Что значит атмосферный: Значение слова: АТМОСФЕРНЫЙ — в словарях на ЧТО-ОЗНАЧАЕТ.РФ

Содержание

Что значит атмосферный — Значения слов

Примеры употребления слова атмосферный в литературе.

Еще каких-нибудь 60—70 децибел, и амплитуда звукового давления достигнет статического, атмосферного давления.

Ветер, атмосферная влага и морская соль постоянно не в ладах с антикоррозийными покрытиями ажурных башен.

Когда вакуумметр показал, что в люке осталось менее тысячной доли атмосферного давления, Фингер открыл двойную внешнюю круглую дверь.

При этом видны все дефекты изображения: недостаточная резкость, наличие засветки, волнение изображения из-за атмосферных помех, виньетирование и т.

В принципе же, разницы между галактическим вихрем, атмосферным циклоном и орбитой электрона в атоме нет.

В каждой местности он отмечает температуру, атмосферное давление, гидроскопом и гидростатом измеряет в миллиметрах количество осадков и влажность воздуха, — до такой степени превратился его организм в ртутный столб, до такой степени уподобился реторте.

С учетом единства природных вод гидросферой следует считать не только Мировой океан, но всю область вод атмосферных, наземных и подземных.

Капитан Грейдер предпочел бы перед посадкой произвести обстоятельную разведку с низких высот, но тяжелым космическим крейсером не сманеврируешь, как

атмосферной посудиной.

А Конвей продолжал: — Безусловно, главной трудностью при осуществлении обширных хирургических вмешательств в лечении любых форм жизни, привыкших к повышенной гравитации и высокому атмосферному давлению, является смещение внутренних органов и декомпрессионные нарушения.

Очевидно, тут, у западной оконечности Станового, и вдоль всего Джугджурского хребта сталкиваются невидимые глазу враждебные атмосферные потоки, идущие с моря и с материка.

Источник атмосферный, или, точнее, даже заатмосферный, весьма мощный, апериодический, с размытым диапазоном частот.

Мчатся кони буйным ветром, И осмыслить не успеть, Только ночью звёздной спектры Дел космических узреть, Под завесой атмосферной Завершается финал, То ли лютое инферно, То ли ангел пролетал.

Регистратор показывал, что отсек открыт, атмосферное давление в нем приближается к нулю и там включился временный инерционный компенсатор.

Таким виделся компьютеру электрокомпас, установленный в планере самолета и предположительно изолированный от возмущений электроники лайнера, его металлических компонентов и мощных магнитных полей ионизирующего конверта, возвращающего стратоплан в околоземные атмосферные слои.

Сколько продержатся места, не защищенные атмосферным ионизирующим кабелем?

Источник: библиотека Максима Мошкова

Что значит атмосферный двигатель: особенности и характеристики

При изобретении первых автомобильных движков были созданы силовые агрегаты атмосфеного типа. Атмосферные двигатели — это двигатели внутреннего сгорания, использующие воздух из атмосферы для образования топливовоздушной смеси.

Давление воздушного потока, подаваемого на движок, равняется одной атмосфере, по этой причине такие силовые агрегаты получили название атмосферные. Топливная смесь для атмосферного мотора состоит из одной части бензина и четырнадцати частей воздуха.

Многие автовладельцы часто задаются вопросом, что значит атмосферный двигатель. Название возникло благодаря давлению затягиваемого воздуха, соответствующего окружающей среде.

Воздух необходим для участия в сжигании топливных смесей в камерах сгорания силовых агрегатов. Поршни затягивают воздушные массы через инжектор в карбюратор, где происходит равномерное смешивание их совпрыскиваемым бензином или дизельным топливом.

Затягивающая способность мотора находится в прямой зависимости от количества оборотов двигателя. Атмосферный двигатель отличается отсутствием специальных устройств в виде компрессоров либо турбин, применяемых для дополнительного принудительного нагнетания воздуха под давлением.

Описание преимуществ силовых агрегатов атмосферного типа

Атмосферные моторы обладают следующими положительными качествами:

  1. Высокий ресурс пробега.
  2. Надежность силового агрегата.
  3. Простота в использовании.
  4. Ремонтопригодность.

При эксплуатации двигателей атмосферного типа как бензиновых, так и дизелей, наблюдается большая длительность. Размер пробега достигает нескольких сотен тысяч километров. История располагает случаями, когда моторам удавалось выдерживать пробеги более 500 тысяч км, не подвергаясь капитальному ремонту. Некоторые движки продолжают исправно работать даже при сгнивших «родных» кузовах.

Простота конструкции и доступность ремонта атмосферных движков позволяют понизить требования к характеристикам качества бензина, дизельного топлива, моторных масел. Такие силовые агрегаты способны хорошо работать длительное время на топливе низкого качества.

Даже если атмосферник выходит из строя по причине частого использования некачественного бензина, то на его восстановление уйдет намного меньше времени и материальных средств, чем на ремонт турбинованного собрата.

Слабые стороны атмосферников

Силовые агрегаты атмосферного типа имеют некоторые недостатки:

  1. Большой вес мотора.
  2. Низкая динамика.
  3. Мощность ниже, чем у аналогов, оборудованных турбонаддувом.
  4. Шумная работа мотора.
  5. Отсутствие способности развивать заданную мощность при эксплуатации в горах, где наблюдается разжижение воздуха.

При эксплуатации моторов имеет место разброс оборотов, что значительно влияет на способность движка всасывать воздушные массы в необходимом количестве. Особенно этот недостаток ощутим при работе на малых оборотах, когда низкая частота каждого поршня не обеспечивает достаточное количествовоздуха в определенное время.

На высоких оборотах подача воздуха встречает сопротивление, вызванное недостаточным размером пропускного сечения воздуховода и воздушного фильтра.

Несмотря на перечисленные недостатки, атмосферники имеют большую популярность среди автомобилестроительных компаний и покупателей благодаря предсказуемости, надежности, простоте и ремонтопригодности силовых агрегатов данного вида.

Особенности турбированных автомобильных двигателей

Перед автовладельцами часто возникает выбор, какую машину приобрести, каким движком она должна быть оборудована, атмосферным либо с турбонаддувом.

Работа турбины, расположенной на силовом агрегате, состоит в увеличении давления воздуха,поступающего в цилиндры, позволяет закачивать увеличенные объемы воздуха для обогащения кислородом топливных смесей.

Увеличение объема воздушных масс способствует увеличению мощности мотора в сравнении с атмосферником почти на 10% при сохранении рабочего объема силового агрегата. Повышенная мощность позволяет увеличить крутящий момент, тем самым улучшая динамику автомобиля.

К преимуществам двигателей, оборудованных турбинами, относится наиболее полное сжигание топлива, создание меньшего шума, что существенно улучшает их экологичность по сравнению с атмосферными моторами.

Преимущества турбированных движков:

  • увеличение мощности мотора;
  • улучшение динамики автомобиля;
  • экологическая безопасность.

Несмотря на очевидные достоинства, двигатели, оснащенные турбонаддувом, имеют и некоторые минусы:

  • сложности, возникающие при эксплуатации;
  • усиление расхода топлива;
  • повышенные требования к качеству бензина, дизельного топлива;
  • необходимость использования специальных моторных масел;
  • более частые отказы масляного фильтра из-за работы при высокой температуре;
  • повышенные требования к маслам и чистоте масляных фильтров;
  • ускоренный износ воздушных фильтров.

Только после ознакомления с основными плюсами и минусами атмосферных моторов и движков с турбонаддувом, можно прийти к правильному выбору при покупке нового авто.

Примеры моделей автомобилей, обладающих наиболее мощными атмосферными моторами

Современный автомобильный рынок располагает образцами известных автопроизводителей, оборудованных двигателями без использования принудительного наддува.

Самый мощный атмосферный двигатель имеет автомобиль марки MercedesC 63 FMGCoupeEdition 507, на нем установлен бензиновый атмосферник силой 507 лошадиных сил.

Автомобиль Chevrolet Corvette C7 Stingray, оборудованный бензиновым атмосферным движком, имеет лучшие характеристики.

Сильный внедорожник Jeep Grand Cherokee SRT укомплектован бензиновым двигателем атмосферного вида, обладает высокой мощностью и хорошей динамикой.

Не хуже показывают себя такие модели: Audi RS5, AudiRS4 Avant, Chevrolet Camaro, Mercedes SLK 55 AMG, Porsche Cayenne GTS, Infiniti QX 70, Lexus LS 460, имеющие мощные .

Большой популярностью также пользуются автомобили: Mercedes-Benz OM 602, OM 612, OM 647, BMW M 57, укомплектованные надежными прочными дизельными атмосферниками простой конструкции.

Атмосферный вечер это. Атмосферные вечера. Очень часто люди употребляют такие выражения, как «Атмосферный Вечер», «атмосферная музыка», «атмосферное кафе».

Атмосферный вечер это. Атмосферные вечера. Очень часто люди употребляют такие выражения, как «Атмосферный Вечер», «атмосферная музыка», «атмосферное кафе».

Но что они подразумевают под этим? Определённо они не имеют в виду атмосферу земли или единицу измерения. Чаще всего подразумевается какая-то определённая обстановка, приводящая к определённому настроению. Например, интерьер какого-нибудь кафе сделан в атмосфере семидесятых. И заходя туда, вы словно оказывайтесь в тех самых семидесятых годах.

Сегодняшний день в принципе можно атмосферным для меня назвать. Сначала занятие, потом прогулка с подругой по цнянскому водохранилищу, во время которой мы познакомились с невероятным мужчиной и его мопсом по кличке Гаврюша. А закончилось всё приездом моего хорошего друга, со слов которого выходит, что атмосфера создаётся светом и музыкой. Он создал на моём небольшом балкончике невероятную атмосферу уюта, затащив туда две табуретки, кружки чая и телефон с музыкой стиля ритм — н — блюз. Минуты две мы сидели и думали, чего же не хватает. После чего, тщательно обыскав квартиру, вытащили на балкон ещё и все свечи, что были найдены в доме. И так, сидя на балконе, попивая чаёк и слушая музыку, мы … молчали. Знайте, говорят, что хорошо, когда с человеком есть о чём поговорить, но ещё лучше, когда с человеком есть о чём помолчать. Когда молчание не становится каким-то напряжённым, когда вы не знайте, чем заполнить паузу. Просто сидите и молчите. И вам хорошо.

Блогпари 1 подъезд пари 1 подъезд.

Атмосферный вечер это, как. Атмосферный вечер акустики устроили красноармейские студенты

В преддверии Международного дня студентов музыканты Красноармейского района выступили в библиотеке Института агроэкологии, устроив там незабываемый культурный вечер.

15 ноября в стенах библиотеки Института агроэкологии в селе Миасское Красноармейского района состоялся вечер акустической музыки «В гостях у Флюгера». Идея провести подобного рода мероприятие у красноармейской группы возникла давно. Определиться с местом и форматом выступления оказалось для ребят непросто. Музыканты мечтали создать уютную и дружескую атмосферу без лишнего пафоса. Решили воплотить в жизнь давно задуманное именно 15 ноября, в преддверии Международного дня студента.

«Мы точно знаем, что есть ребята среди студентов, которые поют, читают стихи, играют на акустических инструментах (чаще на гитарах). А почему бы не собрать всех, почему не создать особую атмосферу домашней и дружеской обстановки? Тем более на носу подходящая дата – Международный день студента, – делится руководитель группы «Флюгер» Андрей Дегтярев. – Решили собраться и просто отдохнуть душой. Получили добро от администрации института на проведение вечера в стенах библиотеки. Это место очень подходит: книги, картины, приглушенный свет. Что-то принесли из дома, что-то из реквизита нашли в институте. Получилось очень атмосферно».

На вечер акустической музыки собрались студенты, сотрудники института и друзья исполнителей. Все выступление прошло на одном дыхании. Ребята исполнили много авторских произведений. Не обошлось и без отголоска из прошлого – стихи Владимира Маяковского, Марины Цветаева, Николая Гумилева, Александра Пушкин, Сергея Есенина с удовольствием слушала многоуважаемая публика. Также на вечере прозвучала музыка разная по стилистике и жанрам на русском, английском и таджикском языках.

«Нам кажется, вечер удался. Пусть не все так гладко как хотелось, но для нас это был все-таки первый опыт… Те, кому это было интересно, пришли, с удовольствием послушали, отдохнули. Ребята и девчата просто молодцы! Они поделились сокровенным, и мы увидели, чем и как живет современный студент. Это важно, очень. Далеко не каждый отважится выйти на открытую сцену, но тут сама обстановка диктовала условия. Никто никого не оценивал, все друг друга поддерживали», – отметил Андрей Дегтярев .

Такие вечера для души очень важны в современном обществе. Именно в атмосфере тепла и уважения человек может раскрепоститься, стать частичкой большой дружной компании. Как и произошло на выступлении в институте: гитара переходила из одних рук в другие, на импровизированной площадке не утихала акустика, в такт ей звучал бубен и помогала скрипка, создавая душевное настроение среди присутствующих.

