Все о роторных двигателях — виды и принцип работы
Главное отличие внутреннего устройства и принципа работы роторного двигателя от ДВС заключается в полном отсутствии двигательной активности, при этом удается добиться высоких оборотов работы мотора. У роторного двигателя или иначе двигателя Ванкеля, есть и ряд других преимуществ, их мы и рассмотрим подробнее.
Общий принцип устройства роторного двигателя
РПД облачен в овальный корпус для оптимального размещения ротора, имеющего треугольную форму. Отличительная особенность ротора в отсутствии шатунов и валов, что значительно упрощает конструкцию. По сути, ключевыми деталями РД являются ротор и статор. Основная двигательная функция в таком типе мотора осуществляется за счет движения ротора, расположенного внутри корпуса, имеющего схожесть с овалом.
Принцип действия основан на высокоскоростном движении ротора по окружности, в результате создаются полости для запуска устройства.
Почему роторные двигатели не пользуются спросом?
Парадокс роторного двигателя заключается в том, что при всей простоте конструкции он не столь востребован, как двигатель внутреннего сгорания, имеющий весьма сложные конструктивные особенности и сложности при осуществлении ремонтных работ.
Разумеется, роторный двигатель не лишен недостатков, иначе он бы нашел широкое применение в современном автопроме, а возможно мы бы и не узнали про существование ДВС, ведь роторный был сконструирован значительно раньше. Так зачем же так усложнять конструкцию, попытаемся разобраться.
Явными недочетами роторного мотора можно считать отсутствие надежной герметизации в камере сгорания. Это легко объяснить конструктивными особенностями и условиями работы мотора. В ходе интенсивного трения ротора со стенками цилиндра происходит неравномерный нагрев корпуса и, как следствие, металл корпуса расширяется от нагрева лишь частично, что и приводит к выраженным нарушениям герметизации корпуса.
Для усиления герметичных свойств, особенно при условии выраженной разницы температурных режимов между камерой и системой впуска или выпуска, сам цилиндр изготавливают из разных металлов и размещают их в разных частях цилиндра, для улучшения герметичности.
Для запуска мотора используют всего две свечи, это связано с конструктивными особенностями мотора, позволяющими выдавать на 20% больше КПД, в сравнении с двигателем внутреннего сгорания, за одинаковый промежуток времени.
Роторный двигатель Желтышева — принцип работы:
Преимущества роторного двигателя
При малых габаритах он способен развивать высокую скорость, однако есть в этом нюансе и большой минус. Несмотря на малые габариты, именно роторный двигатель потребляет огромное количество горючего, а вот ресурс работы мотора составляет всего 65 000 км. Так, двигатель всего в 1,3 л потребляет до 20 л. топлива на 100 км. Возможно, это и стало основной причиной отсутствия популярности данного вида моторов для массового потребления.
Цена на бензин во все времена считается актуальной проблемой человечества, учитывая, что мировые запасы нефти расположены на Ближнем востоке, в зоне постоянных боевых конфликтов, цены на бензин остаются достаточно высокими, и в ближайшей перспективе нет тенденций для их снижения. Это приводит к поиску решений по минимальному потреблению ресурсов не в ущерб мощности, в чем и заключается главный довод в пользу ДВС.
Все это в совокупности определило положение роторных двигателей, как подходящий вариант для спорткаров. Однако известный по всему миру производитель авто «Мазда», продолжил дело изобретателя Ванкеля. Японские инженеры всегда стараются извлекать из невостребованных моделей максимум пользы путем модернизации и применения инновационных технологий, что позволяет сохранять лидирующие позиции на мировом автомобильном рынке.
Принцип работы роторного двигателя Ахриевых на видео:
Новая модель «Мазда», оснащенная роторным двигателем, по мощности не уступает передовым немецким моделям, выдавая до 350 лошадиных сил. При этом расход топлива был несравнимо высоким. Инженерам-конструкторам «Мазда» пришлось уменьшить мощность до 200 лошадиных сил, что позволило нормализовать потребление топлива, однако компактные размеры двигателя позволили наделить авто дополнительными преимуществами и составить достойную конкуренцию европейским моделям авто.
В нашей стране роторные двигатели не прижились. Были попытки установить их на транспорт специализированных служб, но этот проект не был профинансирован в должном объеме. Поэтому все успешные разработки в данном направлении принадлежат японским инженерам из компании «Мазда», намеренной в ближайшее время показать новую модель авто с модернизированным двигателем.
Как работает роторный мотор Ванкеля на видео
Принцип работы роторного двигателя
РПД работает за счет вращения ротора, так идет передача мощности на коробку передач через сцепление. Преобразующий момент заключается в передаче энергии топлива колесам за счет вращения ротора, изготовленного из легированной стали.
Механизм работы роторного-поршневого двигателя:
- сжатие горючего;
- впрыск топлива;
- обогащение кислородом;
- горение смеси;
- выпуск продуктов сгорания топлива.
Как работает роторный двигатель показано на видео:
Ротор закреплен на специальном устройстве, при вращении он образует независимые друг от друга полости. В первой камере происходит наполнение воздушно-топливной смесью. В дальнейшем она тщательно перемешивается.
Затем смесь переходит в другую камеру, где происходит сжатие и воспламенение, благодаря наличию двух свечей. В дальнейшем смесь перемещается в следующую камеру, из нее вытесняются части переработанного топлива, которые выходят из системы.
Так происходит полный цикл работы роторного-поршневого двигателя, основанного на трех тактах работы за всего лишь один оборот ротора. Именно японским разработчикам удалось существенно модернизировать роторный двигатель и установить в нем сразу три ротора, что позволяет значительно увеличить мощность.
На сегодня, усовершенствованный двухроторный двигатель сравним с двигателем внутреннего сгорания с шестью цилиндрами, а трехроторный по мощности не уступает 12-ти цилиндровому двигателю внутреннего сгорания.
Не стоит забывать и про компактный размер двигателя и простоту устройства, позволяющую при необходимости осуществлять ремонт или полную замену основных агрегатов мотора. Таким образом, инженерам компании «Мазда» удалось подарить вторую жизнь этого простого и производительного устройства.
описание, устройство и принцип работы
Не все знатоки автомобилестроения знают, что в разное время в разных странах мира, включая СССР, на авто ставились необычные роторные двигатели внутреннего сгорания. Этот уникальный агрегат имеет свою большую историю и, возможно, хорошие перспективы на применение в будущем.
Что представляет собой роторный двигатель Ванкеля
Это простой по техническому решению силовой агрегат. Вместо нескольких поршней с кольцами и шатунами, он имеет один треугольный ротор, посаженный на вал. При этом вал не коленчатый, а эксцентриковый. Камеры сгорания расположены равномерно поочередно по всему кругу вращения ротора.
Роторный двигательВ роторном ДВС в 2 с лишним раза меньше деталей в сравнении с поршневым вариантом. Нет головки блока цилиндров с системой клапанов в её привычном виде и самой поршневой группы. Значительно меньше вес и габариты.
В настоящее время известно 5 разных типов роторных ДВС. Между собой они имеют существенные конструктивные отличия. Но главный принцип един для всех типов – ротор на эксцентриковом вале вместо поршней на кривошипно-шатунном механизме.
История создания роторного двигателя
Силовые агрегаты с ротором вместо поршневой группы получили устойчивое название «двигатель Ванкеля», по фамилии изобретателя. На самом деле в мире было разработано несколько типов роторных моторов, отличных от изобретения Ванкеля. Но первым в этой области еще в 1920-ых годах начал работать именно немецкий инженер Фридрих Ванкель.
Для двигателя требовались узлы и детали, производство которых возможно только с применением высоких технологий металлообработки, точнейшей подгонки, с чем в то время были определенные трудности. Поэтому быстро запустить изделие в серию сразу не получилось. К тому же началась Вторая мировая война, когда требовались не экспериментальные, а серийные проверенные изделия.
Работы над двигателем были завершены уже во Франции, куда попало оборудования из побежденной Германии, в 1957 году, в компании NSU под руководством инженера Вальтера Фройде.
Применение двигателя Ванкеля на Западе и в СССР
Первый роторный двигатель мощностью 57 л.с. был установлен в 1957 году на спорткар фирмы NSU «Спайдер». Спорткар развивал невероятные для того времени и такой мощности ДВС скорость – 150км/час.
Автомобиль NSU SpiderС 1963 года роторные двигатели стали использовать на серийных автомобилях для населения. Несколько лет их ставили на «Мерседесы», «Шевроле» и «Ситроены». Но двигатель показал ряд существенных недостатков. В результате производители вернулись к использованию классических, проверенных поршневых ДВС.
Настойчивее остальных оказались японские автопроизводители. Они использовали роторные ДВС на некоторых моделях «Мазда». Устранялись слабые места, увеличивался моторесурс до капремонта, снижалось потребление топлива. Однако по ряду причин и японцы вернулись к классическим ДВС . Последняя Мазда RX Spirit R с роторным двигателем сошла с конвейера в 2012 году.
В СССР первый роторный двигатель отечественного производства ставился в 1974 году на легендарную «копейку» – ВАЗ 2101.
Для его создания было организовано специальное конструкторское бюро. Прообразом служил двигатель Ванкеля. Было изготовлено около 50 опытных образцов с маркировкой ВАЗ 311. ВАЗы с ними не продавались населению, а поступили в распоряжение сотрудников ГАИ и КГБ в качестве служебных машин.
Поначалу «копейки» с этим силовым агрегатом вызывали восхищение своей мощью, динамикой разгона, низким шумом и плавностью хода. Но уже через год на ходу осталась только одна машина. Двигатели остальных вышли из строя. Основной причиной поломок стала ненадежность уплотнений, обеспечивающих герметизацию камер сгорания во время вспышки топлива.
