описание и принцип работы, плюсы и минусы
Среди всех возможных вариантов наддува двигателя внутреннего сгорания наибольшее распространение получил турбонаддув, в котором воздух подается в цилиндры при помощи специального устройства – турбокомпрессора (турбины). Вращение турбины осуществляют отработавшие газы, что позволяет существенно увеличить мощность двигателя без увеличения частоты оборотов последнего. Помимо этого, турбонаддув позволяет получать большие значения крутящего момента при небольшом расходе топлива. В сравнении с классическими конструкциями при аналогичной мощности турбированный двигатель имеет более компактные габаритные размеры.
Устройство системы турбонаддува
На практике турбонаддув применяется как на моторах, использующих дизельное топливо, так и на бензиновых. Однако наиболее часто эта система встречается именно на дизельном двигателе, поскольку для них характерна высокая степень сжатия, меньшая температура выхлопа и низкие обороты коленчатого вала. Более высокая степень сжатия обеспечивает повышение мощности турбированного двигателя и увеличивает его КПД.
В бензиновых моторах температура отработавших газов выше, что может спровоцировать эффект детонации, приводящий к быстрому износу поршневой группы. Для предотвращения этого явления необходимо использовать бензин с более высоким октановым числом, что не всегда является экономически выгодным.
Принцип работы турбиныСистема турбонаддува состоит из следующих элементов:
- Воздухозаборник;
- Воздушный фильтр;
- Перепускной клапан – регулирует подачу отработавших газов;
- Дроссельная заслонка – регулирует подачу воздуха на впуске;
- Турбокомпрессор – повышает давление воздуха во впускной системе. Состоит из турбинного и компрессорного колес;
- Интеркулер – охлаждает воздух, способствуя лучшему наполнению цилиндров и снижению вероятности детонации;
- Датчики давления – фиксирует давление наддува в системе;
- Впускной коллектор – распределяет воздух по цилиндрам;
- Соединительные патрубки – необходимы для крепления элементов системы между собой.
Принцип работы турбонаддува
Схема работы турбонаддува двигателяПринцип работы системы турбонаддува заключается в следующем:
- Отработавшие газы двигателя, проходя через турбокомпрессор, раскручивают турбинное колесо.
- Вращение турбинного колеса передается компрессорному, поскольку они закреплены на одном валу.
- Компрессор сжимает воздух, поступающий из воздухозаборника, и направляет его в интеркулер.
- В интеркулере воздух охлаждается и поступает на впуск в цилиндры двигателя.
В турбокомпрессоре предусматривается возможность регулировки давления выхлопных газов на лопасти турбины с целью не допустить превышение давления наддува в системе. Это осуществляется с помощью перепускного клапана, который приводится в движение пневмо- или электроприводом. В свою очередь, управление приводом осуществляется электронным блоком управления, который считывает информацию с датчика давления.
Особенности эксплуатации турбированных двигателей
На режимах разгона автомобиля в силу инерционности системы возникает явление, получившее название “турбояма”. Сущность явления заключается в следующем:
- Автомобиль движется с небольшой постоянной скоростью.
- Турбина вращается в соответствующем режиме.
- При резком нажатии на педаль ускорения в цилиндры двигателя подается больше топлива.
- После его сгорания образуются отработавшие газы, которые с большей силой воздействуют на турбину и увеличивают мощность двигателя. Однако происходит это с некоторой временной задержкой.
Таким образом, между моментом нажатия на педаль и фактическим ускорением автомобиля присутствует некоторая временная задержка – “турбояма”. Также данное явление проявляется в виде недостатка крутящего момента на малых оборотах двигателя.
Виды систем турбонаддува
Производители разработали различные способы избавления от “турбоямы”:
- Турбина с изменяемой геометрией. Конструкция предусматривает изменение сечения входного канала. За счет этого выполняется регулирование потока отработавших газов.
- Два турбокомпрессора, установленных последовательно (Twin Turbo). На каждый режим работы (обороты двигателя) предусматривается свой компрессор.
- Два турбокомпрессора, установленных параллельно (Bi Turbo). Схема разбиения на две турбины снижает инерцию системы, и турбояма становится не так ощутима.
- Комбинированный наддув. Устройство предусматривает и механический, и турбонаддув. Первый включается при низких оборотах, второй при высоких.
описание, характеристики, принцип работы и фото
Каждый автомобилист знает, что двигатели внутреннего сгорания по своему устройству и принципу действия разделяются на атмосферные и турбированные. Но не все понимают, в чем разница между этими силовыми агрегатами. Давайте рассмотрим, чем отличается двигатель турбо, как он устроен и как работает. Познакомимся с этими моторами на примере современных агрегатов группы VAG.
Бензиновые турбомоторы
Бензиновый турбомотор – это двигатель внутреннего сгорания с искусственно повышенной за счет турбины степенью сжатия в камерах. Повышение данного показателя дает увеличение мощности и других технических характеристик. Еще с момента создания первого двигателя внутреннего сгорания инженеры пытались прибавить мощность без существенного изменения рабочего объема ДВС.
На первый взгляд это решение было практически на поверхности – нужно было помочь мотору более эффективно «дышать». Это бы позволило получить лучшие характеристики сгорания топливной смеси. Обеспечить это можно за счет дополнительной подачи воздуха. Значит, необходимо подавать его в цилиндры принудительно, под давлением. Благодаря дополнительному объему воздуха топливо будет полностью сгорать, что и поможет увеличить мощность. Но внедрялись данные технологии очень медленно. В самом начале турбокомпрессорное оборудование использовалось только для больших моторов кораблей и авиации.
История бензиновых турбированных ДВС
Первый двигатель турбо был установлен еще в прошлом веке. Впервые автомобильные турбированные ДВС начали выпускать в 1938 году. В начале 60-х в США стали производить и первые моторы с турбиной для легковых авто. Это автомобили Oldmobile Jetfire и Chevrolet Corvair Monza. При всех своих характеристиках двигатели не отличались высокой надежностью и износостойкостью.
Начало популярности
Популярными ДВС с турбокомпрессором стали в 70-х годах. Тогда их стали массово устанавливать на спортивные авто. Но в гражданских автомобилях двигатель турбо не стал популярным из-за высокого расхода топлива. Этим недостатком отличались все турбированные бензиновые двигатели той эпохи. А ведь расход топлива был очень важен в тот период. Это время пришлось на нефтяной кризис в 70-х годах.
Устройство бензиновых турбо-ДВС
Алгоритм работы бензинового турбированного силового агрегата заключается в применении специального компрессора. Задача последнего – нагнетать в камеры сгорания дополнительный объем воздуха. За счет улучшения наполнения цилиндров смесью воздуха и топлива растет среднее эффективное давление за цикл и повышается мощность. В качестве привода системы турбонаддува применяются отработанные газы, энергия которых делает полезную работу.
Современный компрессор представляет собой корпус с подшипниками, колесо, перепускной клапан, корпус турбины. В последнем имеются каналы для движения смазки. Также присутствует в конструкции вал ротора, подшипники скольжения, компрессор, пневматический привод перепускного клапана. В корпусе, где монтируются подшипники, установлен ротор. Он представляет собой вал с закрепленными на нем турбинным и компрессорным колесами. На последних имеются лопасти. Данный ротор может вращаться за счет подшипников скольжения. Для их смазки и охлаждения поступает масло из смазочной системы двигателя. Чтобы корпус подшипников дополнительно охлаждался, используются также и каналы охлаждающей жидкости. Данный элемент компрессора изготовлен в форме улитки.