«Мы благодарим всех участников вечера, администрацию института, организаторов – ребят из «Флюгера». Благодаря общим усилиям все прошло очень здорово и красиво! Нам бы хотелось повторить подобное мероприятие, но есть мысли сделать его тематическим. Поживем – увидим, как говорится», – резюмировал Андрей Дегтярев .

Атмосферный вечер рядом с камином.

Тихий вечер у камина!
Мы вдвоём с тобой сидим.
Я шепчу тебе: Ирина!
Давай сегодня помолчим.
Вспомним из прошлого картины,
Первые свидания… давай погрустим.
О прошедших счастливых годах!
Что остались в памяти, как будто в вечных снах.
На улице темно и холодно…
За окном шумит дождь. Унылый и монотонный, он барабанит каплями
по карнизу и крыше.
В такие вечера какое-то особенное настроение и особенный воздух,
он как-будто пахнет несбывшимися летними мечтами,
а с дождем мы непременно грустим о теплых и веселых летних денечках,
шуме моря, красоте и зелени летнего леса…
В этот холодный вечер мы вдвоем… Ты сидишь напротив в большом кожаном
и очень мягком кресле. Оно настолько мягкое,
что в нем просто «утопаешь».
Перед нами камин, в котором весело
потрескивают дрова, а свет от него отбрасывает на потолок причудливые тени.
По дому разносится запах ароматного кофе, смешиваясь с запахом
сосновых бревен, из которых и состоит этот прекрасный райский уголок.
Играет негромкая музыка и нам настолько уютно и тепло, что хочется
чтобы этот вечер длился вечно.
И пусть весь мир подождет…
В прохладной комнате мы разожжем камин,
И, слушая шептанье звезд над нами,
Свои миры соединим в один –
Особенный и хрупкий, словно пламя.
Куда-то денется мирская суета,
Заботы, беспокойства и печали…
Руки коснется нежная рука,
Сказав все то, что мы не досказали…
Куда-то денется дождливый шумный день –
Ему молчанье наше будет данью.
И станет все прошедшее, как тень,
А будущее проще… и желанней…
Мы затопим камин, не поддавшись тоске непогоды…
Легким запахом дыма и хвои наполнится дом,
Остановится время, замрут быстротечные годы…
Проведем этот вечер волшебный с тобою вдвоем.
В ярких бликах огня заискрится в хрустальных бокалах
Молодое вино, но пьяны мы уже от любви…
Вечер тает свечой и таинственно, мягко стекает
В ночь, которую даже представить себе не могли…
Тлеют угли в камине теплом уходящего жара
И виденьями бродят по дому счастливые сны…
В тишине лишь мурлычет, прищурив глаза, величаво
Старый кот в ожидании солнечной, теплой поры…
В уютном уголке сидели мы вдвоем,
В открытое окно впивались наши очи,
И, напрягая слух, в безмолвии ночном
Чего-то ждали мы от этой тихой ночи.
Звон колокольчика нам чудился порой,
Пугал нас лай собак, тревожил листьев шорох…
О, сколько нежности и жалости немой,
Не тратя лишних слов, читали мы во взорах!
И сколько, сколько раз, сквозь сумрак новых лет,
Светиться будет мне тот уголок уютный,
И ночи тишина, и яркий лампы свет,
И сердца чуткого обман ежеминутный!
Но даже в такую, унылую и неприветливую, августовскую ночь можно получить
большую дозу позитива и хорошего настроения, сидя у камина.
Всем известно, что пылающий огонь, вода и красивое звёздное небо на человека действуют
завораживающе, заставляя, не отрываясь, смотреть на них.

Атмосферный вечер в петербурге. Куда пойти вечером в Санкт-Петербурге?

Когда над Санкт-Петербургом садится солнце, город пленяет своей красотой. Свет от иллюминации отражается в Неве, главные улицы переходят в режим вечернего драйва, музыканты готовятся сотрясти танцполы клубов, а бары и рестораны наполняются теми, кому не сидится дома. В это время вы можете поймать кураж и открыть для себя множество новых мест, испытать незабываемые эмоции и получить впечатления, которые останутся с вами на всю жизнь. Где отдохнуть и куда же пойти вечером в Санкт-Петербурге? На этот вопрос существуют десятки ответов, и ни один не подведёт.

Во-первых, бары. Эти центры вечернего досуга подойдут и тем, кто хочет расслабиться после трудового дня, и тем, кто настроен на культурную программу. Пока в одних барах звучит джаз и разливаются коктейли, в других показывают кино и читают лекции. И почему бы не переместиться из чада кутежа в центр интеллектуальных развлечений или наоборот? Во-вторых, музейные пространства. Конечно, основная часть прославленных петербургских музеев закрывается к тому времени, как пустеют офисы, но в городе найдутся прогрессивные выставочные центры, которые открыты практически до полуночи, предлагая своим гостям множество образовательных и развлекательных программ.

В-третьих, не стоит забывать о таких проверенных способах отдохнуть вечером, как театры, кино и концерты. Афиша Санкт-Петербурга неизменно радует ценителей всех видов искусства от балета до панк-рока. Так что берите свою вторую половинку или собирайте друзей — и можно смело выдвигаться на Невский проспект, откуда открываются сотни потрясающих вечерних маршрутов.

Атмосферный вечер на Веранде. Открытая веранда: популярные конструкции

Веранда на даче открытая.

Частный или дачный дом невозможно представить без уютной веранды. Красиво и комфортно обставленный уголок позволяет хорошо расслабиться и на время забыть о повседневных заботах, укрыться от палящего солнца в жаркий полдень или просто собраться всей семьей для вечернего чаепития. Открытая веранда может стать любимым местом встреч и отдыха для домочадцев.

В статье мы расскажем о некоторых типах веранд, применяемых материалах и защите открытых поверхностей от атмосферных воздействий. Посмотрев прилагаемые фото, вы сможете оценить, выбрать и применить на деле любую понравившуюся конструкцию.

или в частном доме потому так и называется, что в ней функциональное пространство ограждено только крышей, а иногда простым тентом, зонтом или временным навесом от солнца и дождя, и используется в теплое время года.

Разделение по видам

Веранда без крыши открытая

Это:

  1. Веранда – пристройка устроена так, что пол находится в одной плоскости с домом, крыша служит продолжением кровли основного здания. Фундамент под пристрой обычно делается одновременно с основанием дома, хотя может быть выполнен после окончания строительства. Как правило, такая терраса имеет одинаковое стилистическое направление  с главным зданием.
  2. Веранда пристраивается к дому на дополнительном мелкозаглубленном фундаменте, имеет собственную кровлю и пол в другом уровне. Пристройка может обладать своим, кардинально отличающимся архитектурным решением.
  3. Конструкция открытой веранды не предусматривает стационарную крышу, ее заменяет временный навес из влагонепроницаемой ткани или большой зонт. Возводится она на отдельном фундаменте, не соединенном с основанием дома.
  4. Веранда представляет собой сплошной настил перед центральным входом. Под деревянный пол (см. Террасная доска из лиственницы: обшиваем пол ) делают невысокий помост над уровнем земли, а плитку или камень укладывают прямо на песчаную подушку выровненного основания.

Веранда открытая на даче.

Важно! Если проект не предусматривает других конструктивных решений, то любой вид веранды рекомендуется ограждать по периметру перилами, прочно связанными с основанием, для защиты от случайного падения.

Формы открытых веранд

Это:

  • Квадратные.
  • Прямоугольные.
  • Шестигранные.
  • Фигурные.

Веранды открытые могут примыкать к одной стене дома или захватывать две, три стены, располагаться на центральном входе или с тыльной стороны, уходя вглубь сада. Особым шиком считается терраса, опоясывающая весь дом по периметру.

Материалы для веранд на открытом воздухе

Самым уязвимым местом на террасе, которое наиболее подвержено разрушению от неблагоприятных атмосферных воздействий, является пол. Срок его службы без ремонта и замены напрямую зависит от выбранного полового покрытия.

Виды покрытий пола на веранде под открытым небом.

Поэтому для устройства пола под открытым небом применяют материалы, обладающие определенными свойствами:

  • Низкое влагопоглощение. Проникновение в структуру материала снеговой или дождевой воды чревато разрушением, образованием гнили или грибка, появлением опасных микроорганизмов.
  • Нескользящая поверхность . Гладкий мокрый пол травмоопасен не только для детей, но и для взрослых, поэтому для защиты от скольжения на поверхность наносятся насечки, делаются искусственные неровности.
  • Высокий уровень защиты от возгорания . Материал должен быть устойчив к возгоранию даже при контакте с открытым огнем.
  • Морозо- и жаростойкость. Поскольку половое покрытие веранды на зимний период ничем не укрывается, то под воздействием сезонных перепадов температур не должно происходить деформационных изменений в структуре и внешнем виде материала.
  • Стойкость к ударам, истиранию, механическим повреждениям. Веранда на входе является самым проходимым местом, соответственно, покрытие испытывает немалые нагрузки, а значит должно обладать износостойкостью.
  • Низкая теплопроводность. По холодному полу ходить довольно дискомфортно, а если в доме есть дети, то придется постилать для них коврики или паласы для игры на полу. Значит, покрытие должно дольше сохранять на поверхности температуру окружающего воздуха.

Так чем покрыть пол на открытой веранде? На каких материалах остановиться? Давайте разберемся. Нужным критериям в той или иной мере соответствуют несколько типов покрытия, для сравнения составим таблицу преимуществ и недостатков каждого вида.

Деревянный пол на открытой веранде.

Материал Плюсы Минусы
Деревянный пол
  • Прочность
  • Малая теплопроводность
  • Сопротивляемость скольжению
  • Устойчивость к повреждениям
  • Не боится резких перепадов температур
  • Экологичность
  • Высокое водопоглощение
  • Пожароопасность
  • Подверженность гниению
  • Требует периодического покрытия защитными составами
Керамическая плитка, керамогранит
  • Пожароустойчивость
  • Нескользящая поверхность
  • Морозостойкость
  • Низкая гигроскопичность
  • Износостойкость
  • Высокая теплопроводность
  • Малая сопротивляемость ударам
Натуральный или искусственный камень
  • Высокая устойчивость к механическим повреждениям
  • Пожароустойчивость
  • Нескользящая поверхность
  • Морозостойкость
  • Низкая гигроскопичность
  • Износостойкость
  • Длительный срок службы
Высокая теплопроводность
Линолеум
  • Низкое водопоглощение
  • Малая теплопроводность
  • Доступная цена
  • Пожароопасность
  • Быстрая изнашиваемость поверхности
  • Плохая паропроницаемость
  • Некоторая деформация при перепадах температур
  • Скользкая поверхность
  • При возгорании может выделять опасные вещества
Террасная или палубная доска (декинг)
  • Защита от скольжения
  • Влагостойкие породы дерева
  • Антисептическая пропитка
  • Прочность
  • Устойчивость к ударам
  • Долговечность
  • Подверженность возгоранию
  • Требуется периодическое покрытие специальными составами
Жидкое дерево (древопластик)
  • Прочность
  • Влагостойкость
  • Устойчивость к гнили и грибку
  • Защита от скольжения
  • Морозо- и жаростойкость
  • Не требует дополнительной защиты поверхности
  • Пожароопасность
  • Высокая стоимость

Из таблицы видно, что покрыть пол на веранде можно любым из представленных материалов, все они достойны внимания, выбор зависит только от возможностей, вкусов и желаний хозяев.

Зонт от солнца на веранде.

Отсутствие стен имеет свои недостатки, находится в таком месте в непогоду довольно дискомфортно, да и от яркого солнца тоже хочется спрятаться в тенек. Но если от солнечных лучей и дождя спасут зонтик, навес или крыша, то от ветра нужно другое, более надежное ограждение.

Чем и как защитить открытую веранду, чтобы приятному времяпрепровождению не помешали погодные условия? Для этого используют шторы из различных материалов и конструкций.

В теплую летнюю погоду от солнечных лучей или комаров отлично защитят легкие портьеры из тюли, органзы, вуали, шелка. Сшитые своими руками римские или французские шторы украсят веранду, создадут уютную, романтическую обстановку.

Для прохладного вечера применяют прочные непромокаемые шторки из акриловой ткани. Они хорошо удерживают тепло, мягко рассеивают свет и создают в помещении комфортную атмосферу.

Это своеобразные навесы из плотной водонепроницаемой ткани на металлической конструкции с электроприводом. Их устанавливают на открытые веранды и террасы на даче при отсутствии крыши.

Выдвижная маркиза на террасе.

Выдвижные маркизы крепятся к стене дома, ширина выпуска регулируется надежной автоматической системой. Такие навесы прекрасно спасают от жары и дождя, выдерживают немалую ветровую нагрузку. Кроме того, у них интересный дизайн и множество расцветок.

От ветра и косого дождя защитят водонепроницаемые, практичные и прочные занавеси из ПВХ. Они выпускаются однотонными, глухими, прозрачными, комбинированными различных форм и расцветок.

