Роторный двигатель внутреннего сгорания
Словосочетание «двигатель внутреннего сгорания» у большинства людей вызывает ассоциации с цилиндрами и поршнями, системой газораспределения и кривошипно-шатунным механизмом. Все потому, что подавляющее большинство автомобилей снабжено классическим и ставшим наиболее популярным типом двигателей – поршневым.
Сегодня речь пойдет о роторно-поршневом двигателе Ванкеля, который обладает целым набором выдающихся технических характеристик, и в свое время должен был открыть новые перспективы в автомобилестроении, но не смог занять достойного места и массовым не стал.
История создания
Самым первым тепловым двигателем роторного типа принято считать эолипил. В первом веке нашей эры его создал и описал греческий механик-инженер Герон Александрийский.
Конструкция эолипила довольна проста: на оси, проходящей через центр симметрии, расположена вращающаяся бронзовая сфера. Водяной пар, используемый как рабочее тело, истекает из двух сопел, установленных в центре шара друг напротив друга и перпендикулярно оси крепления.
Механизмы водяных и ветряных мельниц, использующих в качестве энергии силу стихии, тоже можно отнести к роторным двигателям древности.
Классификация роторных двигателей
Среди роторно-поршневых двигателей с замкнутыми камерами сгорания специалисты выделяют несколько групп. Разделение может происходить по: наличию или отсутствию уплотнительных элементов, по режиму работы камеры сгорания (прерывисто-пульсирующий или непрерывный), по типу вращения рабочего органа.
Стоит отметить, что у большинства описываемых конструкций нет действующих образцов и они существуют на бумаге.
Классифицировал их русский инженер И.Ю. Исаев, который сам занят созданием совершенного роторного двигателя. Он произвел анализ патентов России, Америки и других стран, всего более 600.
Роторный ДВС с возвратно-вращательным движением
Ротор в таких двигателях не вращается, а совершает возвратно-дуговые качания. Лопатки на роторе и статоре неподвижны, и между ними происходят такты расширения и сжатия.
С пульсирующе-вращательным, однонаправленным движением
В корпусе двигателя расположены два вращающихся ротора, сжатие происходит между их лопастей в моменты сближения, а расширение в момент удаления. Из-за того что вращение лопастей происходит неравномерно, требуется разработка сложного механизма выравнивания.
С уплотнительными заслонками и возвратно-поступательными движениями
Схема с успехом применяемая в пневмомоторах, где вращение осуществляется за счет сжатого воздуха, не прижилась в двигателях внутреннего сгорания по причине высокого давления и температур.
С уплотнителями и возвратно-поступательными движениями корпуса
Схема аналогична предыдущей, только уплотнительные заслонки расположены не на роторе, а на корпусе двигателя. Недостатки те же: невозможность обеспечить достаточную герметичность лопаток корпуса с ротором сохраняя их подвижность.
Двигатели с равномерным движением рабочего и иных элементов
Наиболее перспективные и совершенные виды роторных двигателей. Теоретически могут развивать самые высокие обороты и набирать мощность, но пока не удалось создать ни одной работающей схемы для ДВС.
С планетарным, вращательным движением рабочего элемента
К последним относится наиболее известная широкой общественности схема роторно-поршневого двигателя инженера Феликса Ванкеля.
Хотя существует огромное количество других конструкций планетарного типа:
- Умплеби (Umpleby)
- Грея и Друммонда (Gray & Dremmond)
- Маршалла (Marshall)
- Спанда (Spand)
- Рено (Renault)
- Томаса (Tomas)
- Веллиндера и Скуга (Wallinder & Skoog)
- Сенсо (Sensand)
- Майлара (Maillard)
- Ферро (Ferro)
История Ванкеля
Жизнь Феликса Генриха Ванкеля не была простой, рано оставшись сиротой (отец будущего изобретателя погиб в первой мировой войне), Феликс не мог собрать средства для обучения в университете, а рабочую специальность не позволяла получить сильная близорукость.
Это побудило Ванкеля на самостоятельное изучение технических дисциплин, благодаря чему в 1924 году ему пришла в голову идея создать роторный двигатель с вращающейся камерой внутреннего сгорания.
В 1929 году он получает патент на изобретение, которое и стало первым шагом к созданию знаменитого РПД Ванкеля. В 1933 году изобретатель, оказавшись в рядах противников Гитлера, проводит полгода в тюрьме. После освобождения разработками роторного двигателя заинтересовались в компании BMW и стали финансировать дальнейшие исследования, выделив для работы мастерскую в Ландау.
После войны она достается в качестве репарации французам, а сам изобретатель попадает в тюрьму, как пособник гитлеровского режима. Лишь в 1951 году, Феликс Генрих Ванкель устраивается на работу в компанию по производству мотоциклов «NSU» и продолжает исследования.
В том же году он начинает совместную работу с главным конструктором «NSU» Вальтером Фройде, который и сам давно занимается изысканиями в области создания роторно-поршневого двигателя для гоночных мотоциклов. В 1958 году первый образец двигателя занимает место на испытательном стенде.
Как работает роторный двигатель
Сконструированный Фройде и Ванкелем силовой агрегат, представляет собой ротор, выполненный в форме треугольника Рело. Ротор планетарно вращается вокруг шестерни, закрепленной в центре статора — неподвижной камеры сгорания. Сама камера выполнена в форме эпитрохоиды, которая отдаленно напоминает восьмерку с вытянутым наружу центром, она выполняет роль цилиндра.
Совершая движение внутри камеры сгорания, ротор образует полости переменного объема, в которых происходят такты двигателя: впуск, сжатие, воспламенение и выпуск. Камеры герметично отделены друг от друга уплотнителями – апексами, износ которых является слабым место роторно-поршневых двигателей.
Воспламенение топливо-воздушной смеси осуществляется сразу двумя свечами зажигания, поскольку камера сгорания имеет вытянутую форму и большой объем, что замедляет скорость горения рабочей смеси.
На роторном двигателе используется угол запоздания а не опережения, как на поршневом. Это необходимо чтобы воспламенение происходило чуть позже, и сила взрыва толкала ротор в нужном направлении.
Конструкция Ванкеля позволила значительно упростить двигатель, отказаться от множества деталей. Отпала необходимость в отдельном газораспределительном механизме, существенно уменьшились вес и размеры мотора.
Преимущества
Как говорилось ранее, роторный двигатель Ванкеля не требует такого большого количества деталей как поршневой, поэтому имеет меньшие размеры, вес и удельную мощность (количество «лошадей» на килограмм веса).
Нет кривошипно-шатунного механизма (в классическом варианте), что позволило снизить вес и вибронагруженность. Из-за отсутствия возвратно-поступательных движений поршней и малой массы подвижных частей, двигатель может развивать и выдерживать очень высокие обороты, практически мгновенно реагируя на нажатие педали газа.
Роторный ДВС выдает мощность в трех четвертях каждого оборота выходного вала, тогда как поршневой лишь на одной четверти.
Недостатки
Именно по причине того, что двигатель Ванкеля, при всех своих плюсах, имеет большое количество минусов, сегодня только Mazda продолжает развивать и совершенствовать его. Хотя патент на него купили сотни компаний, среди которых Toyota, Alfa Romeo, General Motors, Daimler-Benz, Nissan и другие.
Малый ресурс
Главный, и самый существенный недостаток – малый моторесурс двигателя. В среднем он равен 100 тысячам километров для России. В Европе, США и Японии этот показатель вдвое больше, благодаря качеству горючего и грамотному техническому обслуживанию.
Самую высокую нагрузку испытывают металлические пластины, апексы – радиальные торцевые уплотнители между камерами. Им приходится выдерживать высокую температуру, давление и радиальные нагрузки. На RX-7 высота апекса составляет 8.1 миллиметра, замена рекомендована при износе до 6.5, на RX-8 ее сократили до 5.3 заводских, а допустимый износ не более 4.5 миллиметров.
Важно контролировать компрессию, состояние масла и масляных форсунок, которые подают смазку в камеру двигателя. Основные признаки износа двигателя и приближающегося капитального ремонта – низкая компрессия, расход масла и затрудненный запуск «на горячую».
Низкая экологичность
Поскольку система смазки роторно-поршневого двигателя подразумевает прямой впрыск масла в камеру сгорания, а еще из-за неполного сгорания топлива, выхлопные газы имеют повышенную токсичность. Это затрудняло прохождение экологической проверки, нормам которой необходимо было соответствовать, чтобы продавать автомобили на американском рынке.
Для решения проблемы инженеры Mazda создали термальный реактор, который дожигал углеводороды перед выбросом в атмосферу. Впервые его установили на автомобиль Mazda R100.
Вместо того чтобы свернуть производство как другие, Mazda в 1972 году начала продажу автомобилей с системой снижения вредных выбросов для роторных двигателей REAPS (Rotary Engine Anti-Pollution System).
Высокий расход
Все авто с роторными двигателями отличает высокий расход горючего.
Кроме Mazda были еще Mercedes C-111, Corvette XP-882 Four Rotor (четырехсекционный, объем 4 литра), Citroen M35, но это в основном экспериментальные модели, да и из-за разгоревшегося в 80-х годах нефтяного кризиса их производство было приостановлено.Малая длина рабочего хода ротора и серповидная форма камеры сгорания, не позволяют рабочей смеси прогореть полностью. Выпускное отверстие открывается еще до момента полного сгорания, газы не успевают передать всю силу давления на ротор. Поэтому и температура выхлопных газов этих двигателей такая высокая.История отечественного РПД
В начале 80-х технологией заинтересовались и в СССР. Правда патент не был куплен, и до всего решили доходить своим умом, проще говоря – скопировать принцип работы и устройство роторного двигателя Mazda.