Принцип действия
Патрубок турбины соединен с выпускным коллектором. А компрессорный – с впускным. Как уже было замечено, турбокомпрессор приводится в действие за счет энергии отработанных газов. Они при попадании в турбину вращают ротор, отдавая тем самым энергию. Далее через приемную трубу газы попадают в выхлопную систему.
Колесо компрессора и «улитки» установлены на одном и том же валу. За счет вращения турбины компрессорное колесо всасывает воздух из воздушного фильтра и нагнетает его в камеры сгорания. В зависимости от уровня наддува устройство может повысить силу давления от 30% до 80%. При помощи этого двигатель с одним и тем же объемом может принимать смесь в больших количествах. Именно за счет этого мощность агрегата повышается от 20% до 50%. Выхлопные газы и их энергия в значительной мере повышают КПД мотора.
Турбодизельные агрегаты
Примерно так же устроен и двигатель турбо (дизель). Принцип действия турбокомпрессора не отличается от бензинового. Единственное отличие – наличие интеркулера. Это специальный механизм, который охлаждает воздух, прежде чем он попадет в цилиндры. Объем холодного воздуха меньше, чем теплого. Это значит, что холодный воздух можно «затолкать» в цилиндр в большем количестве.
Двигатели TSI
Эти агрегаты устанавливаются на современные модели автомобилей от «Фольксваген», «Ауди» и «Шкода». Все они относятся к одному концерну. Производители утверждают, что это моторы нового поколения, в которых удачно сочетаются мощность и экономичность. В случае с обыкновенным классическим ДВС при малом объеме, особой мощности от него ждать не приходится. Если вес автомобиля равен одной тонне, а двигатель маломощный, это приведет к высокому расходу топлива из-за малой динамики и работы на высоких оборотах.
Двигатель с большим объемом имеет высокий расход за счет увеличенной камеры сгорания. Турбо-двигатели («Шкода Октавия», «Фольксваген» и «Ауди») – это настоящее чудо инженерной мысли. В данных силовых агрегатах сочетается скромный расход топлива и достаточная мощность при сравнительно небольшом объеме.
TSI: устройство
По объему эти агрегаты могут быть различными. Так, производят ДВС на 1,2; 1,4; 1,6 л. А также двигатель 1,8 турбо, 2,0 л. Мощность мотора растет за счет большего объема. И это верное решение. А дальше поговорим об отличиях.
Турбированный и компрессорный
TSI – это одновременно и турбированный, и компрессорный агрегат. Специалисты группы VAG применили такую конструкцию, чтобы решить стандартную проблему мотора. Это провалы на небольших оборотах двигателя. Если рассматривать классические турбодвигатели, то «улитка» функционирует за счет отработанных газов. Сила давления при работе на небольших оборотах не дает возможности нагнетателю создавать нужное усилие и подавать в камеры сгорания достаточное количество воздуха.
На двигатель 1,8 турбо («Фольксваген») устанавливается компрессор. Он не дает падать мощности. Максимальный крутящий момент в обыкновенном атмосферном двигателе находится на уровне около 5000 об./мин. В случае с моторами TSI максимум крутящего момента пребывает в диапазоне от 1500 об./мин до 4500 об./мин. Это рабочий интервал, который используют большинство водителей. В моторах TSI за счет применения двух турбин создается давление до 2,5 Бар.
Компрессор
Данный узел функционирует от отдельного привода ременного типа. Он отличается высоким передаточным числом. Включается компрессор только тогда, когда водитель нажмет на газ. На оборотах, близких к холостым, давление составляет 0,8 BAR – это достаточно много. За счет этого получаются отличные динамические характеристики. Так работает двигатель «Ауди» 1,8 турбо с TSI. Прошлое поколение этих моторов не оснащено компрессором. Здесь имеется только турбина.
Турбированный двигатель 1,8 от «Фольксваген»
Этот агрегат присутствует на рынке порядка 20 лет. Данная модель ДВС очень популярна и дала старт спросу на моторы с турбонаддувом. Таким двигателем оснащались многие модели автомобилей от группы VAG. Дебют этой силовой установки состоялся в 1995 году.
Впервые двигатель («Фольксваген Пассат» б5) 1.8 турбо был установлен на Ауди «А4» (да, на них используют одинаковые моторы). Что касается характеристик, то существует несколько моделей мощностью в 150 и 210 лошадиных сил. В 2002 году создали мотор мощностью 190 «лошадей». Турбированный двигатель от «Фольксвагена» стал началом совершенно новой философии относительно бензиновых ДВС. Он дал хорошую производительность при сравнительно небольшом объеме за счет турбины. Преимуществом данного агрегата является умеренный аппетит.
Модель «А4» от «Ауди» потребляет до 8 литров на 100 километров по трассе. В городских условиях расход топлива составляет не более 10 литров. За счет наличия 20 клапанов в ГБЦ и турбонагнетателя, инженеры «Фольксвагена» смогли получить более высокие показатели крутящего момента до того, как обороты достигнут отметки в 2 тысячи.Так, в этом моторе объединена отличная эластичность, которая свойственна турбодизельным установкам, но при этом культура работы – бензиновая. Данный агрегат может быть также легко переоборудован на газ. Силовая установка является одной из лучших во всей линейке. Производительностью, умеренным расходом топлива и высокой надежностью может похвалиться двигатель. «Пассат» (1.8 турбо) не имеет никаких конструктивных недостатков агрегата. Даже сейчас, в эпоху современных TSI, равных этому мотору практически нет.
Турбодвигатели: преимущества и недостатки
Главный плюс, которым обладает турбомотор, – повышенная мощность. Это основная цель, которую удалось достичь без существенных изменений в конструкции. При одинаковых объемах с атмосферными моторами двигатель турбо может выдавать на 70% больше крутящего момента и мощности. Компрессор снижает процент вредных веществ в выхлопных газах. Двигатель, оснащенный турбиной, имеет значительно более низкий уровень шума.
Эти силовые установки можно устанавливать на любые автомобили. Главный недостаток – высокий расход топлива. Объем воздуха увеличивается, растет и количество потребляемого топлива. Данную проблему инженеры решить не могут. Также к недостаткам относятся трудности в эксплуатации. Эти ДВС очень чувствительны к качеству горючего и масла. Дополнительно к минусам относят низкие сроки службы масла и очистительных фильтров. Мотор работает на повышенных оборотах. За счет этого масло быстрее теряет свои свойства.Турбированный двигатель — устройство и принцип работы
Турбированный мотор – это силовой агрегат, в котором подача воздуха в цилиндры осуществляется посредством специального устройства – турбины. Мощность турбированного двигателя значительно больше, чем у обычного атмосферного. В этой статье мы расскажем, как работает турбированный двигатель, какие он имеет преимущества и недостатки, а также как правильно его эксплуатировать.
Принцип работы турбированного двигателя
Турбированный двигатель (будь то бензиновый или дизельный) конструктивно имеет некоторые отличия от своего атмосферного аналога. Главной особенностью любого турбированного двигателя является турбокомпрессор. Данное устройство состоит из специального вентилятора и турбины. Компрессор подключается к выхлопной системе автомобиля и через систему специальных труб принимает часть выхлопного газа на лопасти турбины. Турбина раскручивается под давлением, создаваемым выхлопным газом и приводит в движение вентилятор компрессора. Компрессор закачивает под давлением большое количество воздуха.