Рулонные шторы (см.) крепятся к потолку и фиксируются после опускания к полу, но боковые стороны остаются свободными. Закрываются шторки вручную или с помощью электропривода, они прекрасно спасают от ветра и сквозняка. Их несложно навесить самостоятельно, инструкция по установке проста, не требует опыта или особых навыков.

Для более надежной защиты от непогоды или в межсезонье устанавливают кассетный вариант. Шторы из ПВХ прочно закрепляются на поворотных скобах, установленных по периметру проема, получается почти герметичная конструкция, такой облегченный аналог  остекления.

Шторы ПВХ на веранде дачного домика.

Данная конструкция прекрасно подходит для частного дома или дачи, отлично удерживает тепло даже в заморозки, ее можно оставлять на зимний период для защиты от снега. По необходимости внутри можно поставить небольшой мангал или барбекю и в тепле провести встречу с друзьями.

Выбор вида открытой веранды к дому – дело сугубо индивидуальное, мы можем только посоветовать и привести примеры различных типов построек. Но надеемся, что видео в этой статье поможет вам подобрать такой вариант, который не только послужит защитой от природных воздействий, но и будет радовать гармонией и единением с окружающим ландшафтом.

Что значит Атмосферный двигатель автомобиля? Его устройство, как работает

Что такое атмосферный двигатель

Атмосферный двигатель – особый тип конструкции ДВС, который был изобретен еще в конце 19 века, на тот момент он был единственный в своем роде и не имел аналогов. Свое название мотор получил благодаря принципу работы. Основой работы для любого двигателя внутреннего сгорания (ДВС) является воспламенение топлива в цилиндрах. Не каждый знает, что без наличия кислорода невозможно сгорание горючего, поэтому под понятием топлива стоит понимать не только бензин или солярку, а и топливно-воздушную смесь – пропорция топлива и кислорода. Данный тип мотора использует воздух из окружающей среды для воспламенения смеси в цилиндрах. Так взять бензиновый двигатель: данная смесь представляет собой 1 часть бензина и примерно 14 частей воздуха. Смесь в нужных пропорциях создается карбюратором или инжектором:

  • Карбюратор — это узел системы питания ДВС, который путем смешивания, подготавливает горючую смесь наиболее оптимального состава и количества и подает ее в цилиндры самого мотора, имеет широкое распространение на разных двигателях. С 80х годов карбюраторы, из-за своей малой эффективности, массово начали вытесняться ижекторами;
  • Инжектор или форсунка так же предназначен для приготовления смеси топлива с воздухом из окружающей среды и управляется электромагнитным клапаном или механически. Инжекторные двигатели более экономичны в плане расхода топлива и дают лучшую динамику, вследствие чего карбюраторы начали отходить на задний план.

Понятие «атмосферный» подразумевает под собой то, что непосредственное участие в горении топлива в цилиндрах принимает атмосферное давление. Необходимые пропорции смеси воздуха с топливом формируются в результате работ поршней мотора, которые подобно насосу затягивают наружный воздух из атмосферы через специальный воздуховод. Такой же принцип работы происходит в карбюраторном и инжекторном двигателе, независимо от вида топлива. Автомобили с атмосферными двигателями бывают как бензиновые, так и дизельные. Не смотря на конструктивные особенности дизельных и бензиновых «атмосферников», принцип их работы несет один и тот же смысл.

СПРАВКА. Доступ воздуха, который самостоятельно всасывается двигателем для образования смеси, получается за счет образования пониженного давления в инжекторе или карбюраторе.

Преимущества

Атмосферный двигатель находит широкое распространение из-за большого количества плюсов. К основным преимуществам можно отнести следующее:

  • Большой запас ресурса. Практика показывает, что эксплуатация атмосферных двигателей, независимо от вида топлива, может измеряться сотнями тысяч километров пробега без проведения капитального ремонта. Встречаются экземпляры «атмосферников» которые при правильной эксплуатации и своевременном проведении ТО проходили до 500 тысяч километров. Любопытно, что экземпляры атмосферных моторов иногда устанавливали на другие машины, так как кузов первого автомобиля начинал гнить и приходить в негодность;
  • Простота конструкции. Атмосферные двигатели лучше поддаются ремонту, нежели моторы с турбиной. Если даже, какой либо элемент узла двигателя приходит в негодность, его можно отремонтировать за меньшую сумму, и качество ремонта в некоторых случаях не будет уступать качеству заводской сборки, механики на СТО более охотно берутся за ремонты атмосферных двигателей, нежели турбированных ;
  • Неприхотливость. Бывает, что АЗС в целях экономии разбавляют бензин, тем самым ухудшая его качественные характеристики. Атмосферный двигатель в отличие от турбированного, способен заметно легче переносить эксплуатацию на плохом бензине, двигатель простит вам разовую оплошность при заправке низким топливом.

Не смотря на ненамного больший расход топлива в атмосферном двигателе, в долгосрочном периоде он все же более рациональный и сократит ваши расходы на ремонты и обслуживания, в отличие от турбированного.

Недостатки

Не смотря на все преимущества «атмосферников» в них все же можно найти некие недостатки. Одним из недостатков является вес. По своей конструкции и принципам работы атмосферные двигатели получаются более тяжелыми и объемными, и как мы знаем, что масса автомобиля в целом влияет на средний расход топлива. По мощностям и динамике они заметно уступают двигателям с турбо надувом при одинаковых объемах. Дело в том, что система питания двигателя за счет самостоятельного набора кислорода из окружающей среды не всегда позволяет обеспечивать точные пропорции горючего с воздухом, которые должны равняться 1 к 14 на всех режимах работы. Следовательно, при более низких оборотах мотор засасывает меньше воздуха, а при высоких ему препятствует проходное сечение воздуховодов и сопротивление воздушного фильтра. Эффективность работы в целом снижается, так как во время движения не получается поддерживать узкий диапазон получения горючей смеси, по сравнению с турбированным ДВС.

ВАЖНО! Для более щадящего эксплуатирования мотора рекомендуется плавно наживать на педаль газа и не нагружать двигатель высокими оборотами. 

Особенности турбированных двигателей

Тенденция последних лет такова, что большинство автопроизводителей стремятся увеличить мощность двигателя и одновременно уменьшить его расход, переходят на выпуск машин с турбированными двигателями меньшего объема. Такие принципы позволяют производить достаточно мощные и более экологически чистые модели, однако приходится жертвовать долговечностью за счет усложненной конструкции, которая в отличии от атмосферных двигателей чаще приводит к поломкам. Первые 150 тысяч километров пробега для обладателя данного авто с турбиной, будут складываться только положительными сторонами, то тех пор пока он не начнет сталкиваться с ремонтом этого агрегата. Главным отличием мотора оснащенного турбиной является наличие механического компрессора или турбокомпрессора, который специально нагнетает воздух в двигатель под высоким давлением. В отличие от «атмосферников», в моторах с турбиной или компресоором, давление нагнетаемого воздуха составляет от 1,5 до 3 атмосфер. Турбомоторы при одинаковых объемах двигателя с атмосферными двигателями, могут сжигать больше топлива и, следовательно, выдавать намного больше мощности. Первый турбированный двигатель был разработан еще в 1905 году, однако применяться на легковых автомобилях начал только в середине 50 х годов. Принципом его работы является принудительное давление воздуха, которое создает турбина, используя отработанные выхлопные газы. Из-за высокого давления в цилиндры закачивается большее количество воздуха, чем у атмосферного двигателя, вследствие этого увеличение мощности возрастает до 10%. Лучшая динамика происходит за счет высокого крутящего момента. Турбированные моторы более экологически чистые, так как в цилиндрах идет более эффективное сгорание топлива. Не смотря на все плюсы мотора с турбиной, они имеют более сложную конструкцию и нуждаются в большем уходе во время эксплуатации. Поскольку турбина работает при высоких температурах – срок службы масла и масляного фильтра намного меньше, чем у атмосферного, и примерно сокращается два раза. Для нормальной работы двигателя, ему необходимо исключительно высокое качество бензина или солярки, заправка топливом сомнительного качества сразу даст о себе знать и опустошит ваш кошелек во время ремонта. Что касается выбора масла и масляного фильтра, то они ни в коем случае также не должны уступать по качеству.

ВНИМАНИЕ! После завершения движения, машины, оснащенные турбированным двигателем нельзя сразу глушить, автомобиль должен некоторое время поработать в холостом режиме, для нормализации давления в системе.  

Примеры моделей авто с наиболее мощными атмосферными двигателями

Современный автомобильный рынок, благодаря такому понятию как конкурентоспособность, не останавливается на достигнутом, и всегда совершенствуется, многие автомобильные компании могут похвастаться моделями с превосходной динамикой атмосферных двигателей. Среди лидеров по мощности «атмосферников» можно выделить следующие модели:

  • Автомобиль марки Mercedes C63 FMG Coupe Edition 507, на котором установлен бензиновый атмосферный двигатель силой 507 лошадиных сил;
  • Американский автомобиль Chevrolet Corvette C7 Stingray, оснащен бензиновым движком с высокими характеристиками;
  • Мощный внедорожник Jeep Grand Cherokee SRT, представляет собой комплектацию бензинового двигателя высокими мощностями и непревзойдённой динамикой;

К автомобилям не намного уступающим по мощностям так же можно отнести такие модели как: Chevrolet Camaro, Lexus LS 460, Porsche Cayenne GTS, Audi RS5, Mercedes SLK 55 AMG.

Что касается дизельных моделей, то лидерами являются следующие марки: Mercedes-Bez OM 602, OM 647, BMW M 57. Двигатели данных автомобилей показывают надежность и простоту конструкции.

При покупке автомобиля все же в первую очередь нужно обращать на его «сердце». Если вы предпочитаете хорошую динамику, меньший расход то ваш выбор должен пасть на турбо мотор. Однако если вы отдаете предпочтение долговечности, то без колебаний совести следует выбирать атмосферный двигатель.

Атмосферный двигатель дизельного и бензинового типа, характеристики

По типам двигатели автомобиля делится на атмосферные и турбированные. По части дизельных моторов, их абсолютное большинство оснащено турбинами, чего не сказать о бензиновых. Хотя тенденция наддува бензинового мотора растет, в СНГ к таким агрегатам относятся скептически. Название «атмосферный двигатель» говорит само за себя: давление воздуха, попадающего во впускной коллектор, равно атмосферному давлению.

Принцип работы атмосферного ДВС

Работа двигателя внутреннего сгорания основана на эффективном смесеобразовании и горении, следствие чего образуется механическая энергия в виде крутящего момента, передаваемого на колеса.

Топливно-воздушная смесь представляет собой смесь бензина или дизеля и воздуха. Эталонным соотношением является 1:14,7, то есть на 1 литр топлива приходится 14,7 килограмм воздуха.

Принцип работы атмосферного двигателя: воздух, поступающий во впускной коллектор, затягивается в цилиндры, а роль насоса играет поршень. Благодаря достаточной компрессии поршень при движении вниз всасывает воздух в требуемом количестве.

Конструктивные особенности атмосферного двигателя

Атмосферный дизельный или бензиновый двигатель, в силу невозможности затягивать больше воздуха, имеет слишком ограниченный порог увеличения мощности. Из-за того, что крутящий момент достигается ближе к максимальным оборотам, а диапазон момента слишком короток, это создает дискомфорт при движении в виде недостаточной тяги на малых и средних оборотах.

Автомобильные инженеры нашли выход благодаря следующим изобретениям:

Непосредственный впрыск

Топливо подается непосредственно в цилиндры под давлением 3 атмосферы. Смешивание воздуха и топлива происходит в цилиндре, что дает и топливную экономичность и прирост в мощности.

Фазовращатель

Чтобы крутящий момент смещался по ходу роста оборотов двигателя, были внедрены фазовращатели. Принцип работы состоит в следующем: при повышении оборотов коленвала возрастает давление в масляной системе, а под давлением масло давит на шестерни фазовращателя, смещая фазу.

Как итог – диапазон крутящего момента становится шире, а разгон – без провалов.

Впускной коллектор с изменяемой геометрией

Принцип работы заключается в изменении геометрии впускных каналов, а именно – их длины. Для малых оборотов воздух движется по длинной траектории, а в режиме средних и максимальных оборотов – по короткой.

Подобная конструкция позволяет достигать максимального крутящего момента с малых оборотов, обеспечивая плавное изменение момента.

Достоинства и недостатки атмосферного двигателя

Достоинства:

  • простая конструкция, если сравнивать с турбированным,
  • невысокая стоимость обслуживания и ремонта,
  • возможность самостоятельного ремонта,
  • относительная неприхотливость к качеству топлива,
  • ресурс двигателя от 250 000 км в силу низкой форсировки.

Недостатки:

  • большой расход топлива,
  • ограничение по повышению мощности без потери эластичности мотора и его ресурса,
  • низкий КПД,
  • внедрение сложных узлов для «выравнивания» полки крутящего момента, что сказывается на дальнейшей стоимости в обслуживании и ремонте негативно.