Для этих целей было создано конструкторское бюро, а в Тольятти цех для серийного производства. В 1976 году первый опытный образец односекционного двигателя ВАЗ-311, мощностью 70 л. с. установлен на 50 автомобилей. За очень короткий срок они выработали ресурс. Дала о себе знать плохая сбалансированность РЭМ (роторно-эксцентрикового механизма) и быстрый износ апексов.
Однако разработкой заинтересовались спецслужбы, для которых динамические характеристики мотора были куда важней ресурса. В 1982 году свет увидел двухсекционный роторный двигатель ВАЗ-411, с шириной ротора 70 см и мощностью 120 л. с., и ВАЗ-413 с ротором 80 см и 140 л. с. Позже моторами ВАЗ-414 оснащают машины КГБ, ГАИ и МВД.
Начиная с 1997 года на авто общего пользования ставят силовой агрегат ВАЗ-415, появляется Волга с трехсекционным РПД ВАЗ-425. Сегодня в России машины подобными моторами не комплектуются.
Список автомобилей с роторно-поршневым двигателем
Марка | Модель |
---|---|
NSU | Spider |
Ro80 | |
Mazda | Cosmo Sport (110S) |
Familia Rotary Coupe | |
Parkway Rotary 26 | |
Capella (RX-2) | |
Savanna (RX-3) | |
RX-4 | |
RX-7 | |
RX-8 | |
Eunos Cosmo | |
Rotary Pickup | |
Luce R-130 | |
Mercedes | C-111 |
Corvette | XP-882 Four Rotor |
Citroen | M35 |
GS Birotor (GZ) | |
ВАЗ | 21019 (Аркан) |
2105-09 | |
ГАЗ | 21 |
24 | |
3102 |
Список роторных двигателей Mazda
Тип | Описание |
---|---|
40A | Первый стендовый экземпляр, радиус ротора 90 мм |
L8A | Система смазки с сухим картером, радиус ротора 98 мм, объем 792 куб. см |
10A (0810) | Двухсекционный, 982 куб. см, мощность 110 л. с., смешение масла с топливом для смазки, вес 102 кг |
10A (0813) | 100 л. с., увеличение веса до 122 кг |
10A (0866) | 105 л. с., технология снижения выбросов REAPS |
13A | Для переднеприводной R-130, объем 1310 куб. см, 126 л. с., радиус ротора 120 мм |
12A | Объем 1146 куб. см, упрочнен материал ротора, увеличен ресурс статора, уплотнения из чугуна |
12A Turbo | Полупрямой впрыск, 160 л. с. |
12B | Единый распределитель зажигания |
13B | Самый массовый двигатель, объем 1308 куб. см, низкий уровень выбросов |
13B-RESI | 135 л. с., RESI (Rotary Engine Super Injection) и впрыск Bosch L-Jetronic |
13B-DEI | 146 л. с., переменный впуск, системы 6PI и DEI, впрыск с 4 инжекторами |
13B-RE | 235 л. с., большая HT-15 и малая HT-10 турбины |
13B-REW | 280 л. с., 2 последовательные турбины Hitachi HT-12 |
13B-MSP Renesis | Экологичный и экономичный, может работать на водороде |
13G/20B | Трехроторные двигатели для автогонок, объем 1962 куб. см, мощность 300 л. с. |
13J/R26B | Четырехроторные, для автогонок, объем 2622 куб. см, мощность 700 л. с. |
16X (Renesis 2) | 300 л. с., концепт-кар Taiki |
Правила эксплуатации роторного двигателя
Эксперты рекомендуют в обслуживании придерживаться следующих правил:
- замену масла производить каждые 3-5 тысяч километров пробега. Нормальным считается расход 1.5 литра на 1000 км.
- следить за состоянием масляных форсунок, средний срок их жизни составляет 50 тысяч.
- менять воздушный фильтр каждые 20 тысяч.
- использовать только специальные свечи, ресурс 30-40 тысяч километров.
- заливать в бак бензин не ниже АИ-95, а лучше АИ-98.
- замерять компрессию при замене масла. Для этого используется специальный прибор, компрессия должна быть в пределах 6.5-8 атмосфер.
При эксплуатации с компрессией ниже этих показателей, стандартного ремкомплекта может оказаться недостаточно – придется менять целую секцию, а возможно и весь движок.
День сегодняшний
На сегодняшний день производится серийный выпуск модели Mazda RX-8, оснащенной двигателем Renesis (сокращение Rotary Engine + Genesis).
Конструкторам удалось вдвое сократить потребление масла и на 40% расход топлива, а экологический класс довести до уровня Euro-4. Двигатель с рабочим объемом 1.3 литра выдает мощность в 250 л. с.
Несмотря на все достижения японцы не останавливаются на достигнутом. Вопреки утверждениям большинства специалистов о том, что РПД не имеет будущего, они не прекращают совершенствовать технологию, и не так давно представили концепт спортивного купе RX-Vision, с роторным двигателем SkyActive-R.
znanieavto.ru
Роторно — поршневой двигатель внутреннего сгорания
Главной особенностью любого роторно-поршневого двигателя можно считать применение специального ротора (поршня), имеющего три грани, который вращается внутри специального цилиндра по эпитрохоиде (впрочем, возможны и другие формы цилиндра). Постараемся подробно разобрать конструкцию РПД, его преимущества и недостатки перед другими типами двигателей.
Особенности конструкции роторно — поршневых двигателей Венкеля
Впервые, такой тип двигателя был разработан в 1957 году двумя инженерами: Вальтером Фройде и Феликсом Ванкелем. На валу устанавливается ротор, который имеет жесткое соединение со специальным зубчатым колесом. Это колесо входит в зацепление со статором, который имеет вид неподвижной шестерни. Диаметр ротора достаточно сильно превышает диаметр статора, что дает возможность зубчатому колесу полностью обкатываться вокруг статора. Каждая вершина граней ротора движется по эпитрохоидальной поверхности и отделяет три, постоянно меняющихся, объема.
Данная конструкция позволяет выполнить действия всех четырех тактов любого из существующих двигателей внутреннего сгорания, причем, без применения механизма, отвечающего за газораспределение. Камеры сгорания герметизируются с помощью специальных пружинных лент и пластин, которые придавливаются к поверхности цилиндра давлением, создаваемым газом. Так как в роторно-поршневом двигателе отсутствует ГРМ, это делает его конструкцию намного проще любого другого двигателя. Кроме того, отсутствие различных тяжелых элементов, таких как, шатуны и коленчатый вал, позволяют сделать его размеры намного меньше, в то время как, мощность увеличивается. Один оборот такого двигателя равняется одному циклу, что можно сравнить с полным оборотом двухцилиндрового поршневого двигателя.
Подача топлива в камеру сгорания, смазка подвижных частей двигателя, охлаждение и запуск осуществляются точно также, как и на обычном ДВС. Расход топлива может варьироваться от
Видео — Принци работы РДП
Преимущества и недостатки РДП
Преимущества
1. Прежде всего, такой двигатель обладает самым низким уровнем вибраций. Его конструкция абсолютно уравновешена и делает движение на легких транспортных средствах намного комфортнее.
2. Очень высокие динамические характеристики. Такой двигатель позволяет разогнать транспортное средство на первой передаче до 100 километров в час, при низкой нагрузке на механизмы. Двигатель достаточно долгое время выдерживает число оборотов, достигающее 8000 об/мин.
3. Движущиеся части механизма имеют очень низкую массу, а ротор двигателя выдает мощность в течение всех четвертей каждого оборота. Это позволяет добиться достаточно большой удельной мощности, в отличие от обычного поршневого двигателя. Для сравнения, роторно-поршневой двигатель с рабочим объемом 1.3 литра, выдает мощность, равную 220 лошадиным силам, в то время как, обычный поршневой двигатель с тем же объемом выдает мощность, не превышающую 100 лошадиных сил.
4. Вместо сотен различных деталей, в роторно-поршневых двигателях применяется всего 2-3 десятка. Кроме того, размеры и масса РПД намного меньше, чем у обычных двигателей с шатунами и коленчатым валом.
Недостатки
1. Соединение вала ротора с выходным валом, посредством эксцентрированного механизма, вызывает слишком большое давление между соединяемыми трущимися деталями. Это приводит к лишнему перегреву двигателя и повышенному износу деталей механизма. В связи с этим, появляется острая необходимость в периодической замене масла и уплотнительных элементов. Если выполнять данные требования в соответствии с регламентом, то ресурс двигателя значительно увеличивается, в противно случае, происходит поломка, которая непременно выведет агрегат из строя.
2. Камера сгорания имеет форму линзы, это означает, что при очень малом объеме она имеет очень большую площадь. Все это приводит к образованию лучистой энергии, которая бесполезно влияет на работу двигателя и также приводит к излишнему перегреву. Таким образом, КПД двигателя значительно снижается, что не позволяет использовать его в полной мере.
3. На пониженной передаче такой двигатель обладает очень большим расходом топлива, по сравнению с обычными ДВС.
4. Площадь соприкосновения уплотнителей и вращающихся деталей быстро снижается, это говорит о быстром износе сальников, которые способствует утечке смазывающего вещества и попаданию масла в камеру сгорания. В результате выхлоп получается очень токсичным, а ресурс двигателя быстро снижается. Тем не менее, данную проблему устранили применением высоколегированных сталей при изготовлении РПД.
5. В связи со строгими требованиями к геометрии всех деталей механизма, возникает необходимость в высокоточном оборудовании для изготовления таких двигателей. Это усложняет и делает дороже процесс их производства.
Где применяют роторно-поршневые двигатели?
Изначально, разработка роторно-поршневых двигателей велась для спортивных автомобилей. Ведь для гоночных автомобилей не столь важен большой ресурс, так как ремонт поршневых двигателей тоже требовался и после первого заезда.