Работы над отечественным роторным ДВС продолжались, и были созданы мощные двухсекционные ВАЗ 411 и 413 мощностью 120 и 140 л.с. “Жигули” с этими двигателями снова попали на службу в силовые структуры.
Данное достижение советского автопрома не афишировалось. В народе лишь ходили слухи о том, что сотрудники КГБ ездят на скоростных авто с невероятными секретными двигателями.
Затем были разработаны роторные двигатели ВАЗ 414 и 415. Это были более совершенные универсальные агрегаты. Их можно было ставить как на вазовские «восьмерки» и «девятки», так и на не менее популярные в то время «Москвичи» и «Волги».
Последняя разработка ВАЗ 415 так и не была использована. Ее предшественник, ВАЗ 414 с 1992 года ставился на популярной модели авто ВАЗ 2109 («Спутник», «Самара»).
«Девятки» с этими двигателями обладали необычными характеристиками. Разгон до 100 км/ч за 8 секунд, возможность длительной работы на предельно высоких оборотах. ВАЗ 414 потреблял меньше топлива (14-15 л на 100 км), чем предыдущие роторные ДВС (18-20 л на 100 км). Но все равно больше, чем поршневой мотор.
Однако и на ВАЗе роторные ДВС не смогли конкурировать с традиционными, и вскоре их использование было прекращено.
Работы над усовершенствованием роторных ДВС ведутся в мотоциклетной отрасли. В начале 1980-ых был создан мотоцикл Norton с двигателем Ванкеля, который показал невероятные результаты. Сегодня компания выпускает байки с таким двигателем объемом 588 куб.см. Ведутся работы над новым мотором с объемом 700 куб.см.
Автомобилей в такими двигателями сегодня не выпускают. Не исключено, что автопроизводители могут вести конструкторские работы в этом направлении без афиширования, втайне от конкурентов.
Устройство и принцип работы роторного двигателя
Принцип работы и устройство роторного ДВС одновременно схож с работой обычного поршневого двигателя и электродвигателя. Так же, как поршневой ДВС роторный вариант имеет камеры сгорания, системы впрыска топлива, выхлопа и зажигания. Сходство конструкции с электродвигателем в том, что ротор получает энергию при вращении внутри корпуса. (Кроме роторного ДВС с возвратно-поступательным движением вала).
Электродвигатель получает кинетическую энергию за счет перемещения электромагнитного поля. Роторный ДВС – за счет воспламенения топливно-воздушной смеси и резкого роста давления в камерах сгорания, так же, как и поршневые ДВС.
На сегодня известны 5 типов роторных моторов:
- С возвратно-поступательным движением вала. В таких типах ДВС ротор и вал не делают полных оборотов вокруг оси.
- Классический двигатель Ванкеля с планетарным вращением вала.
- Двигатели, в которых камеры сгорания расположены по спирали.
- Двигатели с равномерным вращением вала с камерами сгорания, расположенными по спирали без уплотнительных элементов.
- Двигатели с пульсирующим вращением.
Как и поршневые ДВС, роторные варианты имеют 4 рабочих такта:
- Впрыск топливно-воздушной смеси.
- Сжатие смеси.
- Воспламенение.
- Выпуск.
В обычных поршневых двигателях впрыск топлива и герметичность камеры сгорания обеспечиваются работой системы клапанов и поршневыми кольцами. В разных типах роторных ДВС последовательность тактов обеспечивается по-разному. В одних уменьшается объем камеры сгорания и обеспечивается сжатие смеси за счет перекрытия камеры вершиной ротора. В других – за счет уплотнений с механическим приводом. Но принцип работы един для всех типов.
- Воспламенение топливной смеси многократно повышает давление в камере сгорания.
- Давление дает кинетический импульс плоскости ротора и поворачивает его.
- Ротор передает крутящий момент через вал и зубчатую шестерню далее к механизмам авто. Плоскость ротора доходит до окна выхлопа, окно открывается и в него сбрасываются отработанные газы.
- Цикл повторяется.
Преимущества и недостатки
Роторный двигатель имеет набор больших преимуществ перед традиционным поршневым.
Главное преимущество – простота конструкции. Из-за отсутствия поршневой и кривошипно-шатунной группы узлов роторный двигатель почти в два раза легче и компактнее обычного. Легкий вес позволяет равномерно распределить нагрузку по всей базе автомобиля. Это улучшает управляемость, повышает динамические показатели автомобиля.
- Компактность позволяет увеличить размер салона.
- Ротор вращается плавно, без вибраций от взрыва топливной смеси в каждом цилиндре, равномерно выдает мощность.
- При том же объеме камер сгорания роторный двигатель значительно мощнее.
- Простота конструкции и минимум деталей облегчают ремонт.
Поэтому кажется, что весь мировой автопром давно и полностью должен был отказаться от поршневых двигателей в пользу роторных. Но этого не произошло. Следовательно, роторный вариант имеет ряд существенных недостатков, которые на сегодняшний день перевешивает все его плюсы. Недостатки в следующем:
- Роторный двигатель потребляет намного больше топлива. Это крупный минус в наше время, когда каждый автопроизводитель стремится сделать свое авто как можно более экономичным.
- Повышен расход масла – 0,5 литра на 1 тыс. км пробега. Долив масла требуется каждые 4-5 тыс. км. Отсутствие масла приводит к мгновенному выходу ДВС из строя.
- Производство ротора и криволинейных камер сгорания требуют высочайшей технологической точности на дорогом сверхточном оборудовании. Это повышает стоимость двигателя.
- Особенность линзовидных камер сгорания в том, что они поглощают больше тепла при работе. В итоге двигатель склонен к перегреву, закипанию охлаждающей жидкости в системе охлаждения, что мешает в эксплуатации авто и приводит к ускоренному выходу из строя деталей двигателя.
- Роторный двигатель имеет своё слабое место. Уплотнители, обеспечивающие герметичность камеры сгорания в момент воспламенения топливной смеси, не могут долго выдерживать нагрузки и выходят из строя. В итоге моторесурс самого совершенного роторного двигателя без ремонта не превышает 100 – 150 тыс. км пробега авто.
Кроме экономических и технических недостатков, роторный ДВС просто непривычен для водителей и механиков. Автомобиль с ним едет по-другому. Ввиду малой массы двигателя, у него нет запаса инерционной энергии. При малейшем сбросе педали газа машина быстро теряет скорость, что хорошо при торможении, но неудобно при движении. Приходится чаще переключать передачи. Таким двигателем нельзя тормозить, заглушенный двигатель даже на первой передаче легко проворачивается. Некоторым просто не нравится звук работающего роторного двигателя.
Возможно, у этого двигателя есть большое будущее. Поршневой мотор прошел долгий путь эволюции. Коленчатые валы и поршневые системы начали создаваться ещё на паровых двигателях.
У роторного варианта не было такой длительной эволюции и массовости производства, поэтому он имеет недоработки и слабые места. Важно то, что роторный двигатель может эффективно работать на газовом топливе, в том числе на водороде. Это может открыть ему большие перспективы в будущем.
Роторный двигатель принцип работы
Роторный двигатель: принцип работы
Устройство и принцип работы
Роторный двигатель, как и традиционный поршневой, является двигателем внутреннего сгорания, но работает он совершенно иначе. В поршневом двигателе, в одном и том же объеме пространства (в цилиндре) попеременно происходят четыре различные работы — впуск, сжатие, сгорание и выпуск (такты).
Роторный двигатель делает эти четыре такта в одном и том же объеме(камере), но каждый из этих тактов происходит в своей отдельной части этой камеры. Как будто для каждого цикла используется отдельный цилиндр, а поршень перемещается от одного цилиндра к другому.Принцип работы роторного двигателя.
Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.
В роторном двигателе, давление сгорания содержится в камере, образованной частью объема камеры закрытой стороной треугольного ротора, который используется в данном случае вместо поршней.Ротор и корпус роторного двигателя от Mazda RX-7: Эти детали заменяют поршни, цилиндры, клапаны, шатуны и распредвалы в поршневых двигателях.
Ротор соединен со стенками камеры каждой из трех своих вершин, создавая три отдельных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Цепная реакция всасывает воздух и топливо в рабочую камеру, сжимает смесь, она расширяясь делает полезную работу, затем выхлопные газы выталкиваются, новая порция воздуха и топлива всасывается, и так далее.
Строение роторного двигателя
Ротор
Ротор имеет три выпуклых стороны, каждая из которых действует как поршень.
Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси.
На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.
Камера
Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа.
В каждой части камеры происходит один из четырех тактов:
— Впуск
— Сжатие
— Сгорание
— Выпуск
Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.
Выходной вал
Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.
Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.
О системе смазки и питании
Данный агрегат не имеет отличий в системе топливоподачи. Здесь также используется погружной насос, что подает бензин под давлением из бака. А вот смазочная система имеет свои особенности. Так, масло для трущихся частей двигателя подается прямо в камеру сгорания. Для смазки предусмотрено специальное отверстие. Но возникает вопрос: куда затем девается масло, если оно проникает в камеру сгорания? Здесь принцип работы схож с двухтактным двигателем. Смазка попадает в камеру и сгорает вместе с бензином. Такая схема работы используется на каждом роторно-лопастном двигателе и поршневом в том числе. Ввиду особой конструкции смазочной системы такие моторы не могут отвечать современным экологическим нормам. Это одна из нескольких причин, почему роторные двигатели на ВАЗе и других моделях авто серийно не применяются. Впрочем, сперва отметим преимущества РПД.
Плюсы
Во-первых, данный мотор обладает небольшим весом и размерами. Это позволяет сэкономить место в подкапотном пространстве и разместить ДВС в любом автомобиле. Также низкий вес способствует более правильной развесовке автомобиля. Ведь большая часть массы на авто с классическими ДВС сосредоточена именно в передней части кузова.