Увеличение количество и давление воздуха способствует лучшему сгоранию топлива, а значит, увеличению мощности двигателя. Таким образом, при меньшем объеме, турбированный двигатель способен иметь больше лошадиных сил, чем больший по объему атмосферный мотор.
Охлаждение турбированного двигателя отличается от охлаждения атмосферного. Прежде всего, в таких двигателях вместо радиатора применяется специальное устройство – интеркуллер. Он представляет собой тот же радиатор, однако в нем, вместо ОЖ циркулирует воздух. Иногда интеркуллер может дополняться вентилятором, для эффективности охлаждения потоком воздуха.
Видео — Работа ДВС как работает турбонаддув
Преимущества и недостатки турбированного двигателя
Как и любой другой двигатель, турбированный тоже обладает своими преимуществами и недостатками.
Преимущества:
1. Самое главное преимущество турбированного двигателя – высокая мощность. Пожалуй, это главная цель, которую получили при минимальном изменении конструкции двигателя. При одинаковом объеме с атмосферным двигателем, турбированный может выдавать мощность и крутящий момент на 70 процентов больше.
2. Турбокомпрессор позволяет снизить содержание вредных веществ в выхлопном газе, что делает такой двигатель намного экологичнее. Это связано с тем, что воздух в цилиндрах сгорает намного эффективнее и полностью, в связи с этим, количество выхлопных газов уменьшается, а то и вовсе пропадает по пути в компрессор.
3. Двигатель, оборудованный турбиной, имеет низкий уровень шума, в отличие от атмосферного аналога.
4. Турбированный двигатель можно установить практически на любой автомобиль. Это связано с тем, что его конструктивные особенности мало чем отличаются от обычного ДВС. А значит, при равном объеме, они имеет такие же габариты, что позволяет монтировать его на те же крепежные элементы. Данное свойство касается как бензиновые, так и дизельные двигатели.
Недостатки:
1. Пожалуй, это самый логичный недостаток из всех – повышенный расход топлива. Дело в том, что при потреблении большего объема воздуха, необходимо и соответствующее количество топлива. Решить эту проблему невозможно, так как двигатель, раскручиваясь быстрее, будет самостоятельно закачивать требуемый уровень топлива.
2. Очень большие трудности в эксплуатации. Они связаны с высокой чувствительностью качества топлива и моторного масла. Если атмосферный двигатель менее привередлив к этим показателям, то турбированный может запросто выйти из строя.
3. В дополнение ко второму недостатку можно отметить очень низкий срок службы масло и его фильтра. Дело в том, что турбированный двигатель строится на основе обычного ДВС, а значит, рассчитан на такой же пробег и количество оборотов. Так как турбированный двигатель чаще работает на повышенных оборотах, соответственно масло быстрее теряет свои свойства.
4. Большие цены. Суть данного вопроса начинается с того, что цена на турбину и ее комплектующие изделия достаточно высокая. Соответственно турбокомпрессор очень дорого ремонтировать, что не каждому по карману.
5. Есть некоторые особенности охлаждения турбины после долгой поездки. Дело в том, что она достаточно сильно перегревается и может остыть только на холостых оборотах. Поэтому, прежде чем глушить двигатель, ему дают поработать еще около двух минут.
6. Двигатель с турбокомпрессором в сборе стоит дороже своего атмосферного аналога на 20-30 процентов.
Как правильно эксплуатировать турбированный двигатель?
Если соблюдать все правила эксплуатации, то двигатель, оснащенный турбокомпрессором, может прослужить около 500 тысяч километров. Известны случаи, когда двигатель «переживал» собственный автомобиль. Кузов сгнивал, а мотор устанавливали на другой автомобиль и продолжали эксплуатировать.
- Заливайте в бензобак только самое качественное топливо. Не заправляйтесь на сомнительных заправках. То же самое относится и к моторному маслу. Некачественное масло очень быстро приведет к дорогостоящему ремонту турбированного двигателя. Помимо этого, необходимо чаще проверять уровень масла.
- Работа на холостых оборотах, которые превышают нормируемые значения, дольше 30 минут недопустима. Если у вас холостые обороты выставлены на слишком больших или малых значениях, обязательно отрегулируйте карбюратор или перепрограммируйте систему впрыска топлива.
- После каждого запуска турбированного двигателя, его необходимо прогревать не менее двух минут. Только затем можно начинать движение.
- Если после длительной поездки вы решили остановиться, то не глушите двигатель сразу. Необходимо выждать время, пока на холостых оборотах остынет турбокомпрессор (порядка 2-3 минут) и только после этого выключайте зажигание.
- Всегда своевременно проводите мероприятия, касающиеся технического обслуживания двигателя. Здесь имеется ввиду замена масла, расходных материалов.
Вот так устроен турбированный двигатель. Если вы не боитесь всех сложностей эксплуатации и повышенного расхода топлива, то можете без проблем установить на свой автомобиль подобный агрегат. Однако стоит отметить, что если вы планируете установку такого двигателя на свой автомобиль, то необходимо соответствующее переоформление двигателя в органах ГИБДД.
Принцип работы турбины на дизеле
Принцип работы турбины на дизельном двигателе
Мотор, на который установлен турбонаддув, называется турбодизелем.
Устройство турбины дизельного двигателя
Турбокомпрессор выполняет задачу по нагнетанию воздуха под давлением в цилиндры мотора: чем больше будет воздуха, тем больше топлива силовой агрегат сможет сжечь, что, в свою очередь, приведет к увеличению мощности двигателя без увеличения объема имеющихся цилиндров.
Турбонаддув имеет особую конструкцию из двух элементов:
- турбина;
- компрессор.
Компрессор усиливает поступление воздуха в топливную систему. Составные части компрессора находятся в алюминиевом корпусе. Внутри находится ротор, закрепленный на оси турбины. Вращаясь, ротор вбирает воздух: большая скорость вращения приводит к большему количеству попавшего внутрь воздуха. Для набора скорости существует турбина.
Турбина состоит из корпуса с ротором внутри. Поскольку все элементы устройства взаимодействуют с газами высокой температуры, они изготавливаются из специальных материалов, невосприимчивых к такому воздействию.
Как работает турбина на дизельном двигателе
Ротор и ось, на которой он закреплен, вращаются в разных направлениях. Частота вращения довольно велика, поэтому элементы плотно прижимаются друг к другу.
Принцип работы турбины на дизельном двигателе следующий:
- компрессор обеспечивает поступление воздуха из окружающей среды, который смешивается с дизельным топливом и затем направляется в цилиндры;
- топливно-воздушная смесь загорается, начинают двигаться поршни. По ходу этого процесса образуются газы, поступающие в выпускной коллектор;
- скорость движения газов, оказавшихся в корпусе, значительно возрастает. Вступая во взаимодействие с ротором, они приводят его во вращающееся положение;
- вращение передается компрессорному ротору (за это отвечает вал), который снова втягивает новую порцию воздуха.
Таким образом, принцип работы основывается на взаимосвязи: чем сильнее вращается ротор, тем больше поступает воздуха, но при этом ротор увеличивает скорость вращения, если количество воздуха возрастает.
Как работает турбонаддув
Чтобы разобраться в работе турбонаддува, для начала следует уяснить понятия турбоподхвата и турбоямы.