Выводы

Бензиновый и дизельный атмосферный двигатель – идеальный агрегат с точки зрения надежности и ресурса. В силу отсутствия сложной конструктивной начинки его можно самостоятельно ремонтировать и обслуживать. Не составляет труда подружить такой мотор с газом для экономии на расходе топлива.

Однако атмосферник слишком ограничен в возможностях повышения мощности без вреда системе и комфорту передвижения. Также повышение мощности в его случае прямо пропорционально увеличению расхода топлива. По этим причинам в новых автомобилях все больше внедряется турбина.

список проблемных двигателей — журнал За рулем

Надо ли бояться двигателей с турбонаддувом? «За рулем» объясняет причины их ненадежности и развеивает мифы.

Материалы по теме

Анализ вторичного рынка не оставляет сомнений: россияне при покупке автомобиля в подавляющем большинстве случаев выбирают машины с атмосферным двигателем. Хотя при сопоставимых ценах турбомотор экономичнее и мощнее.

Сказанное в большей степени относится к автомобилям по умеренной цене. В премиум-сегменте предпочтения выражены не столь очевидно — обеспеченные покупатели не чураются даже битурбо­двигателей.

Главные неудачники

В Европе «эффект турбостраха» не наблюдался — переход на «турбо» происходил постепенно и плавно, хотя в 1980‑е сами турбины были весьма капризными. В СССР таких моторов никогда не было, отсюда и недоверие. Чужая, незнакомая вещь — непонятно, как и где ее чинить, случись что. Поначалу в России были ощутимые трудности с ремонтом турбомоторов (и дизелей тоже). Специализированные сервисы по турбомоторам и их компонентам появились не сразу. Да и там дорогостоящий ремонт не всегда гарантирует качество.

Материалы по теме

Между тем с приходом экологических норм Евро‑5 (в Евросоюзе — с 2009 года) моторы с наддувом стали самым простым и эффективным решением для всех производителей. А Евро‑6 оказался и вовсе труднодостижимым уровнем для атмо­сферников.

Мощная волна даунсайзинга (сокращение рабочего объема моторов и уменьшение их габаритов при повышении производительности, часто с помощью турбонаддува) поднялась лет пятнадцать назад. Всего двадцатью годами ранее литровая мощность под 100 л.с./л встречалась только у спортивных машин. Сегодня это обыкновенный показатель для относительно простых и массовых моделей.

На этой волне практически все заводы выпустили множество турбомоторов. Часть из них оказались не слишком удачными. То ли недостаток инженерного опыта сказался (все новые двигатели намного сложнее предыдущих), то ли поспешность разработок. Список общепризнанных «неудачников» довольно длинный. Выборочно: трехцилиндровый опелевский 1.0 R3, Ford 1.0 EcoBoost, сильно страдавший перегревами, «Инновация 2007 года» 1.4 TSI/TFSI Volkswagen/Audi, моторы BMW семейств N45 и N46 периода 2001–2011 годов, обладатель многих премий «Двигатель года» 1.6 THP (EP6), созданный концерном PSA совместно с BMW и получивший имя собственное Prince (Принц). Локальные проколы случались и у Мерседеса, и у Тойоты, и у Рено. У всех турбоновинок были передовые характеристики, но это сопровождалось снижением надежности.

Преждевременно и скоропостижно из строя выходят, разумеется, не все поголовно двигатели некоего семейства или серии, а только отдельные экземпляры. Постепенно накапливается статистика: что чаще всего ломается и почему. Тысячи остальных точно таких же двигателей успешно отрабатывают заявленный ресурс — и даже больший, но репутация в итоге портится у всех.

Главные проблемы

Что произошло? Мотористы под давлением экологических нормативов вынужденно избрали невыгодный с точки зрения надежности путь — сочетание увеличения давления в цилиндрах (рост температур и механических нагрузок) с облегчением шатунно-поршневой группы (уменьшение размеров и массы элементов ради снижения инерционных нагрузок). Сократился расчетный запас прочности многих нагруженных деталей — по некоторым оценкам, примерно на 40%. Это сопровождалось общим усложнением конструкции с той же целью оптимизации процесса сгорания топлива и минимизации вредных выбросов. Например, бээмвэ-пежо-ситроеновский Prince, дебютировавший на Mini, совместил в себе несколько передовых решений — турбину Twin-Scroll, систему изменения фаз газораспределения, непосредственный впрыск, систему охлаждения с умным насосом и управляемым ­термостатом.

Материалы по теме

Проблемы у многих турбодвигателей разных фирм оказались если не идентичными, то схожими. Неэффективные и не доведенные системы смазки и, как следствие, склонность к масляному голоданию, нередко одновременно с масложором (до литра на тысячу километров). Высокие термонагруженность (приводящая к ускоренной деградации резиновых и пластиковых деталей) и чувствительность к качеству топлива и октановому числу (некоторым двигателям даже АИ‑95 противопоказан). Вкупе с небрежным отношением к обслуживанию мотора суммарным проявлением становились нагар на форсунках и клапанах, отложения в цилиндрах и масляных каналах. Результат загрязнений — от течей «всего и везде» до деформации клапанов, прогорания поршней, задиров цилиндров и распредвалов.

Иногда всё это усугублялось низким ресурсом цепного привода ГРМ: цепь растягивалась намного раньше ожидаемого срока — именно на турбоверсиях, а на атмосферниках точно такой же узел работал нормально. Растянувшаяся цепь могла перескочить на несколько зубьев, что приводило к встрече поршней с клапанами.

Многие агрегаты этого «нехорошего» поколения в Россию официально не ввозили. Но остальных с лихвой хватило, чтобы накопить определенный скепсис ко всем турбированным моторам — при активном обсуждении в интернете, где негатив как обычно подается с большим преувеличением, а позитив гораздо менее интересен.

Турбодизели этап даунсайзинга пережили более благополучно, чем бензиновые собратья. Те же наклонности у них проявлялись в меньшей степени. Правда, добавлялись индивидуальные проблемы в системе питания: некорректная работа засоренных форсунок приводила к разно­образным фееричным финалам.

Как с этим жить?

Материалы по теме

Теперь уже очень просто. К 2010–2012 годам все проблемные моторы обстоятельно модернизировали и довели до приемлемого состояния. Чаще и масштабнее всего совершенствовали систему смазки, привод ГРМ (вплоть до перехода с цепи на ремень), материалы и конструкцию поршней и колец.

А к 2015‑му практически все «жертвы даунсайзинга» получили замену в виде двигателей новых серий и поколений, в которых прежние недочеты в целом учтены и исправлены. Сего­дняшний фольксвагеновский 1.4 TSI — сильно другой и в кошмарных болезнях не уличен. У Принца 1.6 THP также мало общего осталось с первоначальным вариантом, и его до сих пор выпускают (в Китае, для местных компаний) как новое семейство.

Пробег 250–300 тысяч километров вполне достижим для современных турбомоторов — и бензиновых, и дизельных. Но все они любят хороший уход: регулярную чистку форсунок, своевременную (а лучше упреждающую) замену масла, пристальное внимание к звукам в приводе ГРМ. И промывку радиаторов — то, чего старым атмосферникам обычно не требовалось. И да, не нужно разбавлять бензин ослиной мочой.

1.4 TSI (ЕА111)

1.4 TSI (ЕА111)

1.4 TSI (ЕА111)

В 2005 году этот мотор поражал инновационной архитектурой, изяществом решений и отличными характеристиками. В самих буквах TSI зашифрована технология послойного непосредственного впрыска топлива и турбонаддува. Была заявлена пятипроцентная экономия топлива при увеличении мощности на 14% по сравнению с двухлитровым (!) FSI. Но эксплуатация быстро выявила уязвимые места.

Первый вал претензий — к цепи ГРМ и неудачному натяжителю. Цепь растягивалась, а натяжитель не натягивал, из-за этого сходили с ума фазорегуляторы. Оказалось, что машину нельзя оставлять на склоне на передаче без ручного тормоза — не исключалась вероятность проскока цепи. Реакцией на промах с топливом (или на короткие поездки зимой без прогрева) была детонация, засорение впускных клапанов и маслоприемника нагаром, падение компрессии, масложор, изредка — разрушение хрупких поршней с тонкими стенками. Нарекания в адрес турбин были малозначимые.

Мотор выпускали до 2012 года и ставили на множество автомобилей Volkswagen, Audi, Skoda и Seat. Затем ему на смену пришел 1.4 TSI нового поколения EA211, полностью переработанный. Злосчастную цепь ГРМ заменили привычным ремнем.

Брать или не брать?

Renault Arkana

Renault Arkana

Машины с турбомоторами часто выбирают адепты активной езды, потому при покупке ­бэушных машин требуется особое внимание. От приобретения техники с бензиновыми турбомоторами проблемного периода (примерно до 2011 года) лучше отказаться. Слишком большой заявленный пробег (от 200 000 км) намекает на предельный износ элементов двигателя, а за подозрительно маленьким (скажем, 50 000 км для десятилетней машины) могут скрываться годы простоя в ремонте — это если пробег не скручен. В любом случае полезна диагностика мотора и турбины.

С новыми автомобилями проще: пока действует гарантия, беспокоиться не о чем. Да и надежность турбомоторов подросла. Крайне интересно посмотреть на продажи в России потенциального бестселлера Renault Arkana, у которого альтернативу старому атмосфернику 1.6 составляет современнейший турбомотор 1.3 TCe (он же М282 в номенклатуре Мерседеса), представленный в 2017 году. Пока доля турбоверсий в общем объеме продаж Арканы составляет около 50 %. Значит, довольно скоро будет собрана статистика насчет надежности (или проблемности) этого мотора — и мы вернемся к теме.

Какие современные двигатели автомобилей самые надежные — Российская газета

О надежности японских или немецких моторов 20 лет назад слагались легенды: мол, некоторые из них способны пройти 300 и даже 400 тысяч километров. За эти годы технологии ушли далеко вперед, но появились ли двигатели, способные преодолеть рубеж в 500 тысяч?

У Renault и Nissan наиболее надежными считаются следующие двигатели: 1,6-литровый К4М мощностью 102-105 л. с. и 2,0-литровый F4R, который развивает мощность 135-143 л. с. Их ставят на массовые модели. Моторы отличаются простой конструкцией: чугунный блок цилиндров, гидрокомпенсаторы в приводе клапанов, низкий уровень форсировки. При грамотном уходе и бережной эксплуатации силовые агрегаты могут проехать те самые 500 тысяч, пишет aif.ru.

На Kia Rio, Ceed или Сreta, Hyundai Solaris и i30 ставятся корейские двигатели G4FA/G4FC с рабочим объемом 1,4 и 1,6 л и мощностью 107 или 123 л. с. Для них 300 тысяч км — это не проблема. При своевременной замене масла и внимательном уходе корейцы могут показать и полмиллиона километров. Кстати, эти ходовые модели автомобилей нередко используются в такси, а потом передаются в трейд-ин и дальше активно эксплуатируются, что говорит об их выносливости.

На вторичном рынке немало автомобилей Chevrolet. Один из самых ходовых двигателей — 1,5-литровый B15D2 мощностью 106 л. с. — ставился на Chevrolet Cobalt и Daewoo Gentra. У него чугунный блок, цепной привод клапанного механизма. Ресурс цепи составляет 200 тысяч км максимум, при своевременной замене мотор может показать гораздо больше.

Перевод моделей Volkswagen на турбированный мотор снизил возможности машин: после 150 тысяч км турбина может потребовать замены. А вот атмосферный двигатель с 8 клапанами BSE 1.6 MPI, который ставился лет 10 назад на Skoda Octavia, Volkswagen Golf 5 и 6, Jetta 5, Passat B6 — это классика надежности. Небольшая мощность в 102 л.с. была достаточной для городской езды. Если менять ремень ГРМ через 120 тысяч км и следить за маслом, то мотор способен без проблем показать 500 тысяч, в отличие от турбированных новинок.

На ряде моделей Honda с 2006 года ставился 2-литровый бензиновый двигатель R20A мощностью 120-155 л. с. У него есть свои недостатки. К примеру, каждые 80 тысяч км у мотора нужно регулировать зазоры в клапанах, возникающие из-за отсутствия гидрокомпенсаторов. Он чувствителен к качеству топлива, но при правильном уходе 500 тысяч км для него не предел.

На Toyota Camry и RAV4 10 лет назад ставился атмосферный 2,5 2AR-FE, способный выдавать 169-181 л. с. На хорошем топливе, при своевременном ТО, отсутствии перегревов и нагрузок в непрогретом состоянии эти двигатели тоже способны преодолеть 500-тысячный лимит.

Geography4Kids.com: атмосфера


Что такое небо? Что такое воздух? Какая атмосфера? Атмосфера представляет собой тонкий слой газов , окружающий Землю. Он изолирует планету и защищает нас от космического вакуума. Он защищает нас от электромагнитного излучения, испускаемого Солнцем и мелких объектов, летящих в космосе, таких как метеороиды. Конечно, он также содержит кислорода (O 2 ), которым мы все дышим, чтобы выжить.