Во-вторых, роторно-поршневой двигатель обладает высокой удельной мощностью. По сравнению с классическими моторами, данный показатель в полтора-два раза выше. Также у роторного двигателя более широкая полка крутящего момента. Он доступен практически с холостых оборотов, в то время как обычные ДВС нужно раскручивать до четырех-пяти тысяч. Кстати, роторный мотор намного легче набирает высокие обороты. Это еще один плюс.
В-третьих, такой двигатель имеет более простую конструкцию. Здесь нет ни клапанов, ни пружин, ни кривошипно-шатунного механизма в целом. Вместе с этим отсутствует привычная система газораспределения с ремнем и распределительным валом. Именно отсутствие КШМ способствует более легкому набору оборотов роторным ДВС. Такой мотор за доли секунды крутится до восьми-десяти тысяч. Ну и еще один плюс – это меньшая склонность к детонации.
Минусы
Первый минус – это высокие требования к качеству масла. Хоть мотор и работает по типу двухтактного, сюда нельзя заливать дешевую «минералку». Детали и механизмы силового агрегата подвергаются существенным нагрузкам, поэтому для сохранения ресурса нужна плотная масляная пленка между трущимися парами. Кстати, регламент замены смазки составляет шесть тысяч километров.
Следующий недостаток касается быстрого износа уплотняющих элементов ротора. Это происходит вследствие малого пятна контакта. Из-за износа уплотнительных элементов, образуется высокий перепад давлений. Это негативно сказывается на производительности роторного двигателя и расходе масла (а соответственно и экологических показателях).
Также роторные двигатели склонны к перегреву. Это происходит из-за особой линзовидной формы камеры сгорания. Она плохо отводит тепло по сравнению со сферической (как на обычных ДВС), поэтому при эксплуатации нужно всегда следить за температурным датчиком. В случае перегрева, деформируется ротор. При работе он будет образовать значительные задиры. В результате ресурс мотора приблизится к концу.
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.
Принцип работы роторного двигателя
Автомобили оборудованы двигателями внутреннего сгорания (ДВС). ДВС – вид теплового двигателя, в котором топливная смесь сжигается внутри мотора, тем самым энергия сгорания превращается в механическую работу. Автомобилестроение использует ДВС, где подвижным элементом служат поршни. Существует другой вид ДВС – роторный двигатель. Что такое роторный двигатель, его принцип работы, устройство, особенности — расскажем ниже.
Устройство и принцип работы
Принцип работы роторного и поршневого двигателей идентичен: энергии горения преобразовывается в механическую работу. Различие заключается в способе преобразования энергии. Основным рабочим элементом в роторном двигателе (РПД) является ротор, который совершает вращательное движение, а в поршневом – поршни, совершающие возвратно-поступательные движения. Роторный двигатель получил название от части мотора – ротора. Так как ротор движется, мощность передается на сцепление и коробку переключения передач.
Роторный двигатель внутреннего сгорания (двигатель Ванкеля) не имеет ГРМ и КШМ, которыми оснащены поршневые двигатели. Их функции исполняют следующие основные детали: эксцентриковый вал, роторы, выполняющие роль поршней, неподвижные шестерни, задающие траекторию вращения роторов. Устройство роторного двигателя состоит из промежуточного корпуса, статоров, образующих рабочие камеры, переднего и заднего корпуса, которые закрывают рабочие камеры, также на них зафиксированы неподвижные шестерни. Весь двигатель стягивается длинными болтами. Двухсекционный роторно-поршневой ДВС означает, что в двигатели два ротора.
Модель роторного двигателяОдин рабочий цикл данного двигателя состоит из четырех тактов, которые выполняются за один оборот ротора, в то время как эксцентриковый вал совершает три оборота.
Чтобы понять, как работает двигатель, следует рассмотреть один рабочий цикл:
- 1-й такт – впуск. Ротор, вращаясь, увеличивает размер рабочей камеры, образованной формой статора и ротора. Создается разряжение, которое засасывает топливно-воздушную смесь посредством впускного окна. В конце такта ротор перекрывает впускное окно.
- 2-й такт – сжатие. Ротор продолжает вращение, но размер камеры уже уменьшается, вследствие чего сжимается смесь топлива и воздуха. В конце такта с помощью одной или нескольких свечей зажигания происходит воспламенение сжатой смеси. Свечи зажигания не выпирают, а утоплены в статоре. В стенках находятся выемки, образующие объем камеры сгорания.
- 3-й такт – рабочий ход (расширение). Протекает пик горения, в результате чего в камере увеличивается температура и давление расширяющихся газов. Ротор, воспринимая давление, раскручивает эксцентриковый вал, чем преобразовывает тепловую энергию в механическую работу.
- 4-й такт – выпуск. Ротор открывает выпускное окно и выдавливает из уменьшающейся камеры отработавшие газы.
Когда рабочий цикл закончен, начинается и повторяется новый.
Схема циклов РПД
С каждой из трех сторон ротора протекает свой такт, а это значит, что такт расширения проходит не каждые 360 градусов вращения, а каждые 120 градусов вращения или каждый оборот эксцентрикового вала.
Видео о РПД Ванкеля:
Строение
Ротор выполнен из стали с содержанием особых элементов, по форме схож с треугольником и собирают его слоями. Двухроторные моторы имеют пять слоев, они закреплены болтами, которые расположены по окружности. Охлаждается мотор с помощью специальной жидкости, которая омывает все элементы механизма. Последние два слоя закрыты, подшипники расположены в противоположных секторах. Внутренняя поверхность элементов гладкая, чем помогает роторам работать. После идет слой, где находится ротор и выхлопная система. В центральном сегменте находятся впускные порты.
Для изоляции камер используется множество уплотнительных элементов, расположенных на роторе. Основными более нагруженными являются апексы, которые устанавливаются на вершинах ротора. Впускные, выпускные окна могут находиться не только в стенках статора, но и на боковых стенках корпусов. А в статорах, наоборот, могут отсутствовать впускные, выпускные окна.
Работа роторного двигателяПреимущества и недостатки
У такого мотора есть свои «плюсы» и «минусы».
К преимуществам можно отнести:
- Мало подвижных элементов. Роторный двигатель содержит намного меньше механизмов и узлов, чем поршневой. В роторном – три главных движущих элемента: два ротора и вал, а в самом простейшем поршневом моторе минимум 45 движущихся элементов. Так как в РПД минимальное количество механизмов, то и надежность, соответственно, выше.
- Вибрация. Все элементы РПД совершают плавную непрерывную работу и вращаются в одном направлении, тогда как в поршневом моторе движение постоянно меняется.
- Компактность. Двигатель имеет небольшой вес и габариты.
К недостаткам относятся:
- Потребление топлива. Роторному мотору требуется больше ГСМ.
- Высокая стоимость. Изготовление отличается сложностью, высокой точностью производства, дорогого оборудования, что способствует удорожанию.
- Частые перегревы. Данные двигатели в силу своей конструкции подвержены к перегреву, что приводит к «закипанию».
- Невысокий ресурс. Из-за постоянных перепадов давления, мотор вырабатывает ресурс не более 130-150 тыс. км.
Учитывая недостатки и преимущества роторного мотора, автолюбители обращают внимание и на вождение автомобиля, считая его сложным и непривычным.
Прогресс не стоит на месте и, возможно, у РПД есть будущее. Его особенностью является то, что двигатель может работать на газе и водороде, а это откроет ему перспективу в будущем.
Вконтакте
Google+
Роторный двигатель. Каковы принципы действия, минусы и плюсы
В этой статье мы узнаем что такое роторный двигатель, рассмотрим принцип действия роторного двигателя, его устройство, узнаем о преимуществах, недостатках и сфере применения.
Роторный двигатель, принцип действия
В роторном двигателе используется давление, которое создается во время сгорания топливно-воздушной смеси в пространстве между ротором и корпусом двигателя.
Только если в поршневом моторе внутреннего сгорания это давление получают в цилиндрах, после чего через поршни, и шатуны передают на коленчатый вал, то в роторном упомянутых промежуточных звеньев нет.
Треугольный ротор в устройстве играет роль поршня, вращающегося по кругу и передающего крутящий момент непосредственно на выходной вал.
Получается, что ротор, в процессе вращения, делит камеру на 3 изолированных сегмента. В объеме каждого из них происходит один из циклов: впуск, сжатие, зажигание и выброс.
Оборот ротора, соответствует трем оборотом вала. Обычно используют два ротора. Это позволяет убрать детонацию, повысить стабильность работы движка.
Ротор устанавливается на вал с эксцентриситетом, это позволяет перенести крутящий момент непосредственно на вал.
Роторный двигатель принцип работы заключается в том, что имеет четыре такта, они изменяются в зависимости от угла расположения ротора. Рассмотрим каждый из тактов:
- Забор смеси происходит когда одна из вершин ротора находится в районе впускного клапана в корпусе. В этот момент, объем камеры увеличивается, втягивая в свое растущее пространство смесь. А когда вторая вершина приходит ко впускному каналу, происходит очередной такт;
- Сжатие топливно-воздушной смеси происходит при дальнейшем повороте ротора, когда объем смеси, уменьшается и приводит к росту давления. Максимальный уровень давления наблюдается в период, когда смесь поступает в зону свечей;
- Сжигание топливно-воздушной смеси, как и в обычном бензиновом двигателе, инициируется свечами. Они синхронно поджигают смесь. Обычно, применяют 2 свечи, чтобы смесь горела с большей скоростью и равномернее. Образовавшееся давление взрывной волны, создает рабочее усилие; которое проворачивает ротор на эксцентрике вала. На выходной вал передается крутящий момент;
- Выпуск отработавших выхлопных газов начинается как только ротор одной из вершин проходит точку выпускного отверстия. Далее он по инерции, и под воздействием второго ротора, который работает в асинхронном режиме, изменяет свой угол и приходит вершиной к впускному отверстию. Все повторяется по новой – от такта забора до такта выхлопа.