Турбоподхват – ситуация, когда набравший скорость ротор увеличивает поступление воздуха в цилиндры, следствием чего становится повышение мощности двигателя.
Турбояма – момент небольшой задержки, наблюдаемый в работе турбины при увеличении количества поступившего горючего, что достигается нажатием на педаль газа. Задержка вызвана временем, которое нужно ротору для его разгона газами.
Турбонаддув увеличивает давление отработанных газов за счет более интенсивной работы двигателя. В то же самое время повышается и давление наддува: этот процесс требует контроля и регулировки, поскольку при достижении высоких значений велика вероятность поломки. Функции регулировки давления возложены на клапан, контролем предельно возможных значений занимаются мембрана и пружина с определенными значениями жесткости (когда достигается максимально допустимая величина, мембрана открывает клапан).
Работа турбины дизельного двигателя также требует контроля давления:
- компрессор через клапан, дабы снизить давление, сбрасывает лишний забранный воздух;
- когда давление поступившего воздуха достигает максимально допустимой величины, клапан выпускает газы, и ротор вращается с требуемой скоростью, а компрессор всегда забирает только нужное количество воздуха.
Минусы использования турбокомпрессора
У устройства есть определенные недостатки:
- возрастает расход топлива, что особенно ощущается при неправильной регулировке системы;
- температура в процессе сжатия повышается, что может привести к детонации. Чтобы избежать такой неприятности, необходим монтаж регуляторов, охладителей и ряда других элементов.
Турбированный мотор: правила эксплуатации
Чтобы дизельная турбина работала с максимальным КПД и как можно дольше не выходила из строя, нужно придерживаться определенных правил в процессе эксплуатации автомобиля:
- придерживаться графика замены масла, что позволит не допустить засорения маслопровода абразивами;
- использовать качественное моторное масло, соответствующее по характеристикам в паспорте двигателя;
- не трогаться сразу после включения мотора – движок должен быть прогрет;
- сразу после прекращения движения не выключать двигатель, дав ему хотя бы 10 секунд поработать на холостых оборотах.
Как работает турбина: видео
Что такое турбо-яма?
Крыльчатка турбокомпрессора способна развивать до двухсот тысяч оборотов в минуту, благодаря чему данное устройство отличается большой инерционностью или, говоря иначе, имеет «турбо-яму», которая проявляется при резком нажатии на педаль газа. В этот момент крыльчатка медленно приводится в движение, и приходится некоторое время ждать, чтобы автомобиль начал набирать скорость.
Этот эффект имеет продолжительность всего несколько секунд, но, тем не менее, он не доставляет особого удовольствия при разгоне машины. На сегодняшний день производители смогли устранить эффект «турбо-ямы» путем установки двух перепускных клапанов. Один предназначен для выработанных газов, задача второго состоит в том, чтобы перепускать избыток воздуха в трубопровод турбокомпрессора из впускного коллектора.
Благодаря этой системе обороты крыльчатки при сбросе газа уменьшаются в замедленном темпе, в то время как при резком нажатии на педаль акселератора происходит поступление воздушной массы в двигатель в полном объеме.
Функция турбины, настройка
Функция турбокомпрессора заключается в том, чтобы увеличивать выходную мощность и крутящий момент двигателя. Благодаря турбине производители могут уменьшать количество рабочих цилиндров в двигателе без снижения мощности и крутящего момента.
Недавно также стали появляться турбины, которые могут работать, как от электричества, так и традиционно от газа, поступающего из выхлопной системы. Благодаря этому инженеры добились максимальной мощности и крутящего момента при небольших оборотах двигателя.
Использование двух турбокомпрессоров и других турбо деталей
На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.
Когда воздух сжимается, он нагревается, а при нагревании воздух расширяется. Поэтому повышение давления от турбокомпрессора происходит в результате нагревания воздуха до его впуска в двигатель. Для того, чтобы увеличить мощность двигателя, необходимо впустить в цилиндр как можно больше молекул воздуха, при этом не обязательно сжимать воздух сильнее.
Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. При впуске воздух проходит через герметичный канал в охладитель, при этом более холодный воздух подается снаружи по ребрам при помощи вентиляторов охлаждения двигателя.
Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. Это значит, что если турбокомпрессор сжимает воздух под давлением 7 фунт/дюйм2 (0,5 бар), охладитель осуществит подачу охлажденного воздуха под давлением 7 фунт/дюйм2 (0,5 бар), который является более плотным и содержит больше молекул, чем теплый воздух. Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.
При установке мощного турбокомпрессора на двигатель с впрыском топлива, система может не обеспечить необходимое количество топлива — либо программное обеспечение контроллера не допустит, либо инжекторы и насос не смогут осуществить необходимую подачу. В этом случае необходимо осуществлять уже другие модификации для максимального использования преимуществ турбокомпрессора.
Схема турбины с изменяемой геометрией (VNT)
Она также известна под названием – трубина с переменным соплом. Данный тип турбины используется в дизельных двигателях. Девять подвижных лопастей, установленных в турбокомпрессоре, регулируют прохождение потока газов к турбине. Увеличение и блокировка потока газов достигается при помощи привода, регулирующего угол наклона девяти лопастей. Скорость потока газов и давление нагнетаемого воздуха согласуются с количеством оборотов двигателя во время изменения угла наклона лопастей.
Некоторые двигатели используют несколько турбокомпрессоров. Возможно использование двух (Твин Турбо), трех или же четырёх. В таких конструкциях они устанавливаются последовательно. Первый используется при низких оборотах, а второй — при высоких. Также существует схема установки компрессоров, при которой они располагаются параллельно друг другу. Она используется на V-образных двигателях. На каждый ряд цилиндров приходится по компрессору. Бытует мнение, что один большой турбокомпрессор менее производителен, чем два маленьких.
Система смазки
Это неотъемлемая составляющая любой турбины. Принцип работы системы смазки простой. Масло подается между подшипником и корпусом компрессора через множество каналов под давлением. Также она охлаждает нагретые детали компрессора. На некоторых двигателях турбина сопряжена с общей системой охлаждения. Благодаря этому достигается лучшее охлаждение.
Типы турбин
- Раздельный. Он имеет два сопла для каждой пары цилиндров и два входа для отработавших газов. Первое сопло предназначено для быстрого реагирования, второе служит для максимальной производительности. В конструкции есть разделенные выпускные каналы. Сделано это для предотвращения перекрытия каналов при выпуске выхлопных газов.
- Компрессор с переменным соплом. Также он известен, как турбина с изменяемой геометрией. Применяется на моторах с маркировкой TDI от «Фольксваген». Здесь в конструкции имеется 9 подвижных лопастей. Они могут регулировать поток выхлопных газов, что идут к турбине. Угол наклона лопастей – регулируемый, что позволяет согласовать давление нагнетаемого воздуха и скорость движения газов с оборотами ДВС.
Для большей производительности на автомобиль может быть установлено два компрессора. Такие системы получили маркировку «Твин-турбо».
Устанавливаются данные механизмы последовательно. При этом первая турбина работает на низких оборотах, а вторая на высоких. На V-образных моторах нагнетатели устанавливаются параллельно (на каждый ряд по одной турбине). Как показывает практика, установка двух небольших компрессоров значительно эффективнее, чем применение одного, но большого.