В серийном производстве РПД устанавливался на автомобили немецкого производства. Это был седан представительского класса NSU Ro 80. Автомобиль для своего времени был достаточно современным, так как имел привлекательный дизайн и хорошие аэродинамические свойства. Однако, ввиду серьезных недостатков роторно-поршневых двигателей, связанных со слишком частым техническим обслуживанием, получил отрицательную оценку, в связи с чем, стал оснащаться обычными поршневыми двигателями. Это связано с тем, что двигатель приходил в негодность уже после 50 тысяч километров, что являлось малоэкономичным показателем.
В настоящее время роторно-поршневые двигатели изготавливают только два завода в мире – это ВАЗ (Россия) и Mazda (Япония).
vipwash.ru
Сегодня мы узнаем, что называется роторно-поршневым двигателем автомобиля, каков его принцип работы и в чем заключается отличие мотора от классической силовой установки ЧТО ТАКОЕ РОТОРНО-ПОРШНЕВОЙ ДВИГАТЕЛЬ ВАНКЕЛЯ. ПРИНЦИП РАБОТЫ, ОСОБЕННОСТИ, ПРЕИМУЩЕСТВА И НЕДОСТАТКИ
ЧТО ТАКОЕ ХОНИНГОВАНИЕ ЦИЛИНДРОВ ДВИГАТЕЛЯ
Роторно-поршневой двигатель обладает рядом конструктивных и функциональных особенностей. В такой силовой установке вместо стандартного поршня применяется трехгранный ротор, который с виду напоминает треугольник с закругленными концами. Данный своеобразный поршень имеет официальное название треугольник Рело, который вращается внутри цилиндра специального размера и формы выполненной по типу кривой плоскости, которая жестко связана с окружностью, катящейся по внешней стороне другой окружности. Справочно заметим, что двигатель Ванкеля, когда то считался мотором будущего, благодаря введению множества новаций при его разработке и производстве. {banner_adsensetext} 1. Особенности, конструкция, преимущества и недостатки роторно-поршневого двигателя Благодаря уникальной особенности главного поршня, который похож на трехгранный ротор у двигателя отсутствуют преобразования возвратно-поступательного движения во вращательное. Эти моменты способствуют тому, что силовая установка способна выдерживать намного более высокие обороты в сравнении с классическим типом двигателя. Самой главной особенностью мотора Ванкеля является то, что обладая небольшим объемом камеры сгорания, двигатель выдает высокие показатели мощности. Что касается габаритов конструкции, то она опять же в сравнении с традиционным мотором, она в несколько раз меньше и содержит малое количество компонентов. Благодаря небольшому размеру двигателя оптимизируется расположение трансмиссии и следовательно улучшается развесовка узлов, что позволяет получить чуткую управляемость, а также помогает сделать автомобиль более просторным, как для водителя, так для пассажиров. Как и любой другой двигатель, роторно-поршневой обладает своими плюсами и минусами, которые ему характерны. К преимуществам такой силовой установки относят: — Небольшие габариты и малый вес; — Небольшое количество компонентов и деталей, даже в сравнении с 2-ух тактным поршневым мотором; — Мощность в 2 раза больше при тех же размерах, чем у классического двигателя; — Плавное функционирование, благодаря отсутствию возвратно-поступательных движений; К недостаткам такой силовой установки относят: — Процедура по сгоранию топлива в камере цилиндра происходит не эффективно, что ведет к повышенному расходу топлива и высокой токсичности при выработке выхлопных газов; — Высокий расход моторного масла, в связи со специфической конструкцией компонентов рассчитанной на прогар смазки; — Нет возможности производить силовые установки на площадях, которые предназначены для выпуска классических двигателей;
Кроме того, не стоит забывать, что роторно-поршневые моторы очень склонны к перегреву, в связи с тем, что камера сгорания обладает линзовидной формой, то есть при небольшом объеме у нее довольно большая площадь. В процессе горения топливно-воздушной смеси, главные потери энергии происходят через излучение, интенсивность, которого пропорционально 1/4 степени от общего показателя температуры. Если данный нюанс рассматривать с точки зрения снижения удельной поверхности за счет потерь теплоты, то идеальной формой камеры сгорания должна быть сфера, то есть шар. Таким образом, образованная в процессе сгорания мощная энергия не только бесполезно выходит из камеры, то и ведет к тому, что происходит перегрев рабочей области цилиндра. Однако, если взглянуть на конструкцию и строение роторно-поршневого двигателя, то он просто удивляет своей простотой. В принципе из основных компонентов, в мотор входят корпус, как правило, изготавливается он из стали, далее идет вал, один единственный ротор и на этом все. Справочно заметим, что все же кроме перегрева этого двигателя существует еще одна проблема — это слабые уплотнения ротора. Но, как утверждают производители, уплотнители за несколько десятков лет доработок удалось довести до ума и их срок службы приблизился к ресурсу поршневых колец в моторе, который равен в среднем от 150 до 200 тысяч километров пробега. Кроме вышеописанных недостатков стоит еще учитывать тот факт, что если мы обладаем роторно-поршневым двигателем Ванкеля, то не каждая станция технического обслуживания готова будет нас принять для ремонта. Данная силовая установка требует особых навыков в ее обслуживании и уж тем более ремонте. Из конструктивных особенностей отметим, что тормозить мотором, как многие привыкли делать в автомобилях с традиционными двигателя, с ним не получится, ехать в гору, как говорится «в натяг» — то тут вообще никак. Дело в том, что «малыш» Ванкеля (имеется в виду мотор) слишком компактен и выдает слабую инерцию, в отличие от больших классических установок. Кроме того, роторно-поршневой мотор крайне не любит частые запуски и выключения, в итоге это приводит к быстрому уничтожению свечей зажигания. Однако звук работающего «малыша-крепыша» является его преимуществом, он очень непривычен и чем то похож на спортивный рык болида. Вроде, как серьезные недостатки мотора закончились, теперь можно перейти к менее существенным, например всем роторным двигателям присуща слабая эластичность технических характеристик, ну и конечно же просто бессовестный расход топлива с моторным маслом. Высокий расход топлива происходит из-за больших потерь тепла через стенки камеры сгорания цилиндра, показатели процесса которого далеки от оптимального. Что касается расхода масла, то это конструкторская особенность, без нее увы никак. Ну а срок службы «крепыша» будет ниже, чем у классического мотора, в связи с быстрым износом уплотнений ротора, о которых мы говорили ранее. В среднем ресурс роторно-поршневого двигателя равен 180-200 тысяч километров пробега. Что касается удобства пользования таким двигателем, то из-за того, что внешние параметры мотора довольно жесткие, в связи с этим придется делать частые манипуляции селектором коробки передач. По русски говоря, в процессе передвижения придется чаще дергать рычаг коробки, в связи с тем, что передаточные числа очень короткие, поэтому число передач увеличено. Оптимальным вариантом для этой установки была бы работа в паре с вариатором, но исходя из огромного расхода топлива мотором, почти все производители решили отказаться от автоматических трансмиссий по причине не целесообразности. По большому счету роторно-поршневые двигатели обладают теми же недостатками, что и двухтактные поршневые моторы. Ремонт и обслуживание таких силовых установок происходит идентично. Кроме того, вышеописанные минусы в виде масложора, повышенного расхода топлива происходят в связи с непосредственным впрыском горючего в камеру сгорания. Кроме того, недостаточная эластичность, которая присуща эти моторам в принципе вполне неплохо регулируется изменяемыми фазами и конфигурацией трубопроводов. {banner_yandexblokrtb1}
Главная деталь роторно-поршневого двигателя — это трехгранных ротор, напоминающий с виду треугольник со стесанными поверхностями на краях, который преобразует силу давления газов в камере сгорания во вращательное движение вала эксцентрикового типа. Само по себе движение ротора относительно статора происходит благодаря паре шестерен, расположенных на роторе (1-ая шестерня) и на боковой крышке статора (2-я шестерня).
Первая шестерня, которая закреплена на корпусе двигателя входит в зацепление с шестерней ротора. Взаимодействие 2-ух шестерен обеспечивает движение ротора относительно корпуса, которое называется орбитальным. В результате вращения ротора появляется 3 отдельных камеры сгорания различного объема. Что касается показателя передаточного отношения, то оно всегда равно 2 к 3. Таким образом, за 1 оборот эксцентрикового вала, ротор делает поворот на 120 градусов. Справочно заметим, что за целый оборот ротора в каждой из камер сгорания топлива происходит полный цикл, состоящий из 4-х тактов. В результате действия газовых сил в камерах через ротор на вал эксцентрикового типа передается крутящий момент силовой установки.
Если краткое описать все этапы, работы ротоно-поршневого двигателя, то можно увидеть, что за 1 оборот ротора в моторе всегда будут происходит 3 разных цикла. Эта особенность делает ненужным применять специальные уравновешивающие детали, которые требуются в 2-ух секционных конструкциях, которые довольно сильно на сегодняшний день распространены на планете. Справочно заметим, что данный двигатель к сожалению не получил массового распространения и на сегодняшний день используется только одной единственной японской компанией «Mazda» в своих новых моторах с технологией «SkyActiv» и «Renesis«.
БОЛЬШОЕ СПАСИБО ЗА ВНИМАНИЕ. ОСТАВЛЯЙТЕ СВОИ КОММЕНТАРИИ, ДЕЛИТЕСЬ С ДРУЗЬЯМИ. Вернуться назад |
bazliter.ru
Двигатель Ванкеля: устройство, принцип работы
Двигатель внутреннего сгорания – гениальное изобретение человечества. Благодаря ДВС стал существенно развиваться технический прогресс. Существует несколько видов данных установок. Но наиболее известные – шатунно-поршневые и роторно-поршневые. Последний был изобретен немецким инженером Ванкелем в сотрудничестве с Вальтером Фройде. Данный силовой агрегат имеет другое устройство и принцип работы, если сравнивать с классическим шатунно-поршневым ДВС. Каков принцип работы двигателя Ванкеля и почему данный ДВС не стал таким популярным? Все это мы рассмотрим в нашей сегодняшней статье.