Конструктивные особенности
Теперь познакомимся с узлами и деталями двигателя. Это поможет более точно понять как работает устройство.
В его составе присутствуют: системы зажигания, питания (в том числе карбюратор), охлаждения, которые напоминают те, что используются в поршневом варианте. Но есть и уникальные элементы.
Ротор содержит три выпуклых поверхности с углублениями, которые увеличивают рабочий объем. На углах расположены однонаправленные уплотнительные пластины. Они обеспечивают герметизацию пары ротор-корпус.
Еще предусмотрены стальные кольца с каждой стороны, для отделения рабочей камеры от картера.
Также у ротора есть в центре с одной стороны зубчатый венец. Через эту зубчатую передачу снимается крутящий момент.
Корпус роторного движка напоминает многослойный пирог. Он состоит из крышек, рабочих камер, разделительных стенок. Предусмотрено две камеры, разделенные стенкой и с двух сторон крышки.
Внутри корпус представляет собой сложную форму типа овала, с компенсирующими отливами, которые отвечают за герметизацию всех трех камер разделяемых ротором.
Выходной вал имеет два эксцентрика, так как на валу установлены два ротора, работающие в противофазе – на одном цикл выброса отработавших газов, на втором цикл забора смеси.
Использование двух аналогичных узлов исключает возникновение биений и уменьшает детонацию.
При смещении эксцентриков и перемещении каждого ротора по стенкам корпуса, они проворачивают вал.
Достоинства
Главное достоинство – отсутствие шатунов. Также в конструкции не используются клапана, пружины клапанов, распредвал, ремень ГРМ и т. п. Все это уменьшает габариты и массу силовой установки.
Следующий плюс – хорошая сбалансированность деталей. Мотор более продолжительное время передает на выходной вал крутящий момент – передача мощности на вал продолжается ¾ оборота (для поршневого варианта только в течении ½ оборота).
Так как ротор делает всего 1 оборот на 3 оборота вала, это увеличивает его ресурс. Для японский моделей он достигает 300.000 километров.
Роторный двигатель, недостатки
Роторные двигатели не получили массового распространения из-за низких экологических показателей.
Также отмечается потребление большого количества топлива, вследствие невысокого рабочего давления в камере сгорания.
Так как такой тип двигателя редко встречается, при его ремонте и эксплуатации могут возникнуть проблемы.
Практически отсутствует система смазки. Моторное масло постоянно поступает в корпус к ротору из-за чего наблюдается значительный его расход.
Само масло должно иметь высокие качественные показатели и быть минеральным без присадок. Дело в том, что «синтетика» выгорает и образует на поверхности корпуса нагар.
Следует отметить что роторные моторы нагреваются намного сильнее чем поршневые.
Применение
Перспектива у этих двигателей есть. Как только остановим засилье нефтяных компаний, и мир перейдёт на водородное топливо.
К тому же роторный двигатель, работающий на водороде, не подвержен детонации.
Первый автомобиль с таким двигателем был спорткар NSU Spider, он мог двигаться со скоростью до 150 км/час, имея мощность мотора 57 лошадок.
Массово выпускался автомобиль с роторным двигателем компанией NSU – седан Ro-80. Также такими моторами оснащались: Citroen (GS Birotor), Chevrolet (Corvette), Mercedes-Benz (С111), ВАЗ (21018) и некоторые другие.
Самые массовый автомобиль японской компании Mazda, это Mazda RX8. Производство последней из них в версии Spirit R, свернуто в 2012 году из-за выбросов движка, которые не отвечали европейским стандартам.
Правда, компания уже создала современный роторный двигатель Renesis 16X, который соответствует международным экологическим стандартам. В нем значительно переработана топливная система впрыска – теперь горючее расходуется намного экономнее. Корпус движка изготовили из алюминиевого сплава. Также создан агрегат, который работает и на водороде.
Последняя разработка с роторным двигателем ‒ Premacy Hydrogen RE Hybrid в принципе ни в чем не уступает другим новинкам мирового автопрома.
Кстати, многие производители самолетов предпочитают поршневым бензиновым двигателям роторные, например, такие как Skycar и Schleicher.
Думаю, пример роторного двигателя подтверждает истину, что не популярный, не значит – плохой. Просто его время ещё не наступило.
Теперь в знаете принцип действия роторного двигателя. Расскажите об этом устройстве своим друзьям в социальных сетях, пусть подписываются на наш блог, и будут в курсе.
До новых встреч.
Роторный двигатель — устройство, особенности и принцип работы
Когда автомобили с поршневыми двигателями внутреннего сгорания уже широко распространились по всему миру, некоторые инженеры попытались разработать роторные двигатели, такие же эффективные и мощные. Существенных успехов добились специалисты из Германии, что неудивительно, ведь именно в этой стране изобрели автомобиль.
Немного истории
В 1957 году свет увидел первый роторно-поршневой двигатель. Впоследствии он был назван именем одного из разработчиков — Феликса Ванкеля. Второй человек, Вальтер Фройде, участвующий в процессе изобретения, незаслуженно попал в тень соавтора. Оба инженера были представителями немецкой компании NSU, производившей авто и мототехнику.
Годом позднее выпустили первый автомобиль с РПД. К сожалению, даже главных конструкторов модель новой машины не удовлетворила. Дви́гатель доработали, и в конце 60-х годов на свет появился седан, получивший звание «Авто года». Это был Ro-80 той же компании NSU. До 100 км он разгонялся всего за 12,8 с, развивал скорость до 180 км/ч, а весил немногим больше тонны. По тем временам это были грандиозные показатели. Лицензию на производство роторных моторов стали сразу же приобретать одна автомобильная компания за другой.
Неизвестно, как сложилась бы судьба изобретения Ванкеля, если бы в 1973 году не начался энергетический кризис, и цены на нефть резко повысились. Роторный двигатель внутреннего сгорания съедал слишком много топлива, поэтому от его применения начали отказываться.
В конце 90-х авто с моторами Ванкеля выпускали только Россия и Япония. Российские автомобили ВАЗ, оснащенные РПД, малоизвестны, а вот японским моделям удалось добиться мировой популярности.
В настоящее время автомобили с роторными двигателями производит лишь компания Mazda. Японским специалистам удалось усовершенствовать автомобильный мотор до такой степени, что он стал потреблять в 2 раза меньше масла и на 40% меньше топлива. Токсичность выхлопов также сократилась, и двигатель теперь соответствует европейским экологическим стандартам. Новым витком в развитии РПД стало применение водорода в качестве топлива.
Основы устройства роторного двигателя
Чтобы понять, как работает роторный двигатель, надо разобраться с его устройством. Две важные детали РПД — ротор и статор. Ротор, установленный на валу, вращается вокруг неподвижной шестерни — статора. Соединение с шестерней происходит посредством зубчатого колеса. Делают ротор из легированной стали и помещают в цилиндрический корпус.
Ротор двигателя в поперечном срезе имеет треугольную форму, его грани выпуклые, а три вершины постоянно контактируют с внутренней поверхностью корпуса. Таким образом, пространство цилиндра разделяется на три камеры. В результате вращения объем камер меняется. В определенный момент, из-за особенностей формы профиля корпуса, камер становится четыре.
- На первом этапе в одну из камер через отверстие (впускное окно) запускается топливо.
- Далее объем камеры с топливом уменьшается, впускное окно полностью закрывается и начинается сжатие топлива.
- На следующем этапе образуется четыре камеры, срабатывают свечи (их две), происходит возгорание топлива, и совершается полезная работа мотора.
- При дальнейшем вращении ротора открывается выпускное окно, в которое выходят продукты горения (выхлопные газы).
Как только выпускное окно закрывается, открывается впускное отверстие и цикл повторяется.
Один рабочий цикл совершается за один полный оборот вала. Чтобы поршневой двигатель совершил такую же работу, он должен быть двухцилиндровым.
Для обеспечения герметичности на вершинах ротора устанавливают уплотнительные пластины. К цилиндру их придавливают пружины и центробежная сила, добавляется также давление газа.
Чтобы лучше понять, как устроен роторный двигатель, и что это такое вообще, необходимо изучить схему. На ней представлено поперечное сечение агрегата и процессы, происходящие при движении ротора. Схема роторного мотора показывает, какие этапы проходит ротор, играющий роль поршня.
Типы роторных двигателей
Древнейшие роторные двигатели — это водяные мельницы, в которых колесо вращается от действия воды и передает энергию валу. Устройство современно роторного двигателя, работающего на топливе, значительно сложнее. В нем камера может быть:
- герметично закрыта;
- постоянно контактировать с внешней средой.
Первый тип устройств применяют на средствах передвижения, а второй в газовых турбинах. Двигатели с закрытой камерой в свою очередь разделяются на несколько видов. Классификация роторных моторов следующая.
- Ротор вращается попеременно то в одну, то в другую сторону, его движение неравномерно.
- Вращение происходит в одну сторону, но скорость меняется, движение пульсирующее.
- Двигатели с уплотнительными заслонками, сделанными в виде лопастей.
- Равномерно вращающийся ротор с заслонками, которые движутся вместе с ротором и выполняют функцию уплотнителя.
- Двигатели с ротором, совершающим планетарное движение.
Существует также еще два вида типа роторных двигателей, в которых главный элемент равномерно вращается. Они отличаются организацией рабочей камеры и конструкцией уплотнителей. Двигатель Ванкеля относится к пятому пункту из представленного выше списка.