Так же, как слои внутри Земли, есть слои и в атмосфере.Все слои взаимодействуют друг с другом, поскольку газы циркулируют по планете. Самые низкие слои взаимодействуют с поверхностью Земли, а самые высокие слои взаимодействуют с космосом. На своем уровне вы можете ощущать атмосферу как прохладный ветерок. В других случаях вы будете ощущать это как жаркий или влажный день, который, кажется, давит на вас со всех сторон.

По сравнению с диаметром Земли, атмосфера очень тонкая. Толщина атмосферы — это баланс между силой тяжести Земли и энергичными молекулами, которые хотят подняться и двигаться в космос.Молекулы в верхних слоях атмосферы возбуждаются, когда энергия Солнца попадает на Землю. Молекулы в нижних слоях более холодные и находятся под большим давлением .

Если бы Земля была больше, атмосфера была бы на плотнее . Увеличившаяся масса и связанная с ней сила тяжести более крупной планеты подтолкнули бы эти молекулы газа ближе к поверхности, и давление увеличилось бы.

Атмосфера — это больше, чем просто слои газа, окружающие планету. Это также движущийся источник жизни для всех существ на планете.Хотя большая часть атмосферы состоит из молекул азота (N 2 ), существуют также кислород и углекислый газ (CO 2 ), которые необходимы растениям и животным для выживания. Вы также найдете озон (O 3 ) выше в атмосфере, который помогает фильтровать вредное ультрафиолетовое излучение от Солнца. Атмосфера также защищает нас от вакуума и холода космоса. Без нашей атмосферы Земля была бы такой же бесплодной и мертвой, как Луна или Меркурий.

На планете нет единого климата.Специализированные климатические условия встречаются по всей планете и могут включать пустыни, тропические леса или полярные регионы. Общей чертой всех этих климатов является атмосфера. В атмосфере циркулируют газы и частицы между всеми этими областями.

Горячий воздух с экватора в конечном итоге перемещается на север или юг в другие климатические регионы. Этот более теплый воздух соединяется с более холодным, начинается перемешивание и формируются штормы. Постоянное перемешивание атмосферы поддерживает стабильную систему, которая помогает организмам выжить.Кислород никогда не закончится в одном районе планеты, а температура не взлетит до небес в другом. Атмосфера уравновешивает возможные крайности Земли и создает общую стабильность.

Прекрасным примером является то, как тропических циклонов (ураганов) образуются над Атлантическим океаном. Из-за глобальной атмосферной циркуляции системы начинаются над пустыней Сахара в Африке, перемещаются через западное побережье северной Африки, собирают большое количество воды, проходя через теплый Атлантический океан и Карибское море, и, наконец, сбрасывают весь дождь на Карибское море или юго-восточное побережье США.Помимо штормовой погоды, атмосфера также может переносить пыль и частицы из Сахары в Северную Америку.




Или выполните поиск на сайтах по определенной теме.

Атмосфера | Науки о Земле

Атмосфера Земли представляет собой тонкий слой газов и крошечных частиц, вместе называемых воздухом. Мы больше всего осознаем воздух, когда он движется и создает ветер. Все живые существа нуждаются в некоторых газах в воздухе для жизнеобеспечения.Без атмосферы Земля, вероятно, была бы просто еще одной безжизненной скалой.

Атмосфера Земли вместе с обилием жидкой воды на поверхности Земли — это ключи к уникальному месту нашей планеты в Солнечной системе. Многое из того, что делает Землю исключительной, зависит от атмосферы. Давайте рассмотрим несколько причин, по которым нам повезло с атмосферой.

НЕОБХОДИМО ДЛЯ ЖИЗНИ НА ЗЕМЛЕ
Без атмосферы Земля была бы больше похожа на Луну. Атмосферные газы, особенно диоксид углерода (CO 2 ) и кислород (O 2 ), чрезвычайно важны для живых организмов.Как атмосфера делает жизнь возможной? Как жизнь меняет атмосферу?

В фотосинтезе растения используют CO 2 и создают O 2 . Фотосинтез отвечает за почти весь кислород, который в настоящее время содержится в атмосфере. Создавая кислород и пищу, растения создали среду, благоприятную для животных. При дыхании животные используют кислород для преобразования сахара в пищевую энергию, которую они могут использовать. Растения также дышат и потребляют некоторые из производимых сахаров.


ОСНОВНАЯ ЧАСТЬ ВОДНОГО ЦИКЛА
В рамках гидрологического цикла, который был подробно описан в главе «Пресная вода на Земле», вода проводит много времени в атмосфере, в основном в виде водяного пара. Вся погода происходит в атмосфере, практически все это происходит в нижних слоях атмосферы. . Погода описывает состояние атмосферы в определенное время и в определенном месте и может включать температуру, ветер и осадки. Погода — это изменение, которое мы испытываем изо дня в день.Климат — это долгосрочное среднее значение погоды в определенном месте. Хотя погода в определенный зимний день в Тусоне, штат Аризона, может включать снег, климат Тусона в целом теплый и сухой.

ОЗОНОВЫЙ СЛОЙ ОБЕСПЕЧИВАЕТ ЖИЗНЬ
Озон представляет собой молекулу, состоящую из трех атомов кислорода (O 3 ). Озон в верхних слоях атмосферы поглощает высокоэнергетического ультрафиолетового (УФ) излучения , исходящего от Солнца. Это защищает живые существа на поверхности Земли от наиболее вредных лучей Солнца.Без озона для защиты только простейшие формы жизни могли бы жить на Земле.МОДЕРИРУЕТ ТЕМПЕРАТУРУ ЗЕМЛИ
Наряду с океанами, атмосфера поддерживает температуру Земли в приемлемом диапазоне. Парниковые газы улавливают тепло в атмосфере, помогая снизить глобальные температуры. Без атмосферы, содержащей парниковые газы, температура на Земле была бы низкой ночью и палящей днем. Важные парниковые газы включают двуокись углерода, метан, водяной пар и озон.


Атмосферные газы

СОСТАВ АТМОСФЕРЫ
Азот и кислород вместе составляют 99 процентов атмосферы планеты. Остальные газы — второстепенные, но иногда очень важные компоненты. Влажность — это количество водяного пара в воздухе. Влажность варьируется от места к месту и от сезона к сезону. Этот факт очевиден, если вы сравните летний день в Атланте, штат Джорджия, с высокой влажностью, с зимним днем ​​в Фениксе, штат Аризона, где влажность низкая.Когда воздух очень влажный, он кажется тяжелым или липким. Сухой воздух обычно кажется более комфортным. Где на земном шаре средний уровень водяного пара в атмосфере выше, а где он ниже и почему? Более высокая влажность наблюдается в экваториальных регионах, потому что температура воздуха выше, а теплый воздух может содержать больше влаги, чем более холодный. Конечно, в полярных регионах влажность ниже, потому что температура воздуха ниже.

Часть того, что находится в атмосфере, не является газом. Частицы пыли, почвы, фекалий, металлов, соли, дыма, золы и других твердых веществ составляют небольшой процент атмосферы.Частицы служат отправными точками (или ядрами) для конденсации водяного пара и образования капель дождя. Некоторые частицы являются загрязнителями, которые обсуждаются в главе Действия человека и атмосфера.


АТМОСФЕРНОЕ ДАВЛЕНИЕ И ПЛОТНОСТЬ
Атмосфера имеет разные свойства на разных высотах над уровнем моря или над уровнем моря. Плотность воздуха (количество молекул в данном объеме) уменьшается с увеличением высоты. Вот почему люди, которые поднимаются на высокие горы, такие как Mt.Эверест, нужно разбить лагерь на разных высотах, чтобы их тела могли привыкнуть к пониженному воздуху. Почему плотность воздуха уменьшается с высотой? Гравитация притягивает молекулы газа к центру Земли. Тяготение сильнее ближе к центру на уровне моря. Воздух плотнее на уровне моря, где гравитационное притяжение больше. Газы на уровне моря также сжимаются под действием веса атмосферы над ними. Сила давления воздуха на единицу площади известна как его атмосферное давление .Причина, по которой мы не раздавлены этим весом, заключается в том, что молекулы внутри нашего тела толкаются наружу, чтобы компенсировать это. Атмосферное давление ощущается со всех сторон, а не только сверху.

На больших высотах атмосферное давление ниже и воздух менее плотный, чем на больших высотах. Если ваши уши когда-либо «хлопали», значит, вы испытали изменение давления воздуха. Молекулы газа находятся внутри и снаружи ваших ушей. Когда вы быстро меняете высоту, например, когда самолет снижается, ваше внутреннее ухо сохраняет плотность молекул на исходной высоте.В конце концов молекулы воздуха внутри вашего уха внезапно проходят через небольшую трубку в ухе, чтобы уравновесить давление. Этот внезапный порыв воздуха ощущается как ощущение хлопка.

Хотя плотность атмосферы меняется с высотой, ее состав остается неизменным с высотой, за одним исключением. В озоновом слое на высоте от 20 до 40 км над поверхностью концентрация молекул озона выше, чем в других частях атмосферы.


Слои атмосферы

Атмосфера многослойная, что соответствует тому, как температура атмосферы изменяется с высотой.Понимая, как температура изменяется с высотой, мы можем многое узнать о том, как устроена атмосфера. В то время как погода имеет место в более низкой атмосфере, интересные вещи, такие как красивое полярное сияние, происходят выше в атмосфере.

Почему поднимается теплый воздух? Молекулы газа могут свободно перемещаться, и если они не удерживаются, как в атмосфере, они могут занимать больше или меньше места.

  • Когда молекулы газа холодные, они медлительны и не занимают столько места.При том же количестве молекул в меньшем пространстве и плотность воздуха, и давление выше.
  • Когда молекулы газа теплые, они энергично движутся и занимают больше места. Плотность и давление воздуха ниже.

Более теплый и легкий воздух обладает большей плавучестью, чем более холодный воздух над ним, поэтому он поднимается вверх. Затем более холодный воздух опускается вниз, потому что он плотнее, чем воздух под ним. Это конвекция, описанная в главе «Тектоника плит».

Свойство, которое наиболее сильно меняется с высотой, — это температура воздуха.В отличие от изменений давления и плотности, которые уменьшаются с высотой, изменения температуры воздуха нерегулярны. Изменение температуры с расстоянием называется температурным градиентом .

Атмосфера делится на слои в зависимости от того, как температура в этом слое изменяется с высотой, т.е. температурного градиента слоя. Температурный градиент каждого слоя разный. В одних слоях температура увеличивается с высотой, а в других — уменьшается. Температурный градиент в каждом слое определяется источником тепла слоя.Большинство важных процессов в атмосфере происходит в двух нижних слоях: тропосфере и стратосфере.


ТРОПОСФЕРА
Температура тропосферы самая высокая у поверхности Земли и уменьшается с высотой. В среднем, градиент температуры тропосферы составляет 6,5 ° ° C на 1000 м (3,6 ° ° F на 1000 футов) высоты. Что является источником тепла для тропосферы? Поверхность Земли является основным источником тепла для тропосферы, хотя почти все это тепло исходит от Солнца.Скалы, почва и вода на Земле поглощают солнечный свет и излучают его обратно в атмосферу в виде тепла. Температура также выше у поверхности из-за большей плотности газов.
Обратите внимание, что в тропосфере более теплый воздух находится под более холодным воздухом. Как вы думаете, к чему это приведет? Это состояние нестабильно. Теплый воздух у поверхности поднимается вверх, а холодный воздух выше в тропосфере опускается. Таким образом, воздух в тропосфере сильно перемешивается. Это смешивание вызывает изменение температурного градиента во времени и в месте. Подъем и опускание воздуха в тропосфере означает, что вся погода на планете происходит в тропосфере.

Иногда наблюдается инверсия температуры , температура воздуха в тропосфере увеличивается с высотой, и теплый воздух оказывается поверх холодного. Инверсии очень стабильны и могут длиться несколько дней или даже недель. Их формируют:

  • Над сушей ночью или зимой, когда земля холодная. Холодная земля охлаждает воздух, который находится над ней, делая этот низкий слой воздуха более плотным, чем воздух над ним.
  • Рядом с побережьем, где холодная морская вода охлаждает воздух над ней. Когда этот более плотный воздух движется вглубь суши, он скользит под более теплым воздухом над землей.

Поскольку температурные инверсии стабильны, они часто улавливают загрязнители и создают нездоровые условия воздуха в городах. В верхней части тропосферы находится тонкий слой, температура в котором не меняется с высотой. Это означает, что более холодный и плотный воздух тропосферы задерживается под более теплым и менее плотным воздухом стратосферы.Воздух из тропосферы и стратосферы редко смешивается.