Характеристика
Итак, что это за мотор? Это двигатель внутреннего сгорания, который был разработан Феликсом Ванкелем в 1957 году. Функцию поршня в данном агрегате выполнял трехвершинный ротор. Он совершал вращательные движения внутри полости особой формы.
После ряда экспериментальных моделей мотоциклов и автомобилей, которые пришлись на 70-е годы прошлого века, спрос на двигатель Ванкеля существенно снизился. Хотя на сегодняшний день ряд компаний все равно работает над совершенствованием данного ДВС. Так, можно встретить двигатель Ванкеля на «Мазде» серии РХ. Также данный агрегат нашел свое применение в моделизме.
Устройство двигателя Ванкеля
Данный силовой агрегат состоит из нескольких компонентов:
- Корпуса (статора).
- Камеры сгорания.
- Впускного и выпускного окна.
- Неподвижной шестерни.
- Зубчатого колеса.
- Ротора.
- Вала.
- Свечи зажигания.
Какой имеет двигатель Ванкеля принцип работы? Это мы рассмотрим ниже.
Принцип работы
Данный ДВС действует следующим образом. Ротор, насаженный на эксцентриковый вал через подшипники, приводится в действие от силы давления газов, что образовалась в результате сгорания топливновоздушной смеси. Ротор двигателя относительно статора посредством пары шестерен. Одна из них (большого размера) находится на внутренней поверхности ротора. Вторая (опорная) имеет меньшие размеры и намертво прикреплена к боковой крышке двигателя. Благодаря взаимодействию шестерен, ротор производит эксцентричные круговые движения. Таким образом, его грани соприкасаются с внутренней поверхностью камеры сгорания.
В результате между корпусом двигателя и ротором образуется несколько изолированных камер переменного объема. Их количество всегда составляет 3. В данных камерах происходит процесс сжатия смеси, ее горение, расширение газов (которые впоследствии оказывают давление на рабочую поверхность ротора) и их удаление. В результате воспламенения топлива, ротор приводится в действие, передавая усилия крутящего момента на эксцентриковый вал. Последний устанавливается на подшипниках и далее передает мощность на узлы трансмиссии. А уже затем момент сил двигателя Ванкеля идет на колеса по классической схеме – посредством карданной передачи и полуосей к ступицам. Таким образом, в роторном моторе работают одновременно несколько механических пар. Первая отвечает за движение ротора и состоит из нескольких шестерен. Вторая де преобразует движение ротора в обороты эксцентрикового вала.
Передаточное отношение статора (корпуса) и шестерен всегда стабильное и составляет 3:2. Таким образом, ротор успевает провернуться за полный оборот вала на 120 градусов. В свою очередь, за полный оборот ротора производится четырехтактный цикл работы двигателя внутреннего сгорания в каждой из трех камер, образуемых гранями.
Преимущества
Какие имеет плюсы данный ДВС? Роторно-поршневой двигатель Ванкеля имеет более простую конструкцию, нежели шатунно-поршневой. Так, число деталей в нем на 40 процентов меньше, чем в поршневом четырехтактном ДВС. Но все же создать двигатель Ванкеля своими руками не представляется возможным без сложного оборудования. Ведь ротор имеет очень сложную форму. Те, кто пытался сделать самодельный двигатель Ванкеля своими руками, терпели многочисленные неудачи.
Но продолжим о преимуществах. В конструкции роторного агрегата отсутствует коленчатый вал, газораспределительный механизм. Также здесь нет шатунов и поршней. Горючая смесь попадает в камеру через впускное окно, открывающееся гранью ротора. А отработанные газы в конце рабочего такта освобождаются корпус через выпускное окно. Опять же, роль клапана здесь выполняет грань самого ротора. Также в конструкции отсутствует распределительный вал (коих сейчас используется несколько на шатунных агрегатах). Роторно-поршневой двигатель Ванкеля по принципу работы газораспределительного механизма схож с двухтактным.
Отдельно стоит сказать о смазочной системе. По сути, она отсутствует в роторном двигателе Ванкеля. Но как же тогда работают пары трения? Все просто: масло добавляется в саму горючую смесь (как в примитивных мотоциклетных моторах). Таким образом, смазка трущихся деталей производится самой топливовоздушной смесью. В конструкции отсутствует привычный всем масляный насос, который забирает смазку из поддона и разбрызгивает под особым давлением.
Еще одно преимущество двигателя Ванкеля – это его легкий вес и размеры. Поскольку здесь отсутствует почти половина деталей, которые являются обязательными в поршневых моторах, роторный агрегат более компактный и способен разместиться в любом подкапотном пространстве. компактные размеры позволяют использовать пространство моторного отсека более рационально, а также обеспечить более равномерную нагрузку на переднюю и заднюю ось (ведь в авто с обычными моторами более 70 процентов нагрузки приходится именно на переднюю часть). А за счет малого веса достигается высокая стабильность работы. Так, двигатель имеет минимальный уровень вибрации, что положительно сказывается на комфортабельности машины.
Следующий плюс данного агрегата – высокая удельная мощность, которая достигается при больших оборотах вала. Данная особенность позволяет достичь хороших технических характеристик. Вот почему двигатель Ванкеля используется на спортивных автомобилях «Мазда». Мотор легко раскручивается до семи и более тысяч оборотов. При этом обеспечивает намного больший крутящий момент и мощность при малом объеме. Все это положительно сказывается на разгонной динамике автомобиля. Для примера можно взять автомобиль «Мазда РХ-8». При объеме в 1,3 литра, мотор выдает 210 лошадиных сил мощности.
Конструктивные недостатки
Рассматривая устройство и принцип работы роторного двигателя Ванкеля, стоит отметить главный конструктивный недостаток. Это малая эффективность уплотнений зазора между камерой сгорания и ротором. Последний имеет довольно сложную форму, из-за чего требует надежного уплотнения не только по граням (коих четыре в сумме), но и по боковой поверхности (которые соприкасаются с крышкой двигателя). При этом они выполнены в виде стальных подпружиненных полосок с особо точной обработкой как с торцов, так и с рабочих поверхностей. Все допуски на расширение при нагреве, заложенные в конструкцию, ухудшают данные характеристики. Из-за этого невозможно избежать прорыва газов в торцевых местах уплотнительных пластин. В поршневых же двигателях применен эффект лабиринта. Так, в конструкции применены три уплотнительных кольца с зазорами в разные стороны.
Но стоит отметить, что в последние годы качество уплотнений возросло. Конструкторы произвели усовершенствование двигателя Ванкеля, применяя новые материалы для уплотнений. Но все же прорыв газов считается самым слабым местом в роторном ДВС.
Расход масла
Как мы уже сказали ранее, системы смазки как таковой в данном двигателе нет. Ввиду того что масло поступает вместе с горючей смесью, расход его существенно увеличивается. И если на шатунных двигателях естественный уход смазки исключен либо составляет не более 100 грамм на 1 тысячу километров, то на роторных данный параметр составляет от 0,4 до 1 литра на тысячу километров. Это объясняется тем, что сложная система уплотнений требует более эффективной смазки поверхностей. Также ввиду высокого расхода масла, эти моторы не могут соответствовать современным экологическим стандартам. В выхлопных газах автомобилей с двигателем Ванкеля содержится много опасных для организма и окружающей среды веществ.
Кроме этого, роторный мотор мог работать только на высококачественных и дорогих маслах. Это связано с несколькими факторами:
- Склонность соприкасающихся деталей камеры двигателя и ротора к высокому износу.
- Склонность пар трения к перегреву.
Другие проблемы
Нерегулярная замена масла грозила уменьшением ресурса ДВС, так как частицы старой смазки действовали как абразив, увеличивая зазоры и вероятность прорыва выхлопных газов в камере. Данный агрегат также клинит при перегреве. А при движении в холодную погоду, охлаждение могло оказаться избыточным.
Сам по себе РПД имеет более высокую рабочую температуру, нежели любой поршневой мотор. Наиболее нагруженной считается камера сгорания. она имеет небольшой объем. А из-за протяженной формы, камера склонна к детонации. Кроме масла, двигатель Ванкеля требователен к качеству свечей. Их устанавливают попарно и меняют строго по техническому регламенту. Среди прочих моментов стоит отметить недостаточную эластичность роторного мотора. Так, данные ДВС могут выдавать отличные скоростные и мощностные характеристики только при высоких оборотах ротора – от 6 до 10 и более тысяч в минуту. Эта особенность вынуждает конструкторов дорабатывать конструкцию коробок передач, делая их многоступенчатыми.
Еще один недостаток – высокий расход топлива. К примеру, если взять 1,3-литровый роторно-поршневой двигатель «Мазды РХ-8», по паспортным данным, она потребляет от 14 до 18 литров топлива. Причем к использованию рекомендуется только высокооктановый бензин.
О применении РПД в автомобильной промышленности
Наибольшую популярность данный двигатель получил в конце 60-х и начале 70-х годов прошлого века. Патент на РПД Ванкеля был приобретен 11 ведущими автопроизводителями. Так, в 67-м году компания NSU разработала первый автомобиль бизнес-класса с роторным мотором, который назывался NSU RO 80. Данная модель производилась серийно 10 лет. Всего было выпущено более 37 тысяч экземпляров. Автомобиль пользовался популярностью, однако недостатки роторного мотора в конце концов подмочили репутацию этой машины. На фоне других моделей NSU, седан NSU RO 80 был самым ненадежным. Пробег до капитального ремонта составлял всего 50 тысяч при заявленных 100.