Преимущества РПД
Рассмотрев устройство роторного двигателя и принцип работы, можно понять, что он полностью отличается от поршневого. Роторный двигатель внутреннего сгорания более компактный, состоит из меньшего количества деталей, а его удельная мощность больше, чем у поршневого мотора.
РПД легче уравновесить, чтобы свести вибрации к минимуму. Это позволяет устанавливать его на легкий транспорт, например, микроавтомобили.
Количество деталей меньше, чем у поршневого двигателя почти в 2 раза. Размеры тоже значительно меньше, и такое преимущество упрощает развесовку по осям, позволяет добиться большей устойчивости на дороге.
Традиционный поршневой двигатель совершает полезную работу только за два оборота вала, а в роторном двигателе полезная работа совершается за один оборот ротора. Это является причиной быстрого разгона автомобилей с РПД.
Высокий расход топлива РПД
Устройство и принцип работы роторного двигателя на удивление просты, понятны и остроумны. Почему же он не получил распространения подобно поршневому ДВС? Не последнее место здесь занимает экономичность.
Роторный двигатель внутреннего сгорания потребляет слишком много топлива. При объеме всего 1,3 литра на каждые 100 км уходит почти 20 литров бензина. По этой причине запускать массовое производство автомобилей с РПД решились не многие компании.
В свете последних событий на Ближнем Востоке, когда за ресурсы ведется ожесточенная война, а цены на нефть и газ остаются по-прежнему довольно высокими, ограниченное применение РПД вполне понятно.
Другие важные недостатки
Следующим недостатком роторно-поршневого двигателя является быстрый износ уплотнителей, расположенных по ребрам ротора. Износ этот происходит по причине быстрого вращения, и как следствие, трения ребер о стенки камеры.
В дополнение к этому усложняется система смазки ребер. Компания Мазда сделала форсунки, которые впрыскивают масло в камеру сгорания. В связи с этим требования к качеству масла повысились. Постоянной обильной смазки также требует главный вал, вокруг которого происходит движение.
Техническое решение вопросов смазки требовало особого подхода, и справиться с задачей смогли только японские инженеры после долгих лет экспериментов.
Температура выхлопных газов у РПД выше, чем у поршневого двигателя. Это связано с относительно малой длиной рабочего хода грани ротора. Процесс горения едва успевает закончиться, как грань уже переместилась настолько, что открывается выпускное окно. В результате в выхлопную трубу выходят газы, которые полностью не передали давление ротору, и температура их высока. В атмосферу также попадает небольшая часть недогоревшей топливной смеси, что отрицательно сказывается на окружающей среде.
В роторном двигателе сложно обеспечить герметичность камеры сгорания. В процессе работы стенки статора неравномерно разогреваются и расширяются. В результате возможны утечки газа. Особенно нагревается та часть, в которой происходит сгорание. Чтобы справить с этой проблемой, различные части делают из разных сплавов. Это в свою очередь усложняет и удорожает процесс производства двигателей.
На стоимость производства роторно-поршневых двигателей Ванкеля не лучшим образом влияет сложная форма камеры. На самом деле у цилиндра не овальное сечение, как иногда говорят. Сечение имеет форму эпитрохоида и требует высокоточного исполнения.
Итак, становится понятно, что у роторного двигателя есть плюсы и минусы. Их можно свести в следующую таблицу.
Достоинства | Недостатки |
Хорошая сбалансированность | Высокий расход топлива, особенно на малых оборотах |
Минимальные вибрации | Нарушение герметичности из-за перегрева |
Быстрый разгон | Требует частой замены масла (каждые 5 тысяч км) |
Компактные размеры | Быстрый износ уплотнителей |
Высокая мощность | Дороговизна производства некоторых деталей |
Небольшое количество основных деталей | Повышенный уровень выброса CO2 |
Из-за быстрого износа деталей ресурс роторного двигателя составляет около 65 тыс. км. Для сравнения ресурс традиционного двигателя внутреннего сгорания в 2, а то и в 3 раза больше. Обслуживание роторно-поршневых двигателей требует большей ответственности, поэтому они привлекают внимание преимущественно профессионалов. Частично инженерам удалось устранить недостатки автомобилей с РПД, но некоторые из них все же остались.
Роторно-поршневые двигатели Мазды
В то время как другие мировые производители отказались от производства роторных двигателей, корпорация Mazda продолжила работу над ними. Ее специалисты усовершенствовали конструкцию и получили мощный мотор, способный конкурировать с лучшими европейскими агрегатами.
Работать с роторно-поршневым двигателем японцы начали еще в 1963 году. Они выпустили несколько моделей автобусов, грузовиков и легковых авто.
С 1978 по 2003 год компания производила знаменитый спорткар RX-7. Его приемником стала модель RX-8, получившая более 30 наград на международных моторных выставках.
На RX-8 был установлен двигатель Renesis (Rotary Engine Genesis). В разной комплектации автомобиль продавался по всему миру. Самые мощные модели (250 л. с., 8,5 тыс. оборотов в минуту) продавали в Северной Америке и Японии. В 2007 годы в Токио на автосалоне представили концепт кар с мотором Renesis II мощность 300 л. с.
В 2009 году автомобили Мазда с роторным мотором были запрещены в Европе, поскольку выброс углекислого газа превышал существующие на тот момент нормы. В 2102 году массовое производство японских автомобилей с роторными двигателями было прекращено. На данный момент РПД от компании Mazda устанавливают только на спортивные гоночные автомобили.
Роторный двигатель: принцип работы с видео, устройство
Роторный двигатель является одной из разновидностей тепловых ДВС. Первый роторный двигатель, принцип работы которого кардинально отличается от традиционного двигателя внутреннего сгорания, появился в 19 веке.
Его особенностью было использование не возвратно поступательных движений, как в классическом ДВС, а вращение в специальном овальном корпусе трехгранного ротора. Такая схема применялась в первых поршневых паровых машинах и дала толчок к активному проектированию и созданию роторных паровых двигателей. С роторного парового двигателя и начиналась история двигателя внутреннего сгорания роторного типа. Впервые схему классического роторно-поршневого (двигателя Ванкеля) разработали в конце 1950-х годов в немецкой фирме NSU, авторами стали Феликс Ванкель и Вальтер Фройде.
Конструкция
Давайте рассмотрим основные части РПД:
- корпус двигателя;
- ротор;
- выходной вал.
Как и любой другой двигатель внутреннего сгорания, двигатель Ванкеля имеет корпус, который включает основную рабочую камеру, в нашем случае – овальной формы.
Форма камеры сгорания (овал) обусловлена применением трехгранного ротора, грани которого при соприкосновении со стенками камеры сгорания овальной формы образуют изолированные закрытые контуры. В этих изолированных контурах и происходят все такты работы РПД:
- впуск;
- сжатие;
- воспламенение;
- выпуск.
Такая компоновка позволяет обойтись без впускных и выпускных клапанов. Впускные и выпускные отверстия находятся по бокам камеры сгорания, а соединены напрямую к системе питания и системе выпуска отработанных газов.
Следующей составной частью роторного мотора является непосредственно ротор. В РПД ротор выполняет функцию поршней в обычном двигателе. Своей формой ротор похож на треугольник с закругленными наружу краями и вдающимися внутрь гранями. Закругление краев ротора необходимо для лучшего уплотнения камеры сгорания. Выборка внутри грани нужна для увеличения объема камеры сгорания, правильного горения топливно-воздушной смеси и увеличения скорости вращения ротора. Вверху каждой грани и по ее бокам находятся металлические пластины, задача которых состоит в уплотнении камеры сгорания, аналогично поршневым кольцам классического ДВС. Внутри ротора расположены зубцы, вращающие привод, который, в свою очередь, вращает выходной вал.
Классический мотор имеет коленчатый вал, в РПД его функцию выполняет выходной вал. Относительно центра выходного вала расположены выступы-кулачки в форме полукругов. Выступы-кулачки несимметричны по отношению к центру и явно смещены относительно центра оси. На каждый выступ-кулачок выходного вала приходится по своему ротору. Вращательное движение каждого ротора, передаваемое на выступ-кулачок, заставляет выходной вал вращаться вокруг своей оси, что, в свою очередь, создает крутящий момент на выходном валу.
Рабочие такты РПД
Давайте теперь более подробно рассмотрим принцип работы роторного двигателя и рабочие процессы, происходящие внутри него. Как и классический мотор, двигатель Ванкеля имеет те же такты впуска, сжатия, рабочего хода и выпуска.
Начало такта впуска происходит в момент прохода одной из вершин ротора впускного канала корпуса мотора. В этот момент в постепенно расширяющуюся камеру сгорания всасывается топливно-воздушная смесь либо просто воздух, в зависимости от компоновки системы подачи топлива. При дальнейшем вращении ротора к точке, когда вторая вершина проходит впускной канал, начинается такт сжатия топливно-воздушной смеси. Давление смеси вместе с движением ротора постепенно нарастает и достигает своего пика в момент прохождения зоны свечей зажигания. В момент воспламенения начинается такт рабочего хода ротора.
В связи с особой формой камеры сгорания, вытянутой вдоль стенки корпуса, целесообразно использовать две свечи зажигания. Использование двух свечей позволяет быстро и равномерно произвести поджиг топливно-воздушной смеси, что гарантирует быстрое, плавное и равномерное распространение фронта пламени.
Две свечи может иметь и обычный поршневой мотор, например некоторые спортивные двигатели, но в РПД использование двух свечей зажигания просто необходимо.
Образовавшееся давление газов поворачивает ротор на эксцентрике вала, что в свою очередь приводит к возникновению крутящего момента на выходном валу. При приближении к выпускному каналу вершины ротора давление в камере сгорания плавно снижается. Вращаясь по инерции, вершина ротора достигает выпускного канала, начинается такт выпуска. Выхлопные газы устремляются в выпускной канал, и как только вершина ротора достигает впускного канала, снова начинается такт впуска.