СТРАТОСФЕРА
Пепел и газ от крупного извержения вулкана могут прорваться в стратосферу , слой над тропосферой. Попав в стратосферу, он остается там в течение многих лет, потому что между двумя слоями очень мало перемешивания. Пилоты любят летать в нижних слоях стратосферы, потому что там нет турбулентности воздуха.В стратосфере температура увеличивается с высотой. Что является источником тепла для стратосферы? Непосредственным источником тепла для стратосферы является Солнце. Воздух в стратосфере стабилен, потому что более теплый и менее плотный воздух располагается над более прохладным и плотным. В результате внутри слоя происходит небольшое перемешивание воздуха. Озоновый слой находится в стратосфере на высоте от 15 до 30 км (от 9 до 19 миль). Толщина озонового слоя меняется в зависимости от сезона и широты.

Озоновый слой чрезвычайно важен, потому что газообразный озон в стратосфере поглощает большую часть вредного ультрафиолетового (УФ) излучения Солнца.Благодаря этому озоновый слой защищает жизнь на Земле. Ультрафиолетовый свет высокой энергии проникает в клетки и повреждает ДНК, что приводит к гибели клеток (что мы знаем как сильный солнечный ожог). Организмы на Земле не приспособлены к сильному ультрафиолетовому излучению, которое убивает или повреждает их. Без озонового слоя, отражающего ультрафиолетовое и ультрафиолетовое излучение, самая сложная жизнь на Земле не прожила бы долго.

МЕЗОСФЕРА
Температура в мезосфере уменьшается с высотой. Поскольку в мезосфере мало молекул газа, поглощающих солнечное излучение, источником тепла является стратосфера внизу.Мезосфера очень холодная, особенно в ее верхней части, около -90 градусов по Цельсию (-130 градусов по Фаренгейту).

Воздух в мезосфере имеет чрезвычайно низкую плотность: 99,9% массы атмосферы находится ниже мезосферы. В результате давление воздуха очень низкое. Человек, путешествующий по мезосфере, получит серьезные ожоги от ультрафиолета, поскольку озоновый слой, обеспечивающий защиту от ультрафиолета, находится в стратосфере ниже. Для дыхания кислорода почти не было. Что еще более странно, кровь незащищенного путешественника закипает при нормальной температуре тела из-за очень низкого давления.


ТЕРМОСФЕРА
Плотность молекул в термосфере настолько мала, что одна молекула газа может пройти около 1 км, прежде чем столкнется с другой молекулой. Поскольку передается так мало энергии, воздух кажется очень холодным. Внутри термосферы находится ионосфера . Ионосфера получила свое название от солнечного излучения, которое ионизирует молекулы газа, создавая положительно заряженный ион и один или несколько отрицательно заряженных электронов. Освободившиеся электроны перемещаются в ионосфере в виде электрических токов.Из-за свободных ионов ионосфера имеет много интересных характеристик. Ночью радиоволны отражаются от ионосферы и возвращаются на Землю. Вот почему ночью вы часто можете поймать AM-радиостанцию ​​далеко от ее источника. Радиационные пояса Ван Аллена представляют собой две кольцевидные зоны из сильно заряженных частиц, которые расположены за пределами атмосферы в магнитосфере . Частицы возникают в результате солнечных вспышек и летят на Землю с солнечным ветром. Попав в ловушку магнитного поля Земли, они следуют вдоль силовых линий магнитного поля.Эти линии проходят от экватора к Северному полюсу, а также к Южному полюсу, а затем возвращаются к экватору.

Когда из-за массивных солнечных бурь пояса Ван Аллена становятся перегруженными частицами, возникает самая впечатляющая особенность ионосферы — полярное сияние . Частицы вращаются по спирали вдоль силовых линий магнитного поля к полюсам. Заряженные частицы возбуждают молекулы кислорода и азота, заставляя их загораться. Каждый газ излучает свет определенного цвета.

Нет реального внешнего предела экзосфере , самому внешнему слою атмосферы; молекулы газа в конце концов становятся настолько редкими, что в какой-то момент их больше нет. За пределами атмосферы — солнечный ветер. Солнечный ветер состоит из высокоскоростных частиц, в основном протонов и электронов, которые быстро движутся в сторону от Солнца.


Нет реального внешнего предела экзосфере , самому внешнему слою атмосферы; молекулы газа в конце концов становятся настолько редкими, что в какой-то момент их больше нет.За пределами атмосферы — солнечный ветер. Солнечный ветер состоит из высокоскоростных частиц, в основном протонов и электронов, которые быстро движутся в сторону от Солнца.

В этом видео очень подробно обсуждаются слои атмосферы.

Атмосферная энергия, температура и тепло

ENERGY
Energy перемещается через пространство или материал. Это очевидно, когда вы стоите возле огня и чувствуете его тепло или когда берете ручку металлического горшка, даже если ручка не находится непосредственно на горячей плите.Невидимые энергетические волны могут распространяться через воздух, стекло и даже космический вакуум. Эти волны обладают электрическими и магнитными свойствами, поэтому их называют электромагнитными волнами. Передача энергии от одного объекта к другому посредством электромагнитных волн называется излучением. Энергия разной длины создает разные типы электромагнитных волн.
  • Длины волн, которые могут видеть люди, известны как «видимый свет». Эти длины волн кажутся нам цветами радуги.Какие объекты излучают видимый свет? Два включают Солнце и лампочку.
  • Самые длинные волны видимого света кажутся красными. Инфракрасные волны длиннее видимого красного. Змеи могут видеть инфракрасную энергию. Мы ощущаем инфракрасную энергию как тепло.
  • Длины волн короче фиолетового называются ультрафиолетовыми.

Можете ли вы представить себе некоторые объекты, которые, кажется, излучают видимый свет, но на самом деле нет? Луна и планеты не излучают собственный свет; они отражают свет Солнца. Отражение — это когда свет (или другая волна) отражается от поверхности. Albedo — это показатель того, насколько хорошо поверхность отражает свет. Поверхность с высоким альбедо отражает большой процент света. Снежное поле имеет высокое альбедо.

Следует помнить один важный факт: энергию нельзя создать или уничтожить — ее можно только изменить из одной формы в другую. Это настолько фундаментальный факт природы, что это закон: закон сохранения энергии.

Например, при фотосинтезе растения преобразуют солнечную энергию в химическую энергию, которую они могут использовать. Они не создают новой энергии. При преобразовании энергии часть почти всегда становится теплом. Легко переносится тепло между материалами, от более теплых предметов к более холодным. Если больше не добавлять тепла, в конечном итоге весь материал достигнет одинаковой температуры.


ТЕМПЕРАТУРА
Температура — это мера того, насколько быстро колеблются атомы в материале. Частицы с высокой температурой колеблются быстрее, чем частицы с низкой температурой. Быстро колеблющиеся атомы сталкиваются друг с другом, в результате чего выделяется тепло.По мере охлаждения материала атомы колеблются медленнее и сталкиваются реже. В результате они выделяют меньше тепла. В чем разница между теплом и температурой?
  • Температура измеряет, насколько быстро колеблются атомы материала.
  • Тепло измеряет общую энергию материала.

Что имеет более высокую температуру и более высокую температуру: пламя свечи или ванна, полная горячей воды?

  • Пламя имеет более высокую температуру, но меньше тепла, потому что горячая область очень мала.
  • Ванна имеет более низкую температуру, но в ней гораздо больше тепла, потому что в ней гораздо больше колеблющихся атомов. Ванна имеет большую общую энергию.

ТЕПЛО
Тепло забирается или выделяется, когда объект меняет состояние или переходит из газа в жидкость или из жидкости в твердое тело. Это тепло называется скрытой теплотой . Когда вещество меняет состояние, скрытое тепло выделяется или поглощается. Вещество, изменяющее свое материальное состояние, не меняет температуры.Вся высвобождаемая или поглощенная энергия идет на изменение состояния материала.

Например, представьте кастрюлю с кипящей водой на плите: температура воды 100 градусов по Цельсию (212 градусов по Фаренгейту). Если увеличить температуру конфорки, в воду поступает больше тепла. Вода остается при температуре кипения, но дополнительная энергия идет на превращение воды из жидкости в газ. Чем больше тепла, тем быстрее вода испаряется. Когда вода превращается из жидкости в газ, она забирает тепло. Поскольку при испарении уходит тепло, это называется испарительным охлаждением. Испарительное охлаждение — это недорогой способ охлаждения домов в жарких и сухих местах.

Вещества также различаются по удельной теплоемкости , количеству энергии, необходимому для повышения температуры одного грамма материала на 1,0 градус Цельсия (1,8 градуса F). Вода имеет очень высокую удельную теплоемкость, а это значит, что для изменения температуры воды требуется много энергии. Сравним, например, лужу и асфальт. Если вы идете босиком в солнечный день, что бы вы предпочли пройти, мелкую лужу или асфальтовую парковку? Из-за своей высокой удельной теплоемкости вода остается более холодной, чем асфальт, даже несмотря на то, что она получает такое же количество солнечного излучения.

Энергия Солнца

Земля постоянно пытается поддерживать энергетический баланс с атмосферой. Большая часть энергии, достигающей поверхности Земли, исходит от Солнца. Около 44% солнечного излучения находится в длинах волн видимого света, но Солнце также излучает инфракрасные, ультрафиолетовые и другие длины волн. При совместном просмотре все длины волн видимого света кажутся белыми. Но призма или капли воды могут разбить белый свет на разные длины волн, так что появятся отдельные цвета.

Из солнечной энергии, которая достигает внешней атмосферы, ультрафиолетовые волны имеют наибольшую энергию. Только около 7 процентов солнечной радиации приходится на ультрафиолетовые волны. Три типа:

  • UVC: ультрафиолет с высочайшей энергией, вообще не достигает поверхности планеты.
  • UVB: вторая по величине энергия, также в основном задерживается в атмосфере.
  • UVA: самая низкая энергия, проходит через атмосферу на землю.

Остающееся солнечное излучение — это самая длинноволновая часть инфракрасного излучения.Большинство объектов излучают инфракрасную энергию, которую мы ощущаем как тепло. Некоторые длины волн солнечного излучения, проходящего через атмосферу, могут быть потеряны, поскольку они поглощаются различными газами. Озон полностью удаляет УФС, большую часть УФВ и часть УФА от падающего солнечного света. Кислород, углекислый газ и водяной пар также фильтруют волны некоторых длин.


Теплообмен в атмосфере

Тепло движется в атмосфере так же, как оно движется через твердую Землю (глава «Тектоника плит») или другую среду.Далее следует обзор того, как тепло течет и передается, но применительно к атмосфере.

Излучение — это передача энергии между двумя объектами с помощью электромагнитных волн. Тепло излучается от земли в нижние слои атмосферы.

В с проводимостью тепло перемещается из областей с большим количеством тепла в области с меньшим количеством тепла при прямом контакте. Более теплые молекулы быстро вибрируют и сталкиваются с другими соседними молекулами, передавая свою энергию. В атмосфере проводимость более эффективна на низких высотах, где плотность воздуха выше; передает тепло вверх туда, где молекулы расходятся дальше друг от друга, или передает тепло вбок от более теплого места к более холодному, где молекулы движутся менее энергично.

Теплообмен при движении нагретых материалов называется конвекцией . Тепло, исходящее от земли, вызывает конвекционные ячейки в атмосфере.

ТЕПЛО НА ПОВЕРХНОСТИ ЗЕМЛИ
Около половины солнечной радиации, которая попадает в верхние слои атмосферы, отфильтровывается, прежде чем достигнет земли. Эта энергия может поглощаться атмосферными газами, отражаться облаками или рассеиваться. Рассеяние происходит, когда световая волна ударяется о частицу и отражается в другом направлении.

Около 3% энергии, падающей на землю, отражается обратно в атмосферу. Остальное поглощается камнями, почвой и водой, а затем излучается обратно в воздух в виде тепла. Эти инфракрасные волны могут быть видны только инфракрасными датчиками. Поскольку солнечная энергия постоянно проникает в атмосферу Земли и на поверхность земли, становится ли планета горячее? Ответ — нет (хотя следующий раздел содержит исключение), потому что энергия с Земли уходит в космос через верхние слои атмосферы. Если количество, которое выходит, равно количеству, которое входит, то средняя глобальная температура остается неизменной. Это означает, что тепловой баланс планеты сбалансирован. Что произойдет, если энергии поступит больше, чем уйдет? Если уходит больше энергии, чем входит?

Сказать, что тепловой баланс Земли сбалансирован, игнорирует важный момент. Количество поступающей солнечной энергии на разных широтах разное). Как вы думаете, куда попадает больше всего солнечной энергии и почему? Где остается меньше всего солнечной энергии и почему? Разница в солнечной энергии, получаемой на разных широтах, вызывает атмосферную циркуляцию.