Также с роторными моторами экспериментировали концерны «Пежо-Ситроен», компания «Мазда» и завод ВАЗ (об этом случае мы поговорим отдельно ниже). Наибольшего успеха добились японцы, выпустив легковой автомобиль с роторным мотором в 63-м году. На данный момент японцы до сих пор оснащают РПД на свои спорткары серии RX. К сегодняшнему дню они избавлены от многих «детских болезней», что были присущи РПД того времени.
РПД Ванкеля и мотопромышленность
В 70-е и 80-е годы прошлого века с роторными двигателями экспериментировали некоторые мотопроизводители. Это «Геркулес» и «Сузуки». Сейчас же серийное производство роторных мотоциклов налажено только в компании «Нортон». Данная марка выпускает спортбайки NRV588, оснащенные двухроторными двигателями с общим объемом в 588 кубических сантиметров. Мощность байка «Нортон» составляет 170 лошадиных сил. при снаряженной массе в 130 килограмм, этот мотоцикл имеет превосходные динамические характеристики. Дополнительно данные РПД оснащены системой электронного впрыска топлива и впускным трактом переменной величины.
Интересные факты
Данные силовые агрегаты получили широкое распространение среди авиамоделистов. Так как в модельном ДВС нет требований к экономичности и надежности, выпуск таких моторов оказался недорогим. В подобных ДВС уплотнений ротора нет вовсе, либо они имеют самую примитивную конструкцию. Основной плюс такого авиамодельного агрегата в том, что его легко установить в летающую масштабную модель. ДВС легкий и компактный.
Еще один факт: Феликс Ванкель, получив патент на РПД в 1936 году, стал изобретателем не только роторных двигателей, но и компрессоров, а также насосов, действовавших по такой же схеме. Такие агрегаты можно встретить в ремонтных мастерских и на производстве. Кстати, портативные электрические насосы для подкачки шин авто устроены именно по такому принципу.
РПД и автомобили ВАЗ
Во времена СССР также занимались созданием роторно-поршневого двигателя и его установкой на отечественные автомобили ВАЗ. Так, первым РПД в СССР стал мотор ВАЗ-311 мощностью в 70 лошадиных сил. Он создавался на базе японского агрегата 13В. Но поскольку создание мотора велось по нереальным планам, агрегат оказался ненадежным после запуска в серийное производство. Первым автомобилем с данным двигателем стал ВАЗ-21018.
Но на этом история установки двигателя Ванкеля на ВАЗ не заканчивается. Вторым по счету стал силовой агрегат ВАЗ-415, который мелкими партиями использовался на «восьмерке» в 80-х годах. Данный силовой агрегат имел более лучшие технические характеристики. Мощность при объеме в 1308 кубических сантиметров увеличилась до 150 лошадиных сил. Благодаря этому советский ВАЗ-2108 с роторным двигателем ускорялся до сотни за 9 секунд. А максимальная скорость ограничивалась 190 километрами в час. Но данный двигатель не был лишен недостатков. В частности, это малый ресурс. Он едва доходил до 80 тысяч километров. Также среди минусов стоит отметить высокую себестоимость создания такого автомобиля. Расход масла составлял 700 грамм на каждую тысячу километров. Расход топлива – около 20 литров на сотню. Поэтому применялся роторный агрегат только на автомобилях спецслужб, мелкими партиями.
Заключение
Итак, мы выяснили, что собой представляет двигатель Ванкеля. Данный роторный агрегат сегодня применяется серийно лишь на автомобилях «Мазда», причем только на одной модели. Несмотря на многочисленные доработки и попытки японских инженеров усовершенствовать конструкцию РПД, он все равно имеет довольно малый ресурс и отличается высоким расходом масла. Также новые 1,3-литровые «Мазды» не отличаются топливной экономичностью. Все эти недостатки роторного мотора делают его непрактичными и малоиспользуемым в автомобильной промышленности.
fb.ru
Роторный двигатель. Устройство, принцип работы. Плюсы и минусы ротора.
Изобретение двигателя внутреннего сгорания дало толчок к производству автомобилей, передвигающихся на жидком виде топлива. Двигатели эти на протяжении всей истории автомобилестроения эволюционировали: появлялись различные конструкции моторов. Одной из прогрессивных, но так и не получивших распространение конструкций двигателей стал роторно-поршневой агрегат. Об особенностях этого типа двигателя, его достоинствах и недостатках мы поговорим в сегодняшнем материале.
История
Разработчиком роторно-поршневого двигателя стал дуэт инженеров компании NSU – Феликс Ванкель и Вальтер Фройде. И хотя основная роль в создании роторного двигателя принадлежит именно Фройде (второй участник проекта в это время работал над конструкцией иного двигателя), в автомобильной среде силовой агрегат известен как мотор Ванкеля.
Феликс Ванкель и роторный двигательЭта силовая установка была собрана и испытана в 1957 году. Первым автомобилем, на который установили роторно-поршневой двигатель, стал спорткар NSU Spider, который развивал скорость 150 км/час при мощности мотора 57 лошадиных сил. Производилась эта модель на протяжении трех лет (1964-1967 годы).
NSU SpiderПо настоящему массовым автомобилем с роторным двигателем стало второе детище компании NSU – седан Ro-80.
NSU Ro-80В названии автомобиля указывалось, что модель оснащается роторным агрегатом. Впоследствии роторные двигатели устанавливались на автомобили Citroen (GS Birotor), Mercedes-Benz (С111), Chevrolet (Corvette), ВАЗ (21018) и так далее. Но самый массовый выпуск моделей с роторным двигателем был налажен японской компанией Mazda. Начиная с 1964 года, компания произвела несколько автомобилей с подобным типом силовой установки, а пионером в этом деле стала модель Cosmo Sport. Самая известная модель с роторно-поршневым двигателем, которая выпускалась этим производителем – RX (Rotor-eXperiment). Производство последней модели из этого семейства, Mazda RX8 в специальной версии Spirit R, было свернуто в середине 2012 года. Впрочем, не все экземпляры роторной «восьмерки» еще распроданы – официальный дилер Mazda в Индонезии еще продает эти автомобили.
Mazda RX-8Устройство
Особенностью роторно-поршневого двигателя внутреннего сгорания стало присутствие в его конструкции трехгранного ротора – поршня. Он вращается в цилиндре, который имеет специальную форму. Ротор насажен на вал, и соединен с зубчатым колесом, которое, в свою очередь, имеет сцепление со статором – шестерней. Ротор вращается вокруг статора по так называемой эпитрохоидальной кривой, его лопасти попеременно перекрывают камеры цилиндра, в которых происходит сгорание топлива.
Роторный двигательВ конструкции роторного двигателя отсутствует газораспределительный механизм – его функцию выполняет сам ротор, который при помощи своих лопастей распределяет поступающую горючую смесь и выпускает отработанные в цилиндре газы. Подобная конструкция двигателя позволяет обойтись без множества узлов, крайне необходимых для простого поршневого двигателя (например, коленчатый вал, шатуны), что, во-первых, позволяет уменьшить размер и массу силового агрегата, а во-вторых – уменьшить стоимость его производства.
Достоинства и недостатки
Роторно-поршневой двигатель не зря привлек внимание многих именитых автомобильных компаний. Его конструкция и принцип действия позволяли получить несколько довольно весомых преимуществ перед обычными двигателями.
Во-первых, роторно-поршневой мотор в силу своей конструкции обладал лучшей среди остальных типов силовых установок сбалансированностью, и был подвержен минимальным вибрациям.
Во-вторых, у этой силовой установки отмечались отменные динамические характеристики: без существенной нагрузки на двигатель, авто с роторно-поршневым мотором легко можно разогнать до 100 км/час и более на низкой передаче при высоких оборотах двигателя.
роторный двигатель Мазда RX-8В-третьих, роторный двигатель компактнее и легче, чем стандартный поршневой силовой агрегат. Эта особенность позволяла конструкторам добиться практически идеальной развесовки по осям, что влияло на устойчивость автомобиля на дороге.
В-четвертых, в нем используется намного меньшее количество узлов и агрегатов, чем в обычном двигателе.
Наконец, в-пятых, роторный двигатель обладает высокой удельной мощностью.
Недостатки
К минусам роторно-поршневого двигателя, из-за которых он так и не смог получить массового применения и не используется сегодня в автомобилях всех брендов, относится, во-первых, большой расход топлива на низких оборотах. На некоторых моделях он достигает 20 литров на 100 км пробега, что, согласитесь, совсем не экономично и бьет по карману владельца авто с роторным двигателем.
Во-вторых, недостатком этого типа двигателей является сложность изготовления его деталей: чтобы ротор правильно прошел эпитрохоидальную кривую, необходима высокая геометрическая точность при создании как самого ротора, так и цилиндра. Для этого производители роторных двигателей используют высокоточное и дорогостоящее оборудование, а стоимость производства закладывают в цену автомобиля.
В-третьих, роторный двигатель склонен к перегреву из-за особенности конструкции камеры сгорания: она имеет линзовидную форму, а не сферическую, как у обычных поршневых моторов. Топливная смесь, сгорая в такой камере, превращается в тепловую энергию, которая расходуется в большей части неэффективно – ее избыток нагревает цилиндр, что в конечном итоге приводит к износу и выходу его из строя.
В-четвертых, высокий износ уплотнителей между форсунками ротора из-за перепадов давления в камерах сгорания двигателя. Именно поэтому ресурс таких двигателей составляет 100-150 тысяч км, после чего, как правило, требуется капитальный ремонт силового агрегата.