Паровая турбина
Принцип работы ее немного иной. Пар, который образуется в котле, под давлением попадает на крыльчатку турбины. Последняя совершает обороты, тем самым, вырабатывая механическую энергию. Обычно такая турбина соединена с генератором и применяется на электростанциях. Благодаря механической энергии, генератор производит электричество. Мощность таких агрегатов может достигать 1000 МВт.
Однако данный показатель существенно зависит от перепада давления пара на входе и выходе. Также подобные турбины применяются для привода питательного насоса, на кораблях и судах с ядерной установкой. Что касается военных кораблей, здесь применяется газовая турбина. Принцип работы ее заключается в следующем. Газ поступает через сопловой аппарат компрессора в область низкого давления. При этом он расширяется и ускоряется. Затем поток газа двигает лопатки турбины. Последние передают усилия на вал через диски. Таким образом создается полезный крутящий момент.
Источники:
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.
Авиационные газотурбинные двигатели / Хабр
Всем привет! В этой статье я хочу рассказать о том, как работают авиационные газотурбинные двигатели (ГТД). Я постараюсь сделать это наиболее простым и понятным языком.Авиационные ГТД можно можно разделить на:
- турбореактивные двигатели (ТРД)
- двухконтурные турбореактивные двигатели (ТРДД)
- Турбовинтовые двигатели (ТВД)
- Турбовальные двигатели (ТВаД)
Притом, ТРД и ТРДД могут содержать в себе форсажную камеру, в таком случае они будут ТРДФ и ТРДДФ соответственно. В этой статье мы их рассматривать не будем.
Начнём с турбореактивных двигателей.
Турбореактивные двигатели
Такой тип двигателей был создан в первой половине 20-го века и начал находить себе массовое применение к концу Второй мировой войны. Первым в мире серийным турбореактивным самолетом был немецкий Me.262. ТРД были популярны вплоть до 60-ых годов, после чего их стали вытеснять ТРДД.
Современная фотография Me-262, сделанная в 2016 году
Самый простой турбореактивный двигатель включает в себя следующие элементы:
- Входное устройство
- Компрессор
- Камеру сгорания
- Турбину
- Реактивное сопло (далее просто сопло)
Можно сказать, что это минимальный набор для нормальной работы двигателя.
А теперь рассмотрим что для чего нужно и зачем.
Входное устройство — это расширяющийся* канал, в котором происходит подвод воздуха к компрессору и его предварительное сжатие. В нём кинетическая энергия входящего воздуха частично преобразуется в давление.
*здесь и дальше мы будем говорить про дозвуковые скорости. На сверхзвуковой скорости физика меняется, и там все совсем не так.
Компрессор — это устройство, в котором происходит повышение давление воздуха. Компрессор можно характеризовать такой величиной, как степень повышения давления. В современных двигателях оно уже начинает переступать за 40 единиц. Кроме того, в нем увеличивается температура (может быть, где-то до 400 градусов Цельсия).
Камера сгорания — устройство, в котором к сжатому воздуху (после компрессора) подводится тепло из-за горения топлива. Температура в камере сгорания очень высокая, может достигать 2000 градусов Цельсия. Вам может показаться, что давление газа в камере тоже сильно увеличивается, но это не так. Теоретически принято считать, что подвод тепла осуществляется при постоянном давлении. В реальности оно немного падает из-за потерь (проблема несовершенства конструкции).
Турбина — устройство, превращающее часть энергии газа после камеры сгорания в энергию привода компрессора. Так как турбины используются не только в авиации, можно дать более общее определение: это устройство, преобразующее внутреннюю энергию рабочего тела (в нашем случае рабочее тело — это газ) в механическую работу на валу. Как вы могли понять, турбина и компрессор находятся на одном валу и жестко связаны между собой. Если в компрессоре происходит повышение давления газа, то в турбине, наоборот, понижение, то есть газ расширяется.
Сопло — суживающийся канал, в котором происходит преобразование потенциальной энергии газа в кинетическую (оставшийся запас энергии газа после турбины). Как и в турбине, в сопле происходит расширение газа. Образуется струя, которая, вытекая из сопла, движет самолёт.
С основными элементами разобрались. Но все равно не очень понятно как оно работает? Тогда давайте ещё раз и коротко.
Воздух из атмосферы попадает во входное устройство, где немного сжимается и поступает в компрессор. В компрессоре давление воздуха растёт ещё сильнее, растёт и температура. После компрессора воздух поступает в камеру сгорания и, смешиваясь там с топливом, воспламеняется, что приводит к сильному возрастанию температуры, при, можно сказать, постоянном давлении. После камеры сгорания горячий сжатый газ попадает в турбину. Часть энергии газа расходуется на вращение компрессора турбиной (чтобы он мог выполнять свою функцию, описанную выше), другая часть энергии расходуется на, нужное нам, движение самолёта, из-за того, что газ, пройдя турбину, превращается в реактивную струю в сопле и вырывается из него (сопла) в атмосферу. На этом цикл завершается. Конечно, в реальности все процессы цикла проходят непрерывно.
Такой цикл называется циклом Брайтона, или термодинамическим циклом с непрерывным характером рабочего процесса и подводом тепла при постоянном давлении. По такому циклу работают все ГТД.
Цикл Брайтона в P-V координатах
Н-В — процесс сжатия во входном устройстве
В-К — процесс сжатия в компрессоре
К-Г — изобарический подвод тепла
Г-Т — процесс расширения газа в турбине
Г-С — процесс расширения газа в сопле
С-Н — изобарический отвод тепла в атмосферу
Схематичная конструкция турбореактивного двигателя, где 0-0 — ось двигателя
ТРД может иметь и два вала. В таком случае компрессор состоит из компрессора низкого давления (КНД) и компрессора высокого давления (КВД), а подвод работы будут осуществлять турбина низкого давления (ТНД) и турбина высокого давления (ТВД) соответственно. Такая схема более выгодная газодинамически.
Реальный двигатель такого вида в разрезе
Мы рассмотрели принцип работы самой простой схемы авиационного газотурбинного двигателя. Естественно, на современных «Эйрбасах и Боингах» устанавливаются ТРДД, конструкция которых заметно сложнее, но работает все по таким же законам. Давайте рассмотрим их.
Двухконтурный турбореактивный двигатель
ТРДД, прежде всего, отличается от ТРД тем, что имеет два контура: внешний и внутренний. Внутренний контур содержит в себе то же самое, что и ТРД: компрессор (разделенный на КНД и КВД), камеру сгорания, турбину (разделенную на ТВД и ТНД) и сопло. Внешний контур представляет собой канал, с соплом в конце. В нем нет ни камеры сгорания, ни турбины. Перед обоими контурами (сразу после входного устройства двигателя) стоит ступень компрессора, работающая на оба контура.
Не очень понятная картина выходит, да? Давайте разберемся как оно работает.
Схематичная конструкция двухвального двухконтурного турбореактивного двигателя
Воздух, попадающий в двигатель, пройдя через первую ступень компрессора низкого давления, разбивается на два потока. Одна часть воздуха идет по внутреннему контуру, где происходят те же процессы, которые были описаны, когда мы разбирали ТРД. Вторая часть воздуха попадает во внешний контур, получив энергию от первой ступени КНД (та, которая работает на два контура). Во внешнем контуре энергия воздуха тратится только на преодоление гидравлических потерь (за счёт трения). В конце этот воздух попадает в сопло внешнего контура, создавая огромную тягу. Тяга, созданная внешним контуром, может составлять 80% тяги всего двигателя.