Система питания и смазка
Роторный мотор не имеет принципиальных отличий от классического ДВС в системах зажигания, топливоподачи и охлаждения. Однако система смазки имеет свои особенности. Для смазывания движущихся частей масло подается прямо в камеру сгорания через специальное отверстие, поэтому сгорает вместе с топливно-воздушной смесью как в двухтактном двигателе.
Как и любая техническая конструкция, роторный мотор обладает своими преимуществами и недостатками.
Достоинствами роторно-поршневого двигателя
Недостатки
Современные реалии
В настоящее время наибольших успехов в производстве роторных двигателей добились инженеры корпорации Mazda. Последняя генерация их двигателя Ванкеля, под названием «Renesis», совершила настоящий прорыв. Им удалось не только решить главные проблемы данного типа ДВС, такие как повышенный расход топлива и токсичность, но и снизить потребление масла на 50%, тем самым доведя экологические показатели до норм Euro 4. Новое поколение РПД Mazda могут использовать в качестве топлива как бензин, так и водород, что делает этот мотор интересными и перспективными для использования в будущем.
Поделиться «Роторный двигатель: принцип работы с видео, устройство»
Двигатель внутреннего сгорания — Energy Education
Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и поездах. Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.
Закон идеального газа
Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math].Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.
Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Прикрепив поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого сгорания двигатель выпускает газ. Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.
Поршни и турбины
Рисунок 1. Схема газотурбинного двигателя. [3]Двигатель, в котором используется поршень , называется двигателем прерывистого внутреннего сгорания , тогда как двигатель, в котором используется турбина , называется двигателем непрерывного внутреннего сгорания .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.
Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, поскольку они также запускаются быстрее. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.
Двигатель четырехтактный
- на главную
Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.
- Топливо впрыскивается в камеру.
- Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
- Этот огонь толкает поршень, что является полезным движением.
- Отходы химикатов, по объему (или массе) это в основном водяной пар и диоксид углерода. В результате неполного сгорания могут присутствовать такие загрязнители, как окись углерода.
Двигатель двухтактный
- на главную
Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на рисунке 3.Сам поршень используется как клапан системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:
- Топливно-воздушная смесь добавляется и поршень движется вверх (сжатие). Входное отверстие открывается из-за положения поршня, и топливовоздушная смесь поступает в камеру хранения.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
- Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отработанное тепло отводится.
Роторный двигатель (Ванкеля)
- на главную
В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы выполняются 3 раза за один оборот ротора , создавая три такта мощности за один оборот .
Для дальнейшего чтения
Список литературы
- ↑ 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
- ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда, , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр.93-122
- ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
- ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
- ↑ «Файл: Двухтактный двигатель.gif — Wikimedia Commons «, Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Доступно: 17 мая 2018 г.].
- ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
- ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif
Двигатели внутреннего сгорания — Скачать PDF бесплатно
Транскрипция
1 Лекция-18, подготовленная в рамках проекта QIP-CD Cell Двигатели внутреннего сгорания Уджвал К. Саха, доктор философии Департамент машиностроения Индийский технологический институт Гувахати 1
2 Сгорание в двигателе CI Сгорание в двигателе CI сильно отличается от сгорания в двигателе SI.В то время как сгорание в двигателе SI представляет собой по существу фронт пламени, движущийся через гомогенную смесь, сгорание в двигателе CI представляет собой нестационарный процесс, происходящий одновременно во многих точках в очень неоднородной смеси, контролируемой впрыском топлива. Воздухозаборник в двигатель не дросселируется, а крутящий момент двигателя и выходная мощность регулируются количеством топлива, впрыскиваемого за цикл. 2
3 Во время такта сжатия в цилиндре содержится только воздух, а в двигателях с CI используются гораздо более высокие степени сжатия (от 12 до 24).Помимо завихрения и турбулентности воздуха, необходима высокая скорость впрыска, чтобы топливо распределялось по цилиндру и смешивалось с воздухом. Топливо впрыскивается в цилиндры в конце такта сжатия одной или несколькими форсунками, расположенными в каждом цилиндре. Время впрыска обычно составляет около 20 0 оборотов коленчатого вала (15 0 btdc и 5 0 at dc). 3
4 Зависимость давления в цилиндре от угла поворота коленчатого вала для двигателя с прямым замком.A: точка впрыска топлива B: точка воспламенения C: конец впрыска топлива AB: период задержки 4
5 Сгорание в двигателе CI В двигателе CI топливо впрыскивается непосредственно в цилиндр, и топливно-воздушная смесь воспламеняется самопроизвольно. Эти фотографии сделаны в RCM в условиях двигателя CI с вихревым потоком воздуха 1 см 0,4 мс после зажигания 3,2 мс после зажигания 3.2 мс после розжига Поздний процесс сгорания 5
Измерения в цилиндре из 6 дюймов На этом графике показаны расход топлива, суммарное тепловыделение и давление в цилиндре для двигателя с прямым впрыском CI. Начало впрыска Начало горения Конец впрыска 6
7 Четыре ступени сгорания в двигателях CI Начало впрыска Конец впрыска TC
8 Сгорание в двигателе CI Процесс сгорания проходит в следующие этапы: Задержка зажигания (ab) — топливо впрыскивается непосредственно в цилиндр в конце такта сжатия.Жидкое топливо распыляется на мелкие капли и проникает в камеру сгорания. Топливо испаряется и смешивается с высокотемпературным воздухом под высоким давлением. Фаза предварительно смешанного сгорания (bc) сгорание топлива, которое смешалось с воздухом до пределов воспламеняемости (воздух с высокой температурой и высоким давлением) в течение периода задержки воспламенения, происходит быстро при нескольких углах поворота коленчатого вала. 8
9 Сгорание в двигателе CI, продолжение.При смешивании фазы контролируемого горения (cd) после потребления предварительно смешанного газа скорость горения регулируется скоростью, с которой смесь становится доступной для горения. На этом этапе скорость горения регулируется в первую очередь процессом смешивания топлива с воздухом. Поздняя фаза сгорания (де) тепловыделение может происходить с меньшей скоростью до такта расширения (во время этой фазы не впрыскивается дополнительное топливо). За это отвечает сжигание несгоревшего жидкого топлива и сажи. 9
Типы двигателей 10 CI Две основные категории двигателей CI: i) с прямым впрыском есть одна открытая камера сгорания, в которую впрыскивается топливо; ii) камера непрямого впрыска разделена на две области, и топливо впрыскивается в форкамеру. который соединен с основной камерой через сопло или одно или несколько отверстий.10
11 Типы двигателей CI (продолжение) Для очень больших двигателей (стационарная выработка электроэнергии), которые работают на низких оборотах двигателя, время, доступное для смешивания, велико, поэтому используется тип камеры покоя с прямым впрыском (открытый или неглубокий резервуар в поршне). По мере уменьшения объема двигателя и увеличения частоты вращения увеличивается завихрение для достижения смешивания топлива с воздухом (глубокая чаша в поршне).Для небольших высокоскоростных двигателей, используемых в автомобилях, завихрения в камере недостаточно, используется непрямой впрыск, когда сильное завихрение или турбулентность создается в форкамере во время сжатия и продувки продуктов / топлива и смешивания с воздухом в основной камере. 11
12 Типы двигателей CI Свеча накаливания Диафрагма-пластина Прямой впрыск: камера покоя Прямой впрыск: завихрение в камере Непрямое впрыскивание: турбулентная и вихревая форкамера 12
13 Покоящаяся камера прямого впрыска Закрутка форсунки прямого впрыска с несколькими отверстиями в камере Завихрение форсунки с одним отверстием прямого впрыска в камере Предварительная камера закрутки непрямого впрыска 13
14 Сгорание происходит по всей камере в диапазоне эквивалентных соотношений, определяемых смешиванием топлива и воздуха до и во время фазы сгорания.Как правило, большая часть сгорания происходит в очень богатых условиях в головной части струи, при этом образуется значительное количество твердого углерода (сажи). Характеристики горения 14
15 Задержка зажигания Задержка зажигания определяется как время (или интервал угла поворота коленчатого вала) от начала впрыска топлива до начала сгорания. И физические, и химические процессы должны произойти до того, как будет высвобождена значительная часть химической энергии закачиваемой жидкости.К физическим процессам относятся распыление топлива распылением, испарение и смешивание паров топлива с воздухом в цилиндрах. Для хорошего распыления требуется высокое давление впрыска топлива, малый диаметр отверстия форсунки, оптимальная вязкость топлива, высокое давление в цилиндре (большой угол расхождения). Скорость испарения капель топлива зависит от диаметра капель, скорости, летучести топлива, давления и температуры воздуха. 15