В-пятых, роторно-поршневой двигатель нуждается в своевременной и четко соблюдаемой процедуре смены моторного масла: мотор потребляет примерно 600 мл моторного масла на 1000 км, так что менять его приходится раз в 5000 км пробега. Если его вовремя не заменить, это чревато выходом из строя узлов и агрегатов мотора, что повлечет за собой дорогостоящий ремонт. То есть, к эксплуатации и обслуживанию роторно-поршневых двигателей следует подходить более ответственно, чем к обслуживанию обычных моторов, вовремя проводя их техническое обслуживание и капитальный ремонт.
avtoexperts.ru
Двигатель Ванкеля | Роторные двигатели
Единственной на сегодняшний день выпускаемой в промышленных масштабах моделью роторного мотора является двигатель Ванкеля, который относится к типу роторных двигателей с планетарным круговым движением главного рабочего элемента. Такая конструктивная компоновка роторного двигателя является, несомненно, самойпростой по своему техническому устройству, но не самой оптимальной по способу организации рабочих процессов и поэтому имеет свои неотъемлемые и серьезные недостатки.
Роторных двигателей с планетарным движением главного рабочего элемента существует достаточно много разновидностей, но по существу они отличаются друг от друга лишь количеством граней ротора и соотвествующей формой внутренней поверхности корпуса . Приведенные схемы разных компоновок подобных моторов взяты из книги «Судовые роторные двигатели», издания 1967 года, авторов Е.Акатов, В.Бологов и др. и подготовлены к публикаци в электронном виде автором этого сайта.
Роторный двигатель
Кратко рассмотрим саму конструкцию двигателя этого типа вместе с историей его появления и сферой применения. История создания роторных двигателей с планетарным вращательным движением главного рабочего элемента начинается в 1943 году, когда изобретатель Майлар предложил первую подобную схему. Потом в течение короткого времени было подано еще несколько патентов на двигатели подобной схемы. В том числе и разработчик германской фирмы NSU – В. Фреде. Но главным слабым местом этой схемы роторного двигателя были системы уплотнений между ребрами на стыке соседних граней вращающегося треугольного ротора и стенками неподвижного корпуса. Вот к решению к этой сложной инженерной задачи и был подключен Р.Ванкель как специалист по уплотнениям. Вскоре, благодаря своей энергичности и инженерному мышлению он стал лидером группы разработчиков. В 1957 году в лаборатории фирмы NSU построили прототип роторного двигателя типа «DKM», с треугольным ротором и рабочей камерой в форме капсулы, в которой ротор был неподвижным, а корпус вращался вокруг него. Гораздо более практичным был вариант компоновки типа «KKM» с нормальной схемой — рабочая камера в корпусе была неподвижной, а в ней вращался ротор. Этот мотор появился годом позже, в 1958-м. В ноябре 1959 года NSU официально объявила о создании работающего роторного двигателя. За короткое время около 100 компаний во всём мире приобрели лицензии на эту технологию, при этом 34 из них были японскими.Мотор оказался очень небольшим, мощным и имел мало деталей. В Европе начались продажи машин с роторными двигателями, но как оказалось у них мал моторесурс, они потребляли много топлива и имели очень токсичный выхлоп. Нефтяной кризис 1973 года из-за очередной арабо-израильской войны, когда цены на бензин увеличились в несколько раз, резко поставил вопрос об экономичности автомобильных моторов. Из-за этого в Европе и Америке попытки довести роторный двигатель Ванкеля до нужной степени совершенства были прекращены. И только японская компания Mazda упорно продолжала работы в этом направлении. А еще советский завод ВАЗ – так как бензин в то время в СССР стоил копейки, а мощный, хотя и с малым ресурсом, мотор был нужен силовым ведомствам. Но в 2004 году малосерийное производство на ВАЗе было закрыто и на сегодняшний момент Mazda является единственным автопроизводителем, который серийно выпускает автомобили с роторным двигателем. В настоящее время в мире серийно выпускается лишь один автомобиль с роторным двигателем системы Ванкеля – это спортивное купе Mazda RX-8. На этой машине устанавливается мотор «RENESIS» с двумя роторными секциями общим объемом 1,3 литра. Двигатель исполняется в нескольких вариантах с мощностью от 200 до 250 л.с.
.
После краткого обзора истории роторного двигателя с планетарным движением ротора остановимся на рассмотрении его преимуществ и недостатков. ПРЕИМУЩЕСТВА роторного двигателя Ванкеля по сравнению с традиционными поршневыми моторами: 1) Повышенная удельная мощность (л.с./кг), она практически в два раза превышает этот показатель поршневых 4-х тактных двигателей. Масса неравномерно движущихся частей в двигателе Ванкеля гораздо меньше, чем в аналогичных по мощности поршневых двигателях, и амплитуда таких неуравновешенных движений заметно меньше. Это происходит из-за того, что в «поршневике» осуществляются возвратно- поступательные движения, а в двигателе Ванкеля- вращательные, планетарной схемы. К тому же в двигателе Ванкеля отсутствуют коленчатый вал и шатуны.
На повышенную мощность Ванкеля играет и то, что такой двигатель однороторной конструкции выдаёт мощность в течение трёх четвертей каждого оборота выходного вала. В отличие от одноцилиндрового 4-х тактного поршневого двигателя, который выдаёт мощность только в течение одной четверти каждого оборота выходного вала. Именно по этим причинам с единицы объема камеры сгорания в серийном роторном моторе Ванкеля снимается гораздо большая мощность. При объёме рабочей камеры 1300 см Mazda RX-8 имеет мощность 200 л.с – 250 л.с., а прежняя модель Mazda RX-7, с мотором такого же объема, но с турбокомпрессором выдавала 350 л.с.
Именно поэтому особым признаком Mazda RX являются отличные динамические характеристики:
- на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более).
- двигатель Ванкеля гораздо легче механически уравновесить и избавиться от вибрации, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей;
- габаритные размеры роторно-поршневого двигателя меньше в 1,5—2 раза в соотношении со сравнимым по мощности поршневым мотором.
В двигателе Ванкеля на 35 — 40 % меньшее количество деталей.
Недостатки:
1) Малая длина рабочего хода грани треугольного ротора, Хотя эти показатели напрямую с поршневым мотором сравнивать сложно – слишком различны типы движений поршня и ротора, но у двигателя Ванкеля примерно на пятую часть меньше длина рабочего хода. Тут есть одно коренное отличие Ванкеля от поршневого мотора- у «поршневика» идет увеличение объема в направлении одного линейного направления, которое совпадает с направлением рабочего хода. А у Ванкеля – это движение сложное и только часть траектории перемещения треугольного ротора с планетарным движением становится собственно линией рабочего хода. (РИС.) Именно поэтому у двигателя Ванкеля топливная эффективность хуже, чем у поршневых моторов. Поэтому из-за малой длины рабочего хода очень высока температура выхлопных газов – рабочие газы не успевают передать основное свое давление на ротор, как уже открывается выхлопное окно и горячие газы высокого давления с еще не прекратившими горение объемными фрагментами рабочей смеси выходят в выхлопную трубу. Поэтому температура выхлопных газов у двигателя Ванкеля очень высока.
2) Сложная форма камеры сгорания «серповидной» формы. У такой камеры сгорания большая поверхность контакта газов со стенками корпуса и ротором. Поэтому значительная честь тепла уходит на нагрев деталей мотора, а это снижает тепловой КПД и усиливает нагрев мотора. Кроме того, такая форма камеры сгорания приводит к ухудшению смесеобразования и замедлению скорости горения рабочей смеси. Поэтому на моторе Mazda RX-8 стоят 2 свечи зажигания на одной роторной секции. Эти особенности так же отрицательно влияют на уровень термодинамического КПД.
3) Потенциально невысокий для роторного мотора крутящий момент. Для того чтобы снять вращение с движущегося ротора, центр вращения которого сам непрерывно осуществляет планетарное вращение по круговой траектории вокруг геометрического центра рабочей камеры, в этом двигателе применяется эксцентрично расположенные на главном валу диски. По сути дела – это элементы кривошипного устройства. То есть двигатель Ванкеля так и не смог полностью избавиться от главного недостатка классических поршневых ДВС – кривошипно – шатунного механизма. Хоть он и представлен в моторе Ванкеля в своем облегченном варианте – в виде эксцентрикового вала, но самые главные пороки этого механизма: рваный, пульсирующий режим крутящего момента и малое плечо главного элемента, воспринимающего крутящий момент – так и остались «не излеченными». (РИС.) Именно поэтому односекционный Ванкель малоработоспособен и нужно делать 2 или 3 роторные секции для получений нормальных рабочих характеристик, еще желательно ставить на вал дополнительно и маховик. Кроме наличия в двигателе Ванкеля кривошипного механизма, на малый для роторного двигателя крутящий момент еще влияет и то, что кинематическая схема такого мотора устроена очень нерационально с точки зрения восприятия поверхностью ротора давления рабочих газов расширения. Поэтому лишь некоторая часть давления – около трети – переводится в рабочее вращение ротора и создает крутящий момент. Подробнее крутящем моменте поговорим в специальном разделе сайта.
Подробно о принципе возникновения крутящего момента в роторном двигателе Ванкеля Смотри на страничке сайта КРУТЯЩИЙ МОМЕНТ
4) Присутствие в корпусе вибраций. Дело в том, что система роторного мотора с планетарным движением рабочего элемента предполагает неравновесное движение этого органа. Т.е. при вращении центр масс ротора совершает непрерывное вращательное движение вокруг центра масс корпуса и радиус этого вращения равен плечу эксцентрика главного вала мотора. Именно поэтому на корпус мотора действует изнутри постоянно вращающийся вектор силы, равный центробежной силе, возникающей на роторе. То есть ротор при вращении на вращающемся в свою очередь эксцентриковом валу имеет в характере своего движения неизбежные и выраженные элементы колебательного движения. Что и приводит к неизбежности вибраций. (РИС.)
5) Быстрый износ торцевых радиальных уплотнений на углах треугольника ротора, так как на них идет сильная радиальная нагрузка, неизбежная в двигателе Ванкеля по самому его принципу работы. (РИС.)