Одной из важнейших характеристик ТРДД является степень двухконтурности. Степень двухконтурности — это отношение расхода воздуха во внешнем контуре, к расходу воздуха во внутреннем контуре. Это число может быть как больше, так и меньше единицы. На современных двигателях это число переступает за значение в 12 единиц.
Двигатели, степень двухконтурности которых больше двух, принято называть турбовентиляторными, а первую ступень компрессора (ту, что работает на оба контура) вентилятором.
ТРДД самолета Boeing 757-200. На переднем плане видно входное устройство и вентилятор
На некоторых двигателях вентилятор приводится в движение отдельной турбиной, которая ставится ближе всего к соплу внутреннего контура. Тогда двигатель получается трехвальным. Например, по такой схеме выполнены двигатели Rolls Royce RB211 (устанавливались на L1011, B747, B757, B767), Д-18Т (Ан-124), Д-36 (Як-42)
Д-18Т в разрезе изнутри
Главное достоинство ТРДД заключается в возможности создания большой тяги и хорошей экономичности, по сравнению с ТРД.
На этом я хотел бы закончить про ТРДД и перейти к следующему виду двигателей — ТВД.
Турбовинтовые двигатели
Турбовинтовой двигатель, как и турбореактивный, относится к газотурбинным двигателям. И работает он почти как турбореактивный. Элементарный турбовинтовой двигатель состоит из уже знакомых нам элементов: компрессора, камеры сгорания, турбины и сопла. К ним добавляются редуктор и винт.
Принцип работы работы такой же, как у турбореактивного, с разницей в том, что практически вся энергия газа расходуется на турбине на вращение компрессора и на вращение винта через редуктор (здесь винт и редуктор находятся на одном валу с компрессором). Винт создаёт основную долю тяги. Оставшаяся, после турбины, часть энергии направляется в сопло, образуя реактивную тягу, но она мала, может составлять десятую часть от общей. Редуктор в этой схеме нужен для того, чтобы понизить обороты и передать момент, так как турбина может вращаться с очень высокой частотой, например, 10000 оборотов в минуту, а винту нужно только 1500. И винт достаточно тяжелый.
Схематичная конструкция ТВД
Но бывает и другая схема турбовинтовых двигателей: со свободной турбиной.
Её суть в том, что за обычной турбиной компрессора ставится отдельная турбина, которая механически не связана с турбиной компрессора. Такая турбина называется свободной. Связь между турбиной компрессора и свободной турбиной только газодинамическая. От свободной турбины идёт отдельный вал, на который устанавливаются редуктор с винтом. Все остальное работает так же, как и в первом случае. Большинство современных двигателей выполняют именно по такой схеме. Одним из плюсов такой схемы является возможность использования двигателя на земле, как вспомогательную силовую установку (ВСУ), не приводя винт в движение.
Схематичная конструкция ТВД со свободной турбиной
Хочу отметить, что не нужно смотреть на турбовинтовые двигатели как на малоэффективный пережиток прошлого. Я несколько раз слышал такие высказывания, но они неверны.
Турбовинтовой двигатель в некоторых случаях обладает наивысшим КПД, как правило, на самолетах с не очень большими скоростями (например, на 500 км/ч), притом, самолет может быть внушительных размеров. В таком случае, турбовинтовой двигатель может быть в разы выгоднее, рассмотренного ранее, турбореактивного двигателя.
На этом про турбовинтовые двигатели можно заканчивать. Мы потихоньку подошли к понятию турбовального двигателя.
Турбовальный двигатель
Должно быть, большинство читателей здесь вообще впервые слышат такое название. Такой тип двигателей устанавливается на вертолёты.
Турбовальный двигатель очень схож с турбовинтовым двигателем со свободной турбиной. Он также состоит из компрессора, камеры сгорания, турбины компрессора, далее идёт свободная турбина, связанная со всем предыдущем только газодинамически. А вот реактивную тягу такой двигатель не создаёт, реактивного сопла у него нет, только выхлоп. Свободная турбина имеет свой вал, который соединяется к главному редуктору вертолёта (несущего винта). Да, у всех известных мне вертолетов есть такой редуктор, и, как правило, он внушительных размеров. Дело в том, что обороты несущего винта вертолёта очень низкие. Если у самолета, как я писал выше, они могут достигать 1500 об/мин, то у вертолёта, например у Ми-8, всего 193 об/мин.
А обороты двигателя у вертолёта зачастую очень высокие (из-за небольших размеров), и понижать их приходится в сотню и более раз. Бывает такое, что редуктор стоит и на двигателе, и на самом вертолете, например, у Ми-2 и его двигателя ГТД-350.
Схематичная конструкция турбовального двигателя
Двигатель ТВ3-117 от вертолета Ми-8. Справа видны выхлопная труба и приводной вал
Итак, мы рассмотрели четыре типа газотурбинных двигателей. Надеюсь, мой текст был понятен и полезен для вас. Все вопросы и замечания можете писать в комментариях.
Спасибо за внимание.
Принцип работы турбины самолета
Как работает авиационный двигатель — простым языком.
То что вы видите под крылом — это не турбина, а именно авиационный двигатель, а турбина — это его составная часть.
Авиационный турбовентиляторный реактивный двигатель необходим для создания тяги, которая преодолеет сопротивление воздуха, сопротивление самолета и его частей, разгонит самолет до скорости, на которой вырастет подъемная сила, способная оторвать самолет от земли и унести его с полной загрузкой в небо.
Передняя часть двигателя называется воздухозаборник. Воздух, попадая в него, начинает частично сжиматься. Далее воздух попадает на ступени вентилятора и ряд лопаток, где его давление и температура от сжимания начинает расти.
Воздух дальше идет по двум контурам. Внешний контур сжимает воздух благодаря своей форме. Воздух, который пошел во внутренний контур все больше сжимается, проходя каждый ряд статичных и крутящихся лопаток, сделанных из титана.
В компрессоре высокого давления он сжимается и его температура растет. И вот воздух попадает в камеру сгорания, где он смешивается с топливом. В результате этого резко растет тепловая энергия.⠀
Разогретые до огромной температуры газы выходят с бешеной скоростью из камеры сгорания и расширяются. Попадая на колесо турбины, они приводят ее в вращение.Турбина сидит на одном валу с компрессором. Компрессор начинает вращаться и получается замкнутая цепь. Воздух вновь засасывается компрессором и процесс продолжается.
Далее происходит следующее: разогретые до огромной температуры газы выходят с бешеной скоростью из камеры сгорания и расширяются. Попадая на колесо турбины, они приводят ее во вращение.
Турбина сидит на одном валу с компрессором. Компрессор начинает вращаться. Получается замкнутая цепь: воздух вновь засасывается компрессором, и процесс повторяется.
Выходящие газы попадают в сопло и на выходе из него смешиваясь с воздухом с внешнего контура создают реактивную струю, которая и толкает самолет сквозь воздушную среду.
Турбореактивный двигатель (ТРД)
ТРД стал самым распространённым в авиации воздушно-реактивным двигателем. Он является базой для создания целого семейства двигателей, объединяемых под общим названием газотурбинных двигателей. ТРД используют в качестве горючего керосин, находящийся в топливных баках, а в качестве окислителя – кислород воздуха.