Экваториальные районы

Полярные регионы

Продолжительность дня
Почти одинаково круглый год

Ночь 6 месяцев

Угол Солнца
Высокий

Низкий

Солнечное излучение
Высокая

Низкий

Альбедо
Низкий

Высокая

ПАРНИКОВЫЙ ЭФФЕКТ
Исключение из равновесия температуры Земли вызвано парниковыми газами. Но сначала необходимо объяснить роль парниковых газов в атмосфере. Парниковые газы нагревают атмосферу, улавливая тепло. Часть теплового излучения от земли улавливается парниковыми газами в тропосфере. Как одеяло на спящем человеке, парниковые газы действуют как изоляция для нашей планеты. Потепление атмосферы из-за изоляции парниковыми газами называется парниковым эффектом . Парниковые газы — это компонент атмосферы, который регулирует температуру Земли.Парниковые газы включают CO2, h3O, метан, O3, оксиды азота (NO и NO2) и хлорфторуглероды (CFC). Все это нормальная часть атмосферы, кроме ХФУ. В таблице ниже показано, как каждый парниковый газ попадает в атмосферу естественным образом.


Парниковый газ
Двуокись углерода (CO 2 )
Метан
Закись азота
Озон
Хлорфторуглероды (CFC)

Откуда взялось
Дыхание, извержения вулканов, разложение растительного материала; сжигание ископаемого топлива
Разложение растительного материала при определенных условиях, биохимические реакции в желудке
Производятся бактериями; сжигание ископаемого топлива
Атмосферные процессы, химические реакции в результате сжигания ископаемого топлива
Не происходит в природе; сделано людьми

Различные парниковые газы обладают различной способностью удерживать тепло. Например, одна молекула метана улавливает в 30 раз больше тепла, чем одна молекула CO 2 . Одна молекула CFC-12 (разновидность CFC) улавливает в 10600 раз больше тепла, чем одна молекула CO 2 . Тем не менее, CO 2 является очень важным парниковым газом, потому что его гораздо больше в атмосфере.

Деятельность человека значительно повысила уровень многих парниковых газов в атмосфере. Уровни метана примерно в 2 1/2 раза выше в результате деятельности человека. Углекислый газ увеличился более чем на 35%.ХФУ появились совсем недавно.

Как вы думаете, что произойдет при повышении уровня парниковых газов в атмосфере? Больше парниковых газов задерживает больше тепла и нагревает атмосферу. Увеличение или уменьшение содержания парниковых газов в атмосфере влияет на климат и погоду во всем мире.

Атмосферное давление: определение и факты

Книги по метеорологии часто описывают атмосферу Земли как огромный океан воздуха, в котором мы все живем. На диаграммах наша родная планета изображена как окруженная огромным атмосферным морем высотой в несколько сотен миль, разделенным на несколько различных слоев.И все же та часть нашей атмосферы, которая поддерживает всю жизнь, о которой мы знаем, в действительности чрезвычайно тонкая и простирается вверх только до 18000 футов — чуть более 3 миль. И та часть нашей атмосферы, которую можно измерить с некоторой степенью точности, достигает примерно 25 миль (40 километров). Кроме того, дать точный ответ относительно того, где в конечном итоге заканчивается атмосфера, практически невозможно; где-то между 200 и 300 милями появляется неопределенная область, где воздух постепенно разрежается и в конечном итоге растворяется в космическом вакууме.

Так что слой воздуха, окружающий нашу атмосферу, в конце концов не такой уж и большой. Как красноречиво выразился покойный Эрик Слоан, популярный специалист в области погоды: «Земля не висит в воздушном море — она ​​висит в космическом море, и на ее поверхности есть чрезвычайно тонкий слой газа».

И этот газ — наша атмосфера.

Воздух имеет вес

Если бы человек взошел на высокую гору, например Мауна-Кеа на Большом острове Гавайи, где вершина достигает 13 796 футов (4206 метров), высока вероятность заражения высотной болезнью (гипоксией).Перед восхождением на вершину посетители должны остановиться в Информационном центре, расположенном на высоте 9 200 футов (2 804 м), где им говорят акклиматизироваться к высоте, прежде чем идти дальше на гору. «Ну, конечно, — скажете вы, — в конце концов, количество доступного кислорода на такой большой высоте значительно меньше, чем на уровне моря».

Но, делая такое заявление, вы ошиблись бы !

Фактически, 21 процент атмосферы Земли состоит из живительного кислорода (78 процентов состоит из азота, а оставшийся 1 процент — из ряда других газов).И доля этого 21 процента практически одинакова как на уровне моря, так и на высокогорье.

Большая разница не в количестве присутствующего кислорода, а скорее в плотности и давлении .

Эта часто используемая аналогия сравнения воздуха с водой («воздушным океаном») является хорошей, поскольку все мы буквально плывем по воздуху. А теперь представьте себе это: высокое пластиковое ведро до краев заполнено водой. Теперь возьмите ледоруб и проделайте отверстие в верхней части ведра.Вода будет медленно стекать. Теперь возьмите кирку и проделайте еще одну дырочку в нижней части ведра. Что случилось? Там вода будет стремительно брызгать резким потоком. Причина в разнице давления. Давление, которое оказывает вес воды внизу у дна ведра, больше, чем вверх у вершины, поэтому вода «выжимается» из отверстия внизу.

Точно так же давление всего воздуха над нашими головами — это сила, которая проталкивает воздух в наши легкие и выжимает из них кислород в кровоток.Как только это давление уменьшается (например, когда мы поднимаемся на высокую гору), в легкие поступает меньше воздуха, следовательно, меньше кислорода достигает нашего кровотока, что приводит к гипоксии; опять же, не из-за уменьшения количества доступного кислорода, а из-за уменьшения атмосферного давления.

Максимумы и минимумы

Итак, как атмосферное давление соотносится с суточными погодными условиями? Несомненно, вы видели прогнозы погоды, представленные по телевидению; встроенный в камеру метеоролог, ссылающийся на системы высокого и низкого давления.Что это вообще такое?

Короче говоря, каждый день солнечное тепло меняется по всей Земле. Из-за неравномерного солнечного нагрева температура меняется по всему земному шару; воздух на экваторе намного теплее, чем на полюсах. Таким образом, теплый легкий воздух поднимается и распространяется к полюсам, а более холодный и тяжелый воздух опускается к экватору.

Но мы живем на вращающейся планете, поэтому эта простая картина ветра искажена до такой степени, что воздух искажен вправо от своего направления движения в Северном полушарии и влево в Южном полушарии.Сегодня мы знаем этот эффект как силу Кориолиса, и как прямое следствие этого возникают сильные спирали ветра, которые мы знаем как системы высокого и низкого давления.

В Северном полушарии воздух в областях с низким давлением движется по спирали против часовой стрелки и внутрь — например, ураганы — это механизмы Кориолиса, циркулирующие воздух против часовой стрелки. Напротив, в системах высокого давления воздух движется по спирали по часовой стрелке и наружу от центра. В Южном полушарии направление спиралевидного движения воздуха обратное.

Итак, почему мы обычно ассоциируем высокое давление с хорошей погодой, а низкое — с неустойчивой погодой?

Системы высокого давления — это «купола плотности», которые давят вниз, тогда как системы низкого давления сродни «атмосферным долинам», где плотность воздуха меньше. Поскольку холодный воздух имеет меньшую способность удерживать водяной пар, чем теплый воздух, облака и осадки вызываются охлаждением воздуха.

Значит, при увеличении давления воздуха повышается температура; под этими куполами высокого давления воздух имеет тенденцию опускаться (так называемое «проседание») на более низкие уровни атмосферы, где температуры выше и могут удерживать больше водяного пара. Любые капли, которые могут привести к образованию облаков, будут испаряться. Конечным результатом обычно становится более чистая и сухая среда.

И наоборот, если мы уменьшаем давление воздуха, воздух имеет тенденцию подниматься на более высокие уровни атмосферы, где температуры ниже. По мере того, как способность удерживать водяной пар уменьшается, пар быстро конденсируется, и облака (которые состоят из бесчисленных миллиардов крошечных капель воды или, на очень больших высотах, кристаллов льда) будут развиваться, и в конечном итоге выпадут осадки.Конечно, мы не могли прогнозировать зоны высокого и низкого давления без использования какого-либо устройства для измерения атмосферного давления.

Введите барометр

Атмосферное давление — это сила, действующая на единицу площади под действием веса атмосферы. Чтобы измерить этот вес, метеорологи используют барометр. Именно Евангелиста Торричелли, итальянский физик и математик, доказал в 1643 году, что он может сопоставить атмосферу со столбом ртути. Он фактически измерил давление, переведя его непосредственно в вес.Прибор, сконструированный Торричелли, был самым первым барометром. Открытый конец стеклянной трубки помещают в открытую емкость с ртутью. Атмосферное давление заставляет ртуть подниматься по трубке. На уровне моря столб ртути поднимется (в среднем) на высоту 29,92 дюйма или 760 миллиметров.

Почему бы не использовать воду вместо ртути? Причина в том, что на уровне моря высота водяного столба составляет около 34 футов! С другой стороны, ртуть в 14 раз плотнее воды и является самым тяжелым веществом, которое остается жидким при обычных температурах.Это позволяет прибору иметь более удобный размер.

Как НЕ использовать барометр

Прямо сейчас у вас может быть барометр, висящий на стене вашего дома или офиса, но, скорее всего, это не трубка с ртутью, а циферблат со стрелкой, указывающей на текущее значение барометра. чтение давления. Такой прибор называется барометром-анероидом, который состоит из частично откачанной металлической ячейки, которая расширяется и сжимается при изменении давления, и прикреплен к механизму сцепления, который приводит в движение индикатор (стрелка) по шкале, градуированной в единицах давления, либо в дюймах. или миллибары.

Обычно на шкале индикатора вы также видите такие слова, как «Солнечный», «Сухой», «Неустойчивый» и «Бурный». Предположительно, когда стрелка указывает на эти слова, это означает, что впереди ожидаемая погода. «Солнечный», например, обычно встречается в диапазоне высокого барометрического давления — 30,2 или 30,3 дюйма. «Бурный», с другой стороны, можно найти в диапазоне низкого барометрического давления — 29,2 или ниже, а иногда даже ниже 29 дюймов.

Все это могло бы показаться логичным, но все это довольно упрощенно.Например, могут быть моменты, когда стрелка будет указывать на «Солнечно», а небо вместо этого будет полностью затянуто облаками. А в других случаях стрелка будет указывать на «бурно», но вы можете увидеть солнечный свет, смешанный с голубым небом и быстро движущимися пухлыми облаками.

Как правильно пользоваться барометром

Поэтому, помимо черной стрелки индикатора, стоит обратить внимание на другую стрелку (обычно золотую), которую можно вручную настроить на любую часть циферблата. Когда вы проверяете свой барометр, сначала слегка постучите по передней части барометра, чтобы устранить любое внутреннее трение, а затем совместите золотую стрелку с черной. Затем проверьте несколько часов спустя, чтобы увидеть, как черная стрелка изменилась относительно золотой. Давление растет или падает? Если он падает, происходит ли это быстро (возможно, падает на несколько десятых дюйма)? Если так, то, возможно, приближается шторм. Если шторм только что прошел и небо прояснилось, барометр все еще может показывать «бурную» погоду, но если бы вы установили золотую стрелку несколько часов назад, вы почти наверняка увидели бы, что давление сейчас быстро растет, что говорит о что — несмотря на признаки шторма — приближается ясная погода.

И ваш прогноз можно улучшить еще больше, объединив ваши записи об изменении атмосферного давления с изменением направления ветра. Как мы уже узнали, воздух циркулирует по часовой стрелке вокруг систем высокого давления и против часовой стрелки вокруг систем низкого давления. Поэтому, если вы видите тенденцию к повышению давления и северо-западному ветру, вы можете ожидать, что в целом наступит хорошая погода, в отличие от падающего барометра и восточного или северо-восточного ветра, которые в конечном итоге могут привести к облакам и осадкам.

Как образовалась атмосфера Земли?

Дыши!

Никто не знает другой планеты, где можно сделать эту простую вещь.

У других планет и лун в нашей солнечной системе есть атмосферы, но ни одна из них не может поддерживать жизнь в том виде, в каком мы ее знаем. Они либо слишком плотные (как на Венере), либо недостаточно плотные (как на Марсе), и ни у одного из них нет большого количества кислорода, драгоценного газа, в котором мы, земные животные, нуждаемся каждую минуту.

Так как же наша атмосфера стала такой особенной?

Некоторые ученые описывают три стадии эволюции атмосферы Земли в ее нынешнем виде.

Земля только что образовалась: Как и Земля, водород (H 2 ) и гелий (He) были очень теплыми. Эти молекулы газа двигались так быстро, что избежали гравитации Земли и в конечном итоге все улетели в космос.

  1. Изначальная атмосфера Земли, вероятно, состояла только из водорода и гелия, потому что это были главные газы в пыльном газовом диске вокруг Солнца, из которого сформировались планеты. Земля и ее атмосфера были очень горячими.Молекулы водорода и гелия движутся очень быстро, особенно в тепле. На самом деле, они двигались так быстро, что в конце концов все избежали гравитации Земли и улетели в космос.