6) Постоянная угроза прорыва газов высокого давления из полости одного рабочего такта в полость другого такта. Это происходит потому, что контакт радиального уплотнения ребра ротора и стенки камеры сгорания происходит по одной тонкой линии. При этом еще существует проблема прорыва газов через гнезда установки свечей, когда над ними проходит ребро ротора.
7) Сложная система смазки вращающегося ротора. В моторе Mazda RX-8 специальные форсунки впрыскивают масло в камеры сгорания для смазки трущихся при вращении о стенки камеры сгорания ребер ротора. Это усиливает токсичность выхлопа и одновременно делает мотор очень требовательным к качеству масла. Кроме того, при высоких оборотах возникает повышенные требования к смазке цилиндрической поверхности эксцентриковой части главного вала, вокруг которой вращается ротор, и которая снимает главное усилие с ротора и переводит во вращение вала. Именно эти две технические трудности, решить которые весьма непросто, приводили к недостаточной смазке на высоких оборотах наиболее нагруженных трением деталей такого мотора, а это, соответственно, резко уменьшало моторесурс двигателя. Именно недостаточное решение таких технических задач приводило к очень малому ресурсу моторов Ванкеля, которые выпускал отечественный АвтоВАЗ. (РИС.- указать цилиндрическую поверхность контакта внутреннего гнеда ротора и эксцентр диска вала)
8) Высокие требования к точности исполнения деталей сложной формы делают такой мотор сложным в производстве. Такое производство требует высокоточного и дорогого оборудования — станков, способных создавать сложные объемы рабочей камеры с криволинейной эпитрохоидальной поверхностью. Сам ротор так же имеет форму сложного треугольника с выпуклыми поверхностями.
***
Как видно из содержания этого раздела сайта, роторный двигатель Ванкеля имеет выраженные преимущества, так и большое количество практически непреодолимых недостатков, которые так и не позволили этому типу двигателей вытеснить поршневые моторы из арсенала современной техники. Хотя такие перспективы всерьез обсуждались в конце 60-х и начале 70-х годов прошлого века, и в аналитических обзорах высказывались мнения, что к концу 80-х годов 20-го века более половины автомобилей планеты будут уже иметь роторные двигатели разных типов…. И, несмотря на наличие отрицательных черт и технических трудностей, роторный двигатель Ванкеля смог появиться технически и состоятся как коммерчески дееспособный вид продукции, потому что недостатки его главных конкурентов – поршневых моторов с кривошипно – шатунными механизмами оказываются еще серьезнее и многочисленнее.И это, не смотря на более века попыток их совершенствования.
***
ПРОДОЛЖЕНИЕ РАЗГОВОРА О РОТОРНОМ ДВИГАТЕЛЕ ВАНКЕЛЯ
сентябрь 2016г. Одна из самых трудных проблем всех типов роторных двигателей- это создание эффективной системы уплотнений, которая должна создавать замкнутый объём в рабочих камерах роторного двигателя. Пока в схеме типа Тверской это является одной из главных трудностей. Там предстоит сделать эффективную и непростую в изготовлении систему уплотнений.И чтобы потренировать руку и получить положительный опыт в таком деле, я решил создать небольшой рабочий экземпляр двигателя Ванкеля прямо с «ноля». Работа уже идет к концу- прилагаю фото такого моторчика.
Уплотнения
Ориентировочная мощность одной такой роторной секции предполагается около 35-40 л.с.. Мотор из 2-х роторных секций ожидается мощностью в 70-80 л.с..
***
ДВИГАТЕЛЬ ВАНКЕЛЯ — ДЕКАБРЬ
25 декабря 2016г Изготовлене малого Ванкеля идет в оптимальном ритме. Двигатель готов на 95%, остаются небольшие мелочи.
Так как на некоторых площадких в интернете эти мои фото уже обсуждаются и вокруг них накручиваются немало фантазий- сообщаю.
Двигатель создан с «НОЛЯ», ни одной детали из посторонних моделей в нем нет. В нем нет ни деталей от Sachs Wankel, которые уже не выпускаются лет 30, ни от современных малых современных aixro и пр. и др.
Кормпус двигателя выполнен из конструкционной легированной термостойкой стали, подвергнутой термохимическому упрочнению.Твердость поверхностного слоя имеет показатель в 70 HRC. Глубина термоупроченного слоя состовляет в среднем 1,5 мм.Точно так же обработаны и до таких же показателей твердости и износоустойчивости доведены радиальные и торцевые уплотнения.Двигатель имеет воздушное охлаждение, масло для смазки будет подаваться в камеру сжатия через 2-е специальные форсунки. Т.е. не нужно будет мешать масло с бензином как в 2-х тактных моторах.
Двиигатель Ванкеля
Двигатель Ванкеля на холодной обкатке.
Двигатель поставлен на токарный станок и в течение нескольких часов подвергался холодной обкатке. Это позволило оценить работу уплотнений и герметичность получаемых секций в двигателе как вполне благополучную. В ближайшее время будет замеряно давление, которое получается в секторе сжатия мотора.
Запуск двигателя планируется на конец января.
ВОЗОБНОВЛЕНИЕ РАБОТЫ ПОСЛЕ ПАУЗЫ
После некоторого перерыва активные работы возобновлены. Сейчас (март-май 18г) идут активные пробные прокрутки малой опытной модели двигателя. По ее итогам идет доработка уплотнений — самого трудного и деликатного элемента в роторных двигателях. Результаты весьма обнадеживающие.
www.rotor-motor.ru
Роторно-лопастной двигатель внутреннего сгорания
Валерий Васильев, фото автора
За историю автомобилестроения лучшие умы человечества придумали немало самых разнообразных конструкций двигателей. Но только некоторым из них удалось стать серийными образцами. Остальные, несмотря на оригинальность заложенных идей, так и не вышли из стадии эксперимента. Возможно, судьба роторно-лопастного мотора, созданного в Псковском государственном политехническом университете, окажется более удачливой.
Расклад сил
Развитие и область применения двигателей внутреннего сгорания (ДВС) приобрели сегодня всеобъемлющий характер. Многочисленные научные исследования и разработки превратили ДВС в сложнейшую, но надежную и универсальную систему. В то же время опыт длительной эксплуатации в составе транспортных средств выявил недостатки, которые практически невозможно исключить путем модернизации конструкции двигателя, не затронув базовых принципов его организации, таких как механические потери на трение и процесс внутреннего сгорания топлива.
Главным недостатком ДВС, который в результате массового распространения автомобильного транспорта занял лидирующее положение, стал фактор загрязнения окружающей среды выхлопными газами. Доля вредных веществ, поступающих в атмосферу с отработавшими газами автомобильных двигателей, составляет до 63% от общего загрязнения окружающей среды. В связи с этим в последние десятилетия в мире ужесточаются требования к экологическим нормам для транспортных средств, и в первую очередь это касается двигателей внутреннего сгорания. Последние, потребляя пятую часть первичных энергоносителей, являются основным источником загрязнения окружающей среды. Однако планируемые меры, даже в случае их полной реализации, способны лишь снизить темпы увеличения загрязняющего действия ДВС транспортных средств на фоне быстрого роста их количества и мощности.
Тип двигателя | Токсичность, мг/(л.с..с) | ||
---|---|---|---|
NOx | CO | CxHy | |
Карбюраторный двигатель | 0,6–2,0 | 40–100 | 15–120 |
Дизель | 0,4–2,0 | 0,2–5,0 | 0,6–12 |
Газовая турбина | 0,7–2,0 | 2,0–3,6 | 0,012–0,07 |
Двигатель внешнего сгорания | 0,1–0,2 | 0,05–0,2 | 0,0015–0,009 |
Нормы Euro 5 | 0,414 | 0,311 | 0,095 |
Таким образом, назрела необходимость производства принципиально иного двигателя, способного кардинально изменить ситуацию, работающего на различных видах топлива и не имеющего вредных выбросов в атмосферу.
По критерию экологичности использования любого вида топлива наилучшие характеристики у двигателя с внешним подводом тепла (ДВПТ), реализующего цикл Стирлинга. Внешний подвод тепла позволяет применять различные тепловые источники без каких-либо существенных изменений конструкции двигателя. В подобных двигателях могут быть использованы практически все виды ископаемого топлива – от твердых до газообразных. Для оценки уровня токсичности двигателя с внешним подводом тепла его удельные выделения токсичных веществ можно сравнить с таковыми у дизеля, газовой турбины и карбюраторного двигателя. По таким показателям вредных веществ, как CO, NOx и CxNy, мотор с внешним подводом тепла выглядит не только значительно лучше перечисленных конкурентов, но и соответствует перспективным экологическим нормам, еще не введенным в действие.
Итак, преимущества двигателей с внешним подводом тепла выражаются в термическом КПД, достигающем 60%, использовании практически всех видов топлива, включая солнечную энергию, возможности регулирования мощности путем изменения давления рабочего тела и температуры, легком пуске при низкой температуре, герметичности, высоком моторесурсе.
Исходя из этого можно сказать, что в сфере создания двигателей возникло техническое противоречие: с одной стороны, имеются компактные и дешевые двигатели внутреннего сгорания, а с другой – массивные и дорогие в изготовлении моторы с внешним подводом теплоты.
Давайте рассмотрим недостатки поршневого двигателя Стирлинга. Во-первых, это сложность конструктивного исполнения отдельных узлов, проблемы в области уплотнений, регулирования мощности и т. д. Особенности технического решения обусловливаются применяемыми рабочими телами. Так, например, гелий обладает сверхтекучестью, что определяет повышенные требования к уплотняющим элементам рабочих поршней, штока вытеснителя и т. д. Во-вторых, формирование облика перспективных, предполагаемых к производству машин Стирлинга невозможно без разработки новых технических решений основных узлов. В-третьих, высокий уровень технологии производства.