16 Задержка зажигания Физические процессы — это распыление топлива при распылении, испарение и смешивание паров топлива с воздухом в цилиндре.Химические процессы, аналогичные описанным для явления самовоспламенения в предварительно смешанном топливном воздухе, только более сложны, поскольку также происходят гетерогенные реакции (реакции, происходящие на поверхности капли жидкого топлива). 16
17 Качество воспламенения топлива Характеристики воспламенения топлива влияют на задержку воспламенения. Качество воспламенения топлива определяется его цетановым числом CN.Для топлива с низким цетановым числом задержка воспламенения велика, и большая часть топлива впрыскивается до самовоспламенения и быстро сгорает, в крайних случаях это вызывает слышимый стук, называемый детонацией дизельного топлива. 17
18 Качество воспламенения топлива Для топлива с высоким содержанием цетанового числа задержка воспламенения короткая, и перед самовоспламенением впрыскивается очень мало топлива, скорость выделения тепла регулируется скоростью впрыска топлива и более плавной работой двигателя при смешивании топлива с воздухом.18
19 Цетановое число Метод, используемый для определения качества зажигания с точки зрения CN, аналогичен методу, используемому для определения качества антидетонации с помощью ON. Шкала цетанового числа определяется смесью двух чистых углеводородных эталонных топлив. По определению, изоцетан (гептаметилнонан, HMN) имеет цетановое число 15, а цетан (н-гексадекан, C 16 H 34) имеет значение
.20 Цетановое число В исходных процедурах а-метилнафталин (C 11 H 10) с нулевым цетановым числом представлял нижнюю часть шкалы.С тех пор он был заменен HMN, который является более стабильным соединением. Чем выше CN, тем лучше качество зажигания, т.е. короче задержка зажигания. 20
21 Измерение цетанового числа В методе, разработанном для измерения CN, используется стандартизированный одноцилиндровый двигатель с переменной степенью сжатия. Рабочие условия: Температура на входе (o C) 65,6 Скорость (об / мин) 900 Опережение искры (o BTC) 13 Температура охлаждающей жидкости (o C) 100 Давление впрыска (МПа)
22 Измерение цетанового числа продолж.Когда двигатель работает в этих условиях на тестовом топливе, степень сжатия изменяется до тех пор, пока сгорание не начнется при TC, период задержки воспламенения составляет 13 o. Вышеуказанная процедура повторяется с использованием смесей цетана и HMN. Смесь, которая дает задержку воспламенения 13 ° при той же степени сжатия, используется для расчета цетанового числа испытательного топлива. 22
23 Цетановое число по сравнению с октановым числом Октановое число и цетановое число топлива обратно коррелированы. Бензин — плохое дизельное топливо, и наоборот.23
24 Факторы, влияющие на задержку зажигания Время впрыска При нормальных условиях двигателя минимальная задержка происходит с началом впрыска примерно при BTC. Увеличение времени задержки с более ранним или более поздним моментом впрыска происходит из-за температуры и давления воздуха в течение периода задержки. Количество впрыска Для двигателя с ХИ воздух не дросселируется, поэтому нагрузка изменяется путем изменения количества впрыскиваемого топлива. 24
25 факторов, влияющих на задержку зажигания (продолжение)Увеличение нагрузки (bmep) увеличивает остаточный газ и температуру стенок, что приводит к более высокой температуре заряда при впрыске, что приводит к уменьшению задержки зажигания. Увеличение температуры и давления воздуха на впуске приведет к уменьшению задержки зажигания, увеличение степени сжатия имеет тот же эффект. 25
26 факторов, влияющих на задержку зажигания (датчик) 26
27 факторов, влияющих на период задержки (DP) 1.Степень сжатия: DP уменьшается с увеличением CR. 2. Скорость двигателя: DP уменьшается с увеличением скорости двигателя. 3. Выходная мощность: DP уменьшается с увеличением выходной мощности. 4. Распыление топлива: DP уменьшается с увеличением степени распыления. 5. Качество топлива: DP уменьшается с увеличением цетанового числа. 6. Темп. Впуска. & Давление: DP уменьшается с увеличением температуры и давления. 27
28 Эффект задержки зажигания 28
29 Детонация в двигателях CI Детонация в двигателях SI и CI принципиально схожа.В двигателях SI это происходит ближе к концу сгорания; тогда как в двигателях с ХИ это происходит в начале сгорания. Детонация в двигателях CI связана с периодом задержки. Чем больше DP, тем больше и больше капель топлива будет скапливаться в камере сгорания. Это приводит к слишком быстрому росту давления из-за воспламенения, что приводит к заклиниванию сил, действующих на поршень, и плохой работе двигателя. Когда DP слишком велик, скорость повышения давления почти мгновенная, с большим накоплением топлива.29
30 Детонация в двигателях SI и CI 30
31 Ссылки 1. Крауз У.Х. и Энглин Д.Л. (1985), Автомобильные двигатели, Тата МакГроу Хилл. 2. Истоп Т.Д. и МакКонки А. (1993), Прикладная термодинамика для англ. Технологи, Эддисон Висли. 3. Фергюсан Ч.Р., Киркпатрик А.Т. (2001), Двигатели внутреннего сгорания, John Wiley & Sons. 4. Ганесан В. В. (2003), Двигатели внутреннего сгорания, Тата МакГроу Хилл. 5.Гилл П. У., Смит Дж. Х. и Зиурис Э. Дж. (1959), Основы двигателей I.C., Оксфорд и IBH Pub Ltd. 6. Хейслер Х, (1999), Технологии транспортных средств и двигателей, Издательство Арнольд. 7. Хейвуд Дж. Б. (1989), Основы двигателя внутреннего сгорания, McGraw Hill. 8. Хейвуд Дж. Б. и Шер Е. (1999), Двухтактный двигатель, Тейлор и Фрэнсис. 9. Джоэл Р. (1996), Основы инженерной термодинамики, Аддисон-Уэсли. 10. Матур М.Л. и Шарма Р.П. (1994), Курс по двигателям внутреннего сгорания, Dhanpat Rai & Sons, Нью-Дели.11. Пулкрабек В.В., (1997), Основы инженерии I.C. Engine, Prentice Hall. 12. Роджерс Г.Ф.К. и Мэйхью Ю.Р. (1992), Техническая термодинамика, Аддисон-Висли. 13. Сринивасан С. (2001), Автомобильные двигатели, Тата МакГроу Хилл. 14. Стоун Р. (1992), Двигатели внутреннего сгорания, Макмиллан Пресс Лимитед, Лондон. 15. Тейлор К.Ф., (1985), Двигатель внутреннего сгорания в теории и практике, том 1 и 2, MIT Press, Кембридж, Массачусетс. 31
32 Интернет-ресурсы me429 / lecture-air-cyc-web% 5b1% 5d.PPT PPT / вторичный / powerpoint / sge-parts.ppt
.PPT — Презентация PowerPoint по двигателям внутреннего сгорания, скачать бесплатно
Двигатели внутреннего сгорания Power & Energy 3201
Outline • Двигатели внутреннего сгорания • Типы движения • Четырехтактные двигатели • Двухтактные двигатели • Роторные Двигатели • Дизельные двигатели
Двигатель внутреннего сгорания • Тепловые двигатели внутреннего сгорания • Это категория двигателей, которые сжигают внутреннее топливо для выработки энергии.
Типы движения • Двигатели внутреннего сгорания создают механическое движение одним из трех способов: 1. Возвратно-поступательное движение • Возвратно-поступательное движение. Пример: поршневые двигатели 2. Вращение • Вращательное движение. Пример: Турбины и роторные двигатели 3. Линейное • Движение по прямой. Пример: Реактивный / Ракетный и Картофельный пистолет.
Бензиновые поршневые двигатели • Есть два типа бензиновых поршневых двигателей: 1. Четырехтактный цикл 2. Двухтактный цикл
Бензиновые поршневые двигатели • Ход поршня — движение поршня сверху цилиндр ко дну.• Цикл — полный набор движений поршня, необходимых для выполнения рабочего хода.
Бензиновые поршневые двигатели • Оба работают с поршнем, перемещающимся вверх и вниз в цилиндре. • Разница заключается в количестве ходов, совершаемых каждым поршнем за цикл двигателя.
История • Принцип четырехтактного двигателя был разработан в 1862 году французским Бо де Роша. • Первый четырехтактный двигатель был построен в 1876 году немецким инженером-механиком Николасом Отто (цикл Отто).
История • В 1893 году два американских брата по имени Дурья построили и эксплуатировали первый бензиновый автомобиль.
Четырехтактные бензиновые двигатели • В четырехтактных двигателях имеется четыре отдельных хода поршня: 1. Впуск 2. Сжатие 3. Мощность 4. Выпуск
Принципы работы четырехтактных двигателей • Ход впуска • впускной клапан открывается. • Поршень движется вниз по цилиндру, создавая частичный вакуум.• Смесь воздуха и топлива всасывается в цилиндр через впускной клапан.
Принцип работы четырехтактного двигателя • Ход сжатия • Когда поршень достигает НМТ, оба клапана закрываются. • Это герметизирует цилиндр и предотвращает утечку топливовоздушной смеси. • Поршень начинает двигаться вверх по цилиндру и сжимает смесь.
Принцип работы четырехтактного двигателя • Рабочий ход • Поршень поднимается, пока не достигнет ВМТ.• В этот момент свеча зажигания создает искру высокого напряжения.
Принцип работы четырехтактного двигателя • Рабочий ход • Эта искра вызывает воспламенение и быстрое горение смеси сжатого воздуха и топлива. • Сила этого сдерживаемого взрыва заставляет поршень опускаться в цилиндре, производя энергию.
Принцип работы с четырьмя тактами • Такт выпуска • Когда поршень приближается к НМТ, выпускной клапан открывается. • Когда поршень поднимается обратно, он выталкивает сгоревшие газы из выпускного клапана.
Принцип работы четырехтактного двигателя • Такт выпуска • После завершения такта выпуска все четыре хода работы начинаются заново.
Принципы работы четырехтактного двигателя • Видео о четырехтактном двигателе • Основы четырехтактного двигателя
Двухтактные бензиновые двигатели • Двухтактные двигатели работают по тем же основным принципам работы, что и четырехтактный двигатель. • Однако он завершает такты впуска, сжатия, увеличения мощности и выпуска всего за два движения поршня вместо четырех.
Двухтактные бензиновые двигатели • Каждый раз, когда поршень перемещается вверх, он завершает такт впуска и сжатия. • Каждый раз, когда поршень движется вниз, он завершает рабочий ход и такт выпуска.
Принцип работы двухтактного двигателя • Ход всасывания / сжатия • Когда поршень движется вверх по цилиндру, впускные и выпускные отверстия закрываются. • Смесь воздух / топливо / масло над поршнем сжимается.