Поток воздуха, попадающего в двигатель, тормозится во входном устройстве (1), в результате чего давление воздуха перед осевым компрессором (2) повышается. Ротор (вращающаяся часть) объединяет ряд рабочих колёс компрессора (3), представляющих собой диски с закреплёнными на них рабочими лопатками.
Сжатый воздух из компрессора попадает в камеру сгорания (7). Примерно 25–35% от общего потока воздуха направляется непосредственно в жаровые трубы, где происходит основной процесс сгорания керосина, поступающего в распылённом состоянии через форсунки (5).
Другая часть воздуха обтекает наружные поверхности жаровых труб, и на выходе из камеры сгорания смешивается с продуктами сгорания для их охлаждения, что позволяет поддерживать температуру газовоздушной смеси в камере сгорания на уровне, определяемом допустимой теплопрочностью стенок камеры сгорания, лопаток ротора (8) и лопаток спрямляющего аппарата турбины (9).
Часть механической мощности отбирается от вала (6) для привода агрегатов двигателя и привода электрогенераторов, обеспечивающих энергией различные бортовые системы. Основная часть энергии продуктов сгорания идёт на ускорение газового потока в выходном устройстве ТРД – реактивное сопло (10), т. е. на создание реактивной тяги.
Стартовая закрутка вала (5) осуществляется стартером, приводимым при запуске двигателя от наземного или бортового электроагрегата, при дальнейшей работе двигателя вращение вала поддерживается вращением ротора турбины.
Турбонаддув
Турбонаддув – это система, позволяющая увеличить максимальную мощность двигателя, используя для этого энергию выхлопных газов.
Первые турбины хотя и давали весьма ощутимую прибавку в мощности, но из-за своей громоздкости во много раз увеличивали и без того немаленький вес двигателей автомобилей тех лет.
Конструкторы со временем усовершенствовали технологию, сделав элементы системы более легковесными, одновременно повысив ее производительность. Но одним из существенных недостатков оставался повышенный расход топлива.
Конструкторам удалось решить одну из главных проблем турбодвигателя – расход топлива, ведь, как известно, дизельный агрегат менее «прожорливый», чем бензиновый.
Еще один несомненный плюс дизельного топлива – его отработанные газы имеют температуру ниже, чем бензиновые, стало быть, основные агрегаты системы турбонаддува можно было производить из менее тяжеловесных и жаростойких материалов.
Работа реактивного двигателя
Реактивное движение – это такой процесс, при котором от определенного тела с некоторой скоростью отделяется одна из его частей. Сила, которая возникает при этом, работает сама по себе, без малейшего контакта с внешними телами. Реактивное движение стало толчком к созданию реактивного двигателя.
Представим выстрел из любого огнестрельного оружия. Струя раскаленного газа, который образовался в процессе сгорания заряда в патроне, отталкивает оружие назад. Чем мощнее заряд, тем сильнее будет отдача.
В качестве горючего для реактивных двигателей вначале применяли дымный порох. Реактивные двигатели требовали топлива с основой из нитроцеллюлозы, которая растворялась в нитроглицерине. В больших агрегатах сегодня используют специальную смесь полимерного горючего с перхлоратом аммония в качестве окислителя.
Принцип действия РД
В качестве топлива в реактивных двигателях используется жидкий кислород либо азотная кислота. В качестве горючего применяют керосин.
Компоненты поступают в камеру сгорания из двух отдельных баков. После смешивания они превращаются в массу, которая при сгорании выделяет огромное количество тепла и десятки тысяч атмосфер давления. Окислитель подается в камеру сгорания.
Топливная смесь по мере прохождения между сдвоенными стенками камеры и сопла охлаждает эти элементы. Далее горючее попадет через огромное количество форсунок в зону воспламенения. Струя вырывается наружу. За счет этого и обеспечивается толкающий момент.
Несмотря на то что жидкостные двигатели потребляют очень много горючего, их до сих пор используют в качестве маршевых агрегатов для ракеты-носителей и маневровых для орбитальных станций.
Устройство
Устроен РД следующим образом:
— компрессор;
— камера для сгорания;
— турбины;
— выхлопная система.
Компрессор представляет собой несколько турбин. Их задача – всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха.
Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует через турбину, лопасти которой вращаются за счет воздействия газов. Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему.
Двухконтурный РД
Эти агрегаты имеют массу преимуществ перед турбореактивными (меньший расход топлива при той же мощности).
Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй – к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления.
В первом контуре двигателя воздух сжимается и подогревается, а затем подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины.
Затем газы проходят через турбину низкого давления. Она приводит в действие вентилятор, и газы попадают наружу, создавая тягу.
Турбовинтовой двигатель
Конструкция и принцип работы были взяты из механизма турбореактивного мотора, а от поршневого — воздушные винты. Таким образом, стало возможным совмещение небольших габаритов, экономичности и высокого коэффициента полезного действия.
Однако для сверхзвуковой скорости они годными не были. Поэтому с появлением таких мощностей в военной авиации от них отказались. Зато гражданские самолеты в основном снабжаются именно ими.
Схема турбовинтового двигателя выглядит следующим образом: после нагнетания и сжатия компрессором воздух попадает в камеру сгорания. Туда же впрыскивается топливо. Полученная смесь воспламеняется и создает газы, которые при расширении поступают в турбину и вращают ее. Нерастраченная энергия выходит через сопло, создавая реактивную тягу.
Турбина
Турбина способна развить скорость до 20 тысяч оборотов в минуту, но винт не сможет ей соответствовать, поэтому здесь имеется понижающий редуктор. Редукторы могут быть разными, но главная их задача — снижать скорость и повышать момент.
Для повышения тяги иногда двумя винтами снабжается турбовинтовой двигатель. Принцип работы при этом у них реализуется за счет вращения в противоположные стороны, но при помощи одного редуктора.
Преимуществами турбовинтового двигателя являются:
- малый вес по сравнению с поршневыми агрегатами;
- экономичность по сравнению с турбореактивными моторами.
Турбокомпрессор
Принцип работы турбокомпрессора сводится к следующему:
- при попадании в мотор топливовоздушной смеси происходит ее сгорание, которая затем выходит через выхлопную трубу. В начале выпускного коллектора установлена крыльчатка, крепко соединенная с другой крыльчаткой, расположенной во впускном коллекторе;
- поток выходящих из двигателя выхлопных газов раскручивает крыльчатку, находящуюся в выпускном коллекторе, которая в свою очередь приводит в движение крыльчатку, установленную на впуске;
- в мотор поступает большее количество воздушной массы, в него подается больше топлива.
Преимущества и недостатки турбонаддува
Турбокомпрессор используется ввиду простоты конструкции и хороших эксплуатационных параметров. Турбонаддув позволяет увеличить мощность двигателя.
Двигатель с турбокомпрессором имеет меньший выброс вредных газов в атмосферу, так как вырабатываются дополнительные выхлопные газы в двигатель. У сгораемого топлива становится меньше отходов.
Использование двух турбокомпрессоров и других турбо деталей
На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.
Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя.
Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель.
Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.
Принцип работы газовых турбин
Газовой турбиной принято называть своеобразный тепловой двигатель, его рабочим частям предопределено только одно задание – вращаться вследствие воздействия струи газа.
История создания газовой турбины
Интересно, что механизмы турбин начали разрабатываться инженерами уже очень давно. Первая примитивная паровая турбина была создана ещё в I веке до н. э.