Кроме того, данная проблема связана с необходимостью применения в машинах Стирлинга жаростойких сплавов и цветных металлов, их сварки и пайки. Отдельный вопрос – изготовление регенератора и насадки для него для обеспечения, с одной стороны, высокой теплоемкости, а с другой – низкого гидравлического сопротивления. Все это требует высокой квалификации рабочего персонала и современного технологического оборудования. Зарубежный опыт создания современных высокоэффективных машин Стирлинга показывает, что без точного математического моделирования рабочих процессов и оптимального проектирования основных узлов доводка таких машин превращается в многолетние изнурительные экспериментальные исследования.
Свой путь
Взвесив все «за» и «против», в Псковском государственном политехническом университете (ППИ) подумали, почему бы не создать новый тип двигателя, соединяющего в себе преимущества роторно-лопастной расширительной машины и принципа внешнего подвода теплоты.
Кстати, работы по созданию роторно-лопастного двигателя ведутся в ППИ уже более 30 лет. За это время создан коллектив из высококвалифицированных научных сотрудников, накоплены значительный опыт и научно-технический материал. Результатом исследований стало создание натурного образца роторно-лопастной расширительной машины на основе рычажно-кулачкового преобразователя движения.
В практическое русло работы вошли в 1998 году, когда в рамках федеральной целевой программы ППИ заключил договор с Миннауки на опытно-конструкторские работы на тему: «Разработка технологии и изготовление опытного образца роторно-лопастного двигателя внутреннего сгорания». Итогом работы стало создание технологии изготовления и макета РЛД внутреннего сгорания.
Исследование данных макетов позволило доказать принцип работы роторно-лопастной машины, отработать конструкцию рычажно-кулачкового механизма, утвердиться в надежности и долговечности работы РЛД и подтвердить достоинства роторно-лопастных машин.
Принцип работы роторно-лопастного двигателя известен уже давно. Этот механизм содержит два ротора с лопастями и цилиндр с впускными и выпускными окнами. В двигателе предусмотрен механизм связи, позволяющий роторам совершать движение друг относительно друга и вращательно-колебательное движение относительно цилиндра, а также устройство, позволяющее суммировать движение роторов и передать равномерное вращение выходному валу.
При этом выяснилось, что коэффициент компактности основного объема роторно-лопастного двигателя (отношение эквивалентного рабочего объема к объему двигателя) достигает 15–20%, в то время как максимальное значение этого показателя для поршневых (V-образных с кривошипно-шатунным механизмом) составляет 1–2%. Столь большое (в несколько раз) преимущество по удельно-массовым показателям открывает перспективы практического применения двигателей данной схемы.
Предложенная конструктивная схема роторно-лопастного двигателя имеет ряд преимуществ по сравнению с шатунно-поршневым двигателем. На основании проведенных ранее исследований, выявления проблем в области создания двигателей с внешним подводом теплоты, требованиям к современным моторам возникла идея объединить роторно-лопастную конструкцию двигателя с принципом внешнего подвода теплоты. Данный синтез явился следствием тщательного анализа современных конструктивных вариантов двигателей с выявлением достоинств и недостатков каждого.
В настоящее время существует три основные проблемы в области создания роторно-лопастных машин. В основе конструкции предложенной расширительной машины и двигателя внутреннего сгорания лежит четырехзвенный механизм преобразования движения, особенность конструкции которого заключается в следущем: механизм состоит из четырехзвенника и кулачка. Четырехзвенник состоит из шарнирно связанных плеч одинаковой длины. К серединам плеч шарнирно прикреплены рычаги лопастей. Механизм обеспечивает основные функциональные требования к преобразователю движения. Закон изменения угла между лопастями синусоидальный. Графики скоростей и ускорений лишены резких скачков, поэтому достигается плавность и безударность работы механизма. В конструкции нет недостатков, связанных с использованием зубчатых колес. В свою очередь простота изготовления определяется отсутствием сложных прецизионных деталей, сферических шарниров и т. п., применением однотипных элементов. К тому же механизм реверсивен, обратим, уравновешен, что расширяет функциональные возможности двигателя, спроектированного на его основе.
Число рабочих тактов при одном обороте выходного вала равно четырем, в то время как для шатунно-поршневого ДВС оно равно двум. Равенство продолжительности рабочих тактов на одном обороте выходного вала обеспечивается симметричной конструкцией механизма преобразования. Степень сжатия рабочего тела зависит от диапазона изменения угла между лопастями. Для данного механизма она ограничивается лишь конструктивными и прочностными параметрами реального механизма.
Отличия и преимущества
В 2007 г. ППИ выиграл конкурс в рамках федеральной целевой программы и заключил государственный контракт с Федеральным агентством по науке и инновациям на проведение научно-исследовательских работ на тему «Разработка математической модели протекания термодинамического цикла с внешним подводом теплоты, позволяющей создать экологически чистый двигатель роторно-лопастного типа».
В итоге появилась методика расчета и проектирования РЛД с внешним подводом теплоты (РЛДВПТ), в частности, созданы математические модели отдельных узлов двигателя, а также математическая модель, подтверждающая возможность реализации термодинамического цикла с внешним подводом теплоты в РЛД. Для проведения экспериментальных исследований были созданы и исследованы макет механизма преобразователя движения и макет камеры сгорания. Полученные результаты явились доказательной базой правильности теоретических расчетов.
Показатели | РЛД | ШПД |
---|---|---|
Удельная масса, кг/кВт | 0,4–0,8 | 2,5–4,5 |
Удельная мощность, кВт/л | 200 | 50–80 |
Минимальная скорость вращения, мин-1 | 60 | 600–800 |
Потери на механическое трение, % | 10 | 35 |
Средняя скорость лопастной (поршневой) группы, м/с | 30–50 | 15–25 |
Амплитуда вибраций (в подвешенном состоянии), мкм | 100 | 3000 |
Как следствие исследования механических и термодинамических процессов двигателя подтвердили возможность и перспективность создания нового типа двигателя – РЛДВПТ (роторно-лопастной двигатель с внешним подводом тепла).
Для практического осуществления цикла с внешним подводом теплоты в двигателе, имеющем замкнутое рабочее пространство, необходимы циклическое изменение объема рабочего пространства, подвод теплоты к рабочему телу, отвод теплоты от него и регенерация некоторой части тепла. Реализовать условия осуществления термодинамического цикла с внешним подводом теплоты на базе двигателя роторно-лопастного типа возможно несколькими способами, для осуществления которых используются соответствующие конструктивные решения.
Показатели | 4S1210 «Дженерал Моторс» (экспери-ментальные данные) | 4L23 «Дженерал Моторс» (расчетные данные) | Рядный «Филипс» (расчетные данные) | РЛДВПТ (расчетные данные) |
---|---|---|---|---|
Мощность, кВт | 280 | 95 | 147 | 300 |
Частота вращения, мин-1 | 1500 | 2100 | 3000 | 1500 |
КПД, % | 35 | – | – | 22,6 |
Температура нагревателя, °С | 650 | 760 | 700 | 427 |
Температура охладителя, °С | 32 | 57 | 40 | 77 |
Рабочее тело | H2 | H2 | He | СО2 |
Среднее давление, МПа | 10,35 | 10,3 | 21,6 | 3,1 |
Количество цилиндров | 4 | 4 | 4 | 2 |
Объем цилиндра, cм3 | 2270 | 1510 | 400 | 1000 |
Удельная мощность, Вт/ cм3 | 58 | 15,7 | 136 | 150 |
Масса, кг | 2270 | 725 | 400 | 500 |
Габаритные размеры, мм | 1880x1016x x1930 | 1360x600x x1000 | 1130x440x x963 | 1200x600x x900 |
Объемная мощность, кВТ/м3 | 76 | 116,4 | 308 | 464 |
Удельная масса, кг/кВТ | 8 | 7,6 | 2,72 | 1,66 |
Конструктивно двигатель состоит из двух модулей, каждый из которых включает лопастную группу и механизм преобразования движения. Модули жестко соединены между собой и повернуты друг относительно друга на 45°. В конструкции для нагревания и охлаждения рабочего тела предусмотрены нагреватель и охладитель.
- рабочее тело в отличие от поршневого Стирлинга может иметь большую молярную массу по сравнению с гелием и водородом, что приводит к уменьшению среднего давления рабочего тела и применению общедоступных уплотнений;
- температура рабочего тела в нагревателе благодаря круговой циркуляции ниже, чем у обычных Стирлингов, что дает возможность применять недорогие по стоимости стали и сплавы;
- применение конструктивной схемы роторно-лопастной машины позволяет снизить удельную массу двигателя.
Область применения
По данному принципу можно создать целое семейство двигателей различной мощности. Сейчас отрабатывается конструкция мотора мощностью до 300 кВт. Область применения роторно-лопастных двигателей с внешним подводом тепла достаточна велика. Они могут использоваться везде, где работают ДВС, в том числе и на автомобильном транспорте. РЛДВПТ способны функционировать в условиях, где ДВС не работают, а именно: в воде, под землей, в космосе, в условиях песчаных бурь. При изменении конструкции механизма преобразования движения роторно-лопастная машина работает как пневмодвигатель либо гидродвигатель, как расширительная (паровая) машина или дроссель в магистральных газопроводах для понижения давления с целью получения электричества. РЛДВПТ могут работать с такими источниками энергии, как компрессор; жидкостный, тепловой, вакуумный насосы, а также холодильная машина.
Cпециалисты Псковского государственного политехнического университета продолжают совершенствовать свое детище, и, возможно, очень скоро оно станет настоящей альтернативой традиционным конструкциям двигателей.
Автор благодарит М.А. Донченко за помощь в подготовке статьи
www.gruzovikpress.ru