Молодая Земля: Вулканы выделяли газы H 2 O (вода) в виде пара, диксоида углерода (CO 2 ) и аммиака (NH 3 ). Углекислый газ растворен в морской воде. Простые бактерии процветали на солнечном свете и CO 2 . Побочный продукт — кислород (O 2 ).

  1. «Вторая атмосфера» Земли возникла с самой Земли.Было много вулканов, намного больше, чем сегодня, потому что земная кора все еще формировалась. Вулканов выпущено

    г.
    1. пар (H 2 O, с двумя атомами водорода и одним атомом кислорода),
    2. диоксид углерода (CO 2 , с одним атомом углерода и двумя атомами кислорода),
    3. аммиак (NH 3 , с одним атомом азота и тремя атомами водорода).

Текущая Земля: Растения и животные процветают в равновесии.Растения поглощают углекислый газ (CO 2 ) и выделяют кислород (O 2 ). Животные поглощают кислород (O 2 ) и выделяют CO 2 . При горении также выделяется CO 2 .

  1. Большая часть CO 2 растворилась в океанах. В конце концов, появилась простая форма бактерий, которая могла жить за счет энергии Солнца и углекислого газа в воде, производя кислород в качестве отходов.Таким образом, кислород начал накапливаться в атмосфере, а уровень углекислого газа продолжал падать. Между тем молекулы аммиака в атмосфере были разрушены солнечным светом, оставив азот и водород. Водород, являясь самым легким элементом, поднялся до верхних слоев атмосферы, и большая часть его в конечном итоге улетела в космос.

Теперь у нас есть «третья атмосфера» Земли, которую мы все знаем и любим — атмосфера, содержащая достаточно кислорода для развития животных, включая нас самих.

Итак, растения и некоторые бактерии используют углекислый газ и выделяют кислород, а животные используют кислород и выделяют углекислый газ — как удобно! Атмосфера, от которой зависит жизнь, была создана самой жизнью.

Композиция атмосферы | Климатическое управление Северной Каролины

Атмосфера содержит много газов, большинство в небольших количествах, включая некоторые загрязняющие вещества и парниковые газы. Самым распространенным газом в атмосфере является азот, на втором месте — кислород.Аргон, инертный газ, является третьим по распространенности газом в атмосфере.

Почему мне это нужно? Состав атмосферы, среди прочего, определяет ее способность пропускать солнечный свет и улавливать инфракрасный свет, что приводит к потенциально долгосрочным изменениям климата.

Я уже должен быть знаком с: Влажность


Атмосфера сконцентрирована на поверхности земли и быстро сужается по мере вашего движения вверх, смешиваясь с космосом на высоте примерно 100 миль над уровнем моря.Атмосфера на самом деле очень тонкая по сравнению с размером земли, эквивалентная по толщине листу бумаги, положенному на пляжный мяч. Однако он отвечает за то, чтобы наша Земля была пригодной для жизни, и за создание погоды.

Атмосфера состоит из смеси нескольких разных газов в разных количествах. Постоянными газами, процентное содержание которых не меняется изо дня в день, являются азот, кислород и аргон. Азот составляет 78% атмосферы, кислород 21% и аргон 0,9%. Такие газы, как углекислый газ, оксиды азота, метан и озон, представляют собой следовые газы, на долю которых приходится примерно десятая часть одного процента атмосферы. Водяной пар уникален тем, что его концентрация колеблется от 0-4% в атмосфере в зависимости от того, где вы находитесь и в какое время суток. В холодных, сухих арктических регионах водяной пар обычно составляет менее 1% атмосферы, тогда как во влажных тропических регионах водяной пар может составлять почти 4% атмосферы. Содержание водяного пара очень важно для предсказания погоды.

Парниковые газы, процентное содержание которых меняется ежедневно, сезонно и ежегодно, обладают физическими и химическими свойствами, которые заставляют их взаимодействовать с солнечным излучением и инфракрасным светом (теплом), испускаемым Землей, чтобы влиять на энергетический баланс земного шара.Вот почему ученые внимательно наблюдают за наблюдаемым увеличением выбросов парниковых газов, таких как углекислый газ и метан, потому что, даже если их количество невелико, они могут со временем сильно повлиять на глобальный энергетический баланс и температуру.

Хотите узнать больше?

Температура, давление, плотность

Ссылки на национальные стандарты естественнонаучного образования:

Естественные науки седьмого класса: 7. E.1.1: Сравните состав, свойства и структуру атмосферы Земли, чтобы включить смеси газов и различия в температуре и давлении внутри слои.

Науки о Земле: EEn.2.5.1: Обобщите структуру и состав нашей атмосферы.

определение атмосферного по The Free Dictionary

Газы пороха, расширенные под действием тепла, с огромной силой оттеснили атмосферные слои, и этот искусственный ураган, как струя воды, пронесся по воздуху. Они удваивают мыс. — Прогноз. — Курс космографии. Профессор Джо. Относительно метода управления воздушными шарами. Как искать атмосферные течения.- Эврика. Эта защита могла заключаться только в его собственном преобладающем мозгу, сердце и руках, подкрепленных внимательным, тщательно рассчитывающим вниманием к каждому минутному атмосферному влиянию, которому его команда могла подвергнуться. мне гипотетически пришло в голову, что, как и у обычных рыб, у них есть то, что называется плавательным пузырем, способным по желанию расширяться или сокращаться; и поскольку кашалот, насколько я знаю, не имеет в себе такого обеспечения; учитывая также необъяснимую в противном случае манеру, с помощью которой он теперь полностью опускает голову под поверхность, а однажды плывет с ней высоко поднятым из воды; учитывая беспрепятственную эластичность оболочки; учитывая уникальный интерьер его головы; Мне гипотетически пришло в голову, говорю я, что те мистические соты, состоящие из клеток легких, могут иметь некоторую до сих пор неизвестную и неожиданную связь с внешним воздухом, чтобы быть подверженными атмосферному растяжению и сжатию. Таким образом, разумным проявлением такта и резкости мы восстановили атмосферное равновесие в комнате задолго до того, как я покинул их незадолго до полуночи, теперь нежно примирившись, чтобы спуститься в гавань и окликнуть Тремолино обычным мягким свистом из гавани. На краю набережной я обнаружил группу трансильванских туристов, занятых взрывами десятков самых больших типовых атмосферных бомб (А. «Грозовой» — важное провинциальное прилагательное, описывающее атмосферные потрясения, которым его станция подвергается в штормовую погоду. .Наконец, очистка была произведена; задолженность Страйвера была погашена; все было избавлено, пока в ноябре не наступит его атмосферный туман, и туман будет разрешен, и снова принесет зерно на мельницу ». Около 6500; а на самом деле атмосферное давление составляет около 15 фунтов. Это удушающее тепло, проникающее через перегородки. снаряда создается за счет его трения о слои атмосферы. На первый взгляд кажется довольно удивительным, что пассат, идущий вдоль северных частей Чили и на побережье Перу, дует в таком очень южном направлении, как и ; но когда мы задумаемся о том, что Кордильеры, идущие по линии севера и юга, пересекают, как большая стена, всю глубину нижнего атмосферного течения, мы легко можем увидеть, что пассат должен быть направлен на север, следуя линии гор к экваториальным областям и, таким образом, теряет часть того восточного движения, которое в противном случае он получил бы от вращения Земли. Сначала у меня было только две руки; но прежде чем я уехал из дома, у меня уже было пятнадцать сотрудников, и я работал день и ночь; и атмосферный результат стал настолько явным, что король потерял сознание и задыхался и сказал, что не верит, что сможет выдержать это намного дольше, а сэр Ланселот дошел до того, что почти ничего не делал, кроме как ходить взад и вперед по крыше и ругаться Хотя я сказал ему, что там наверху хуже, чем где-либо еще, но он сказал, что ему нужно побольше воздуха; и он всегда жаловался, что во дворце все равно не место для мыловарни, и говорил, что, если человек откроет такую ​​в своем доме, он будет проклят, если не задушит его.

Атмосфера и круговорот воды

• Школа наук о воде ГЛАВНАЯ • Круговорот воды •

Компоненты круговорота воды » Атмосфера · Конденсация · Испарение · Эвапотранспирация · Пресноводные озера и реки · Поток подземных вод · Накопление подземных вод · Накопление льда и снега · Океаны · Осадки · Таяние снегов · Источники · Ручьи · Сублимация · Поверхностный сток

Линзовидное облако над горами хребта Тараруа, Северный остров, Новая Зеландия. Что происходит над этими горами? Несколько облаков собраны в одно яркое линзовидное облако.

Кредит: Крис Пикинг, Фотография звездного ночного неба

Атмосфера наполнена водой

Водный цикл — это все, что связано с накоплением воды и перемещением воды по Земле, внутри и над Землей. Хотя атмосфера не может быть большим хранилищем воды, это супермагистраль, используемая для перемещения воды по земному шару. Испарение и транспирация превращает жидкую воду в пар, который поднимается вверх в атмосферу за счет восходящих потоков воздуха.Более низкие температуры на высоте позволяют пару конденсировать в облака, а сильный ветер перемещает облака по всему миру, пока вода не выпадет в виде осадков , чтобы пополнить связанные с землей части круговорота воды. Около 90 процентов воды в атмосфере образуется за счет испарения из водоемов, а остальные 10 процентов — за счет испарения растений.

В атмосфере всегда есть вода. Облака — это, конечно, наиболее заметное проявление атмосферной воды, но даже чистый воздух содержит воду — воду в виде частиц, которые слишком малы, чтобы их можно было увидеть.По одной оценке, объем воды в атмосфере в любой момент времени составляет около 3100 кубических миль ( 3 миль) или 12 900 кубических километров ( 3 км). Это может показаться большим количеством, но это всего лишь около 0,001 процента от общего объема воды на Земле, составляющего около 332 500 000 миль 3 (1 385 000 000 км 3 ), как показано в таблице ниже. Если бы вся вода в атмосфере пролилась дождем сразу, он покрывал бы земной шар только на глубину 2,5 сантиметра, около 1 дюйма.

Сколько весит облако?

Кредит: Викимедиа, Creative Commons

Как вы думаете, у облаков есть вес? Как они могут, если они парят в воздухе, как воздушный шар, наполненный гелием? Если вы привяжете воздушный шар с гелием к кухонным весам, он не покажет никакого веса, так зачем же облако? Чтобы ответить на этот вопрос, позвольте мне спросить, есть ли у воздуха хоть какой-то вес — это действительно важный вопрос. Если вы знаете, что такое давление воздуха и барометр, то знаете, что воздух имеет вес. На уровне моря вес (давление) воздуха составляет около 14 ½ фунтов на квадратный дюйм (1 килограмм на квадратный сантиметр).

Поскольку воздух имеет вес, он также должен иметь плотность, которая является весом для выбранного объема, например кубического дюйма или кубического метра. Если облака состоят из частиц, они должны иметь вес и плотность. Ключ к объяснению того, почему облака плавают, заключается в том, что плотность того же объема облачного материала меньше плотности того же количества сухого воздуха.Точно так же, как нефть плавает по воде, потому что ее плотность меньше , так и облака плавают в воздухе, потому что влажный воздух в облаках менее плотен, чем сухой.

Нам все еще нужно ответить на вопрос, сколько весит облако. Чтобы еще больше запутать ситуацию, вес зависит от того, как вы его определяете:

  • Вес капель воды в облаке
  • Вес капель воды плюс вес воздуха (в основном над облаком, давящий вниз)

Мы собираемся посмотреть только на вес самих облачных частиц. Одна оценка плотности кучевых облаков приведена на https://www.sciencealert.com/this-is-how-much-a-cloud-weighs как плотность около 0,5 грамма на кубический метр. Облако размером 1 км 3 содержит 1 миллиард кубических метров.

Посчитаем: 1 000 000 000 x 0,5 = 500 000 000 г водяных капель в нашем облаке. Это около 500 000 килограммов или 1,1 миллиона фунтов (около 551 тонны). Но это «тяжелое» облако плавает над вашей головой, потому что воздух под ним еще тяжелее — меньшая плотность облака позволяет ему плавать в более сухом и более плотном воздухе.

Глобальное распределение атмосферных вод

Одна оценка глобального распределения водных ресурсов

Источник воды Объем воды в кубических милях Объем воды, куб. Км% от общего количества пресной воды% от общего количества воды
Атмосфера 3 094 12 900 0,04% 0.001%
Всего пресной воды в мире 8 404 000 35 030 000 100% 2,5%
Всего мировых водных ресурсов 332 500 000 1,386,000,000 100%

Источник: Глейк П. Х., 1996: Водные ресурсы. В Энциклопедии климата и погоды, изд. С. Х. Шнайдер, Oxford University Press, Нью-Йорк, т. 2. С. 817-823.

Маленькое облачко, которое могло — но почему?
Почему это крошечное облачко единственное в небе?

Источники и дополнительная информация

.

Ваш электронный адрес не будет опубликован.