Активно разрабатываться турбины начали в конце XIX века одновременно с развитием термодинамики, машиностроения и металлургии.
Технические характеристики газовой турбины
Главная часть турбины представлена колесом, на которое прикреплены наборы лопаток. Газ, воздействуя на лопатки газовой турбины, заставляет их двигаться и вращать колесо. Колесо жёстко скреплено с валом.
Это ротор турбины. Вследствие этого движения достигается получение механической энергии, которая передаётся на электрогенератор, на гребной винт корабля, на воздушный винт самолёта и другие рабочие механизмы аналогичного принципа действия.
Активные и реактивные турбины
Активная турбина характеризуется тем, что здесь отмечается большая скорость поступления газа на рабочие лопатки. При помощи изогнутой лопатки струя газа отклоняется от своей траектории движения. В результате отклонения развивается большая центробежная сила.
В реактивной турбине поступление газа к рабочим лопаткам осуществляется на незначительной скорости и под воздействием большого уровня давления. Форма лопаток так же отлична, благодаря чему скорость газа значительно увеличивается.
Схема и принцип действия газотурбинного двигателя
Газотурбинным двигателем (ГТД) называют тепловую машину, в которой энергия топлива преобразуется в кинетическую энергию струи и в механическую работу на валу. Основными элементами ГТД являются компрессор, камера сгорания и газовая турбина.
Принцип действия ГТД следующий.
1. Воздух из атмосферы поступает в компрессор (сечение «В-В»), где происходит сжатие воздуха (плотность, давление и температура возрастают). Если компрессор идеальный, то сжатие воздуха осуществляется в адиабатном процессе ( ), показатель адиабаты к=1.4.
Отношение давления воздуха на выходе из компрессора к давлению на входе называется степенью повышения давления в компрессоре: .
2. Из компрессора (сечение «К-К») воздух поступает в камеру сгорания, где при постоянном давлении происходит подвод тепла к потоку воздуха при горении топлива. В результате подогрева в камере сгорания газ на её выходе имеет высокую температуру. Отношение температуры газа на выходе из камеры сгорания к температуре атмосферного воздуха называется степенью подогрева воздуха в двигателе: .
3. Из камеры сгорания газ поступает в турбину (сечение «Г-Г»), где происходит расширение газа (плотность газа уменьшается). Если турбина идеальная, то процесс расширения принимается адиабатным. Показатель адиабаты газа равен 1.33.
4. Из турбины (сечение «Т-Т») газ направляется в выходной канал двигателя. Таким образом, ГТД представляет собой открытую термодинамическую систему, в которой реализуется цикл Брайтона.
Принцип действия и устройство турбин. Активные и реактивные принципы работы турбин
Особенности турбины как теплового двигателя
Турбина является тепловым ротационным двигателем, в котором потенциальная тепловая энергия пара (или газа) превращается в кинетическую, а последняя в свою очередь преобразуется в механическую работу вращения вала.
Пар с давлением более высоким, чем за турбиной, поступает в одно или несколько неподвижных каналов 5. В сопловых каналах пар расширяется, давление его падает, а скорость возрастает.
Из сопл пар поступает в рабочие каналы, образованные рабочими лопатками 3, закрепленными на диске 2. Двигаясь в рабочих каналах между рабочими лопатками и изменяя свое направление, поток пара оказывает силовое воздействие на рабочие лопатки. В результате чего они вращаются вместе с диском и валом 1, установленным в опорных подшипниках 4.
Комплект, состоящий из сопл и рабочих лопаток, в которых совершается процесс расширения пара, называется ступенью давления турбины. Простейшие турбины, имеющие лишь одну ступень, называются одноступенчатыми, в отличие от более сложных многоступенчатых турбин.
Тремя основными элементами, содержащимися в конструкции турбокомпрессора являются: центробежный компрессор, турбина и центральный корпус. Кинетическая энергия отработанных газов под воздействием турбины преобразуется во вращательное движение компрессора.
Также турбина соединяет турбинное колесо, помещённое в специальный корпус в форме улитки.
Поступая в улитку, отработавшие газы перемещаются по каналу и попадают на лопасти турбинного колеса. Вал, к которому приварено турбинное колесо, передаёт на колесо компрессора энергию, которая придаёт его вращению.
Лопасти турбинного колеса становятся проводниками отработавших газов, которые затем покидают турбину через отверстие в центре турбокомпрессора и выходят в выпускную систему.
От формы и размера турбины напрямую зависит производительность турбокомпрессора. Значительный прирост мощности наблюдается в турбинах большего размера, потому что они могут использовать большее давление отработавших газов. Однако в таких турбокомпрессорах, на низких оборотах, значительна вероятность возникновения турбоямы.
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:
Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.
Как работают турбокомпрессоры | HowStuffWorks
В некоторых двигателях используются два турбокомпрессора разных размеров. Меньший из них очень быстро набирает скорость, уменьшая задержку, в то время как больший берет на себя при более высоких оборотах двигателя, чтобы обеспечить больший наддув.
Когда воздух сжимается, он нагревается; а когда воздух нагревается, он расширяется. Таким образом, отчасти повышение давления от турбонагнетателя является результатом нагрева воздуха перед его поступлением в двигатель.Чтобы увеличить мощность двигателя, цель состоит в том, чтобы в цилиндр попало больше молекул воздуха, а не обязательно большее давление воздуха.
Интеркулер или Охладитель наддувочного воздуха — это дополнительный компонент, который выглядит как радиатор, за исключением того, что воздух проходит как внутри, так и снаружи промежуточного охладителя. Всасываемый воздух проходит через герметичные каналы внутри охладителя, а более холодный воздух снаружи обдувается через ребра вентилятором охлаждения двигателя.
Интеркулер дополнительно увеличивает мощность двигателя за счет охлаждения сжатого воздуха, выходящего из компрессора, до того, как он попадет в двигатель. Это означает, что если турбокомпрессор работает с наддувом 7 фунтов на квадратный дюйм, система с промежуточным охлаждением будет подавать 7 фунтов на квадратный дюйм более холодного воздуха, который более плотный и содержит больше молекул воздуха, чем более теплый воздух.
Турбокомпрессор также помогает на больших высотах , где воздух менее плотный.Обычные двигатели будут испытывать пониженную мощность на больших высотах, потому что с каждым ходом поршня двигатель будет получать меньшую массу воздуха. Двигатель с турбонаддувом также может иметь пониженную мощность, но это снижение будет менее значительным, потому что более разреженный воздух легче перекачивать турбокомпрессором.
Старые автомобили с карбюраторами автоматически увеличивают расход топлива, чтобы соответствовать увеличенному потоку воздуха, поступающего в цилиндры. Современные автомобили с впрыском топлива также сделают это в определенной степени.Система впрыска топлива полагается на кислородные датчики в выхлопе, чтобы определить правильность соотношения воздух-топливо, поэтому эти системы автоматически увеличивают поток топлива, если добавлен турбонаддув.
Если турбонагнетатель со слишком большим наддувом добавлен к автомобилю с впрыском топлива, система может не обеспечить достаточно топлива — либо программное обеспечение, запрограммированное в контроллере, не позволяет этого, либо насос и форсунки не могут его подавать. В этом случае придется внести другие модификации, чтобы получить от турбокомпрессора максимальную пользу.
Для получения дополнительной информации о турбонагнