является газ, сжатый в баллоне.Уплотнительные кольца предназначены для удержания газа внутри цилиндра, но при высоком давлении возможно, что часть сжатого газа выйдет за уплотнительные кольца.

Ходовая часть, размещенная в раме компрессора (рис. 2), состоит из крейцкопфа и шатуна, которые соединяют шток поршня с коленчатым валом, преобразуя его вращательное движение в возвратно-поступательное линейное движение.

Коленчатый вал оснащен противовесами для уравновешивания динамических сил, создаваемых движением тяжелых поршней.Он поддерживается в раме компрессора подшипниками скольжения на нескольких шейках. Также предусмотрен маховик для хранения инерции вращения и обеспечения механического преимущества для ручного вращения узла.

Некоторые компрессоры смазывают ходовую часть своей рамы с помощью встроенного масляного насоса с приводом от вала, в то время как другие снабжены более обширными системами смазки на салазках. Все правильно спроектированные системы будут обеспечивать не только циркуляцию масла к критическим трибоповерхностям оборудования, но также контроль температуры смазочного материала, фильтрацию и некоторую контрольно-измерительную аппаратуру и резервирование.

Всасываемые газы обычно проходят через сетчатые фильтры и сепараторы на всасывании для удаления уносимых частиц, влаги и жидкой фазы технологической жидкости, которые могут вызвать серьезные повреждения клапанов компрессора и других критических компонентов и даже угрожать целостности цилиндра с катастрофическими последствиями.

Газ также может быть предварительно нагрет для перевода жидкого технологического газа в паровую фазу. Интеркулеры дают возможность отвода тепла от технологического газа между ступенями сжатия.(См. Следующий раздел: Термодинамический цикл.) Эти теплообменники могут быть частью системы (систем) охлаждения масла и / или цилиндра компрессора, или они могут быть подключены к системе охлаждающей воды установки.

На нагнетательной стороне резервуары высокого давления служат гасителями пульсаций, обеспечивая емкость системы для выравнивания пульсаций потока и давления, соответствующих тактам сжатия поршня.

Как правило, поршневые компрессоры представляют собой относительно низкоскоростные устройства и приводятся в действие прямым или ременным приводом от электродвигателя, с регулятором привода с регулируемой скоростью или без него.

Часто двигатель изготавливается как единое целое с компрессором, а вал двигателя и коленчатый вал компрессора представляют собой одно целое, что устраняет необходимость в муфте. Редукторы редукторного типа используются в различных установках.

Иногда, хотя и реже, они приводятся в действие паровыми турбинами или другими источниками энергии, такими как природный газ или дизельные двигатели. Общая конструкция системы и выбранный тип привода будут влиять на смазку этих периферийных систем.

Термодинамический цикл

Чтобы понять науку о поршневых компрессорах, необходимо объяснение нескольких основных термодинамических принципов. Сжатие происходит внутри цилиндра в виде цикла из четырех частей, который происходит при каждом продвижении и отступлении поршня (два хода за цикл).

Четыре части цикла — это сжатие, нагнетание, расширение и впуск. Они показаны графически, причем давление в зависимости от объема отображается на так называемой диаграмме P-V (Рисунок 3).


Рисунок 3. Всасывание

По завершении предыдущего цикла поршень полностью возвращается в цилиндр в точке V1, объем которой заполнен технологическим газом при условиях всасывания (давление P1 и температура T1), а всасывающий и нагнетательный клапаны закрыты. .

Это представлено точкой 1 (нулем) на диаграмме P-V. По мере продвижения поршня объем внутри цилиндра уменьшается. Это вызывает повышение давления и температуры газа до тех пор, пока давление в цилиндре не достигнет давления в нагнетательном коллекторе.В это время начинают открываться нагнетательные клапаны, отмеченные на схеме точкой 2.

При открытии выпускных клапанов давление остается фиксированным на уровне P2 в течение оставшейся части рабочего хода, поскольку объем продолжает уменьшаться для выпускной части цикла. Поршень на мгновение останавливается в точке V2 перед изменением направления.

Обратите внимание, что остается некоторый минимальный объем, известный как объем зазора. Это пространство, остающееся внутри цилиндра, когда поршень находится в наиболее продвинутом положении в своем движении.Некоторый минимальный зазор необходим для предотвращения контакта поршня с головкой, и изменение этого объема является основным параметром производительности компрессора. Цикл сейчас в точке 3.

Затем происходит расширение, когда небольшой объем газа в зазоре расширяется до давления чуть ниже давления всасывания, чему способствует закрытие выпускных клапанов и отступление поршня. Это пункт 4.

Когда достигается P1, впускные клапаны открываются, позволяя свежей заправке поступать в цилиндр для впуска и последней стадии цикла.Еще раз, давление остается постоянным при изменении объема. Это знаменует возврат к точке 1.

Понимание этого цикла является ключом к диагностике проблем компрессора, а также к пониманию эффективности компрессора, требований к мощности, работы клапана и т. Д. Эти знания можно получить, анализируя информацию о процессе и отслеживая влияние этих элементов на цикл.

Ваш электронный адрес не будет опубликован.