Принцип работы двухтактного двигателя • Ход впуска / сжатия • В то же время новая смесь воздух / топливо / масло всасывается в картер двигателя через пластинчатый клапан, соединенный с карбюратором.
Принцип работы двухтактного двигателя • Ход всасывания / сжатия • Герконовый клапан — это специальный клапан, который позволяет воздуху / топливу / маслу двигаться только в одном направлении.
Принцип работы с двумя тактами • Ход поршня / выхлопа • В верхней части хода свеча зажигания воспламеняет сжатую смесь. • Горение смеси толкает поршень вниз, производя энергию.
Принцип работы двухтактного двигателя • Ход поршня / выхлопа • Движение поршня вниз создает давление в смеси воздух / топливо / масло в картере и заставляет пластинчатый клапан закрыться.
Принцип работы двухтактного двигателя • Ход мощности / выпуска • Когда поршень достигает НМТ, впускные и выпускные отверстия открываются. • Выхлопные газы удаляются из двигателя, и в то же время смесь воздуха / топлива / масла нагнетается в цилиндр через впускной канал.
Принцип работы с двумя тактами • Мощность / ход выхлопа • Приток воздуха / топлива / масла в цилиндр помогает вытолкнуть выхлопной газ и готов к сжатию движением поршня вверх.• Теперь цикл начинается снова.
Видео с двухтактным двигателем
Преимущества двухтактного двигателя • Преимущества • Требуется меньше движущихся частей для достижения такой же мощности, как у четырехтактных двигателей. • Дешевле в обслуживании, чем четырехтактные двигатели. • Меньше и проще по конструкции, чем четырехтактные двигатели. • Может работать в любой ориентации.
Недостатки двухтактного двигателя • Недостатки • Менее топливная экономичность, чем у четырехтактного.• Более быстрый износ движущихся частей двигателя. • Более загрязняет окружающую среду, чем четырехтактные двигатели, поскольку вместе с топливно-воздушной смесью сжигается масло.
Роторный двигатель (Ванкеля) • Разработан в 1958 году немецким ученым Феликсом Ванкелем. • В двигателях Ванкеля не используются поршни.
Двигатель Ванкеля • В двигателе Ванкеля используется ротор треугольной формы, расположенный в цилиндре овальной формы. • Когда ротор вращается, он перемещается вокруг цилиндра, выполняя четыре основных функции для создания рабочего хода.
Принцип работы двигателя Ванкеля • Ход всасывания • Выработка мощности начинается с ротора в точке A. • Впускное отверстие открывается, позволяя новой топливовоздушной смеси попасть в камеру сгорания.
Принцип работы двигателя Ванкеля • Ход сжатия • По мере вращения ротора камера сгорания уменьшается в размерах, сжимая смесь.
Принципы работы двигателя Ванкеля • Рабочий ход • В самой высокой точке сжатия воздух / топливо воспламеняются.• Горячие расширяющиеся газы толкают ротор, заставляя его вращаться.
Принцип работы двигателя Ванкеля • Ход выпуска • Продолжительное вращение ротора открывает выпускное отверстие, позволяя выходить выхлопным газам. • Цикл затем повторяется, когда новая топливно-воздушная смесь попадает в камеру сгорания.
Преимущества двигателя Ванкеля • Преимущества • Меньшая вибрация по сравнению с двигателями с поршневым приводом. • Двухроторный двигатель такой же мощный, как шестицилиндровый поршневой двигатель.• Выходную мощность можно увеличить, добавив к двигателю дополнительные роторы.
Двигатель Ванкеля Недостатки • Недостатки • Уплотнение ротора в цилиндре нестандартной формы очень сложно и требует дорогостоящего обслуживания. • Стоимость строительства этого двигателя высока. • Нехватка квалифицированных механиков для обслуживания этого типа двигателя.
Дизельные двигатели • Этот двигатель был изобретен в 1892 году немецким инженером-механиком по имени Рудольф Дизель.• Сначала этот двигатель был известен как двигатель сжатия, но позже был назван Дизельным в честь своего изобретателя.
Дизельные двигатели • Дизели бывают двухтактными и четырехтактными и работают так же, как двигатели с бензиновым приводом. • Дизели имеют более высокую степень сжатия, чем бензиновые. • Дизель 16: 1 — 23: 1 • Бензин 6: 1 — 12: 1
Дизельный двигатель Принципы работы • Ход впуска • Впускной клапан открывается. • Поршень движется вниз.• Только воздух втягивается в цилиндр или закачивается с помощью турбонагнетателя (вентилятора).
Принципы работы дизельного двигателя • Ход сжатия • Движение поршня вверх сжимает воздух, повышая температуру примерно до 538 градусов Цельсия.
Принципы работы дизельного двигателя • Рабочий ход • Когда поршень достигает вершины, топливо впрыскивается в нужный момент и воспламеняется от тепла, заставляя поршень опускаться обратно.
Дизельный двигатель Принципы работы • Такт выпуска • Поршень движется назад вверх и выталкивает сгоревшие газы из выпускного клапана или порта.
Дизель VS Бензиновые двигатели • Различные виды топлива (Дизельное топливо). • Дизельные двигатели работают с гораздо более высокой степенью сжатия. • В дизельных двигателях свечи зажигания не используются. • Свечи накаливания используются для запуска двигателей в очень холодные дни.
Преимущества дизельного двигателя • Преимущества • Большая экономия топлива (на 25% эффективнее, чем бензиновые двигатели).• Производит больше мощности. • Требуется меньше обслуживания.
Дизельный двигатель Недостатки • Недостатки • Должен быть более тяжелым, чтобы выдерживать более высокое давление. • Нехватка квалифицированных механиков в некоторых областях.
Бензиновый двигатель | Британника
Бензиновый двигатель , любой из класса двигателей внутреннего сгорания, вырабатывающих энергию за счет сжигания летучего жидкого топлива (бензина или бензиновой смеси, такой как этанол) с воспламенением от электрической искры. Бензиновые двигатели могут быть построены для удовлетворения требований практически любого возможного применения в силовых установках, наиболее важными из которых являются легковые автомобили, небольшие грузовики и автобусы, самолеты авиации общего назначения, подвесные и малые внутренние морские агрегаты, стационарные насосные агрегаты среднего размера, осветительные установки и т. Д. станки и электроинструменты.Четырехтактные бензиновые двигатели используются в подавляющем большинстве автомобилей, легких грузовиков, средних и больших мотоциклов и газонокосилок. Двухтактные бензиновые двигатели встречаются реже, но они используются для небольших подвесных судовых двигателей и во многих ручных инструментах для озеленения, таких как цепные пилы, кусторезы и воздуходувки.
Поперечный разрез V-образного двигателя. Encyclopædia Britannica, Inc.Типы двигателей
Бензиновые двигатели можно сгруппировать в несколько типов в зависимости от нескольких критериев, включая их применение, метод управления подачей топлива, зажигание, расположение поршня и цилиндра или ротора, количество ходов за цикл, систему охлаждения, а также тип и расположение клапана.В этом разделе они описаны в контексте двух основных типов двигателей: поршневых двигателей и роторных двигателей. В поршневом двигателе давление, создаваемое сгоранием бензина, создает силу на головку поршня, которая перемещает цилиндр по длине возвратно-поступательным или возвратно-поступательным движением. Эта сила отталкивает поршень от головки цилиндра и выполняет работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров, оснащенных возвратно-поступательными поршнями.Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и таким образом выполнять работу.
бензиновые двигатели Типы бензиновых двигателей включают (A) двигатели с оппозитными поршнями, (B) роторные двигатели Ванкеля, (C) рядные двигатели и (D) двигатели V-8. Encyclopædia Britannica, Inc.Большинство бензиновых двигателей относятся к поршнево-поршневому типу. Основные компоненты поршневого двигателя показаны на рисунке. Почти все двигатели этого типа используют четырехтактный или двухтактный цикл.
Типовая схема поршневой цилиндр бензинового двигателя. Encyclopædia Britannica, Inc.Четырехтактный цикл
Из различных методов восстановления энергии от процесса сгорания наиболее важным до сих пор был четырехтактный цикл, концепция, впервые разработанная в конце 19 века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такте впуска. Воспламеняющаяся смесь паров бензина и воздуха втягивается в цилиндр за счет создаваемого таким образом частичного вакуума.Смесь сжимается, когда поршень поднимается на такте сжатия при закрытых обоих клапанах. По мере приближения к концу хода заряд воспламеняется электрической искрой. Затем следует рабочий ход, когда оба клапана все еще закрыты, а давление газа обусловлено расширением сгоревшего газа, давящим на головку или головку поршня. Во время такта выпуска восходящий поршень выталкивает отработавшие продукты сгорания через открытый выпускной клапан. Затем цикл повторяется. Таким образом, каждый цикл требует четырех тактов поршня — впуска, сжатия, мощности и выпуска — и двух оборотов коленчатого вала.
Двигатель внутреннего сгорания: четырехтактный цикл Двигатель внутреннего сгорания имеет четыре такта: впуск, сжатие, сгорание (мощность) и выпуск. Когда поршень перемещается во время каждого хода, он поворачивает коленчатый вал. Encyclopædia Britannica, Inc. Britannica Premium: удовлетворение растущих потребностей искателей знаний. Получите 30% подписки сегодня. Подпишись сейчасНедостатком четырехтактного цикла является то, что завершается только половина тактов мощности, чем в двухтактном цикле ( см. Ниже ), и только половину такой мощности можно ожидать от двигателя данного размера при заданная рабочая скорость.Однако четырехтактный цикл обеспечивает более эффективную очистку выхлопных газов (продувку) и перезагрузку цилиндров, уменьшая потерю свежего заряда в выхлопе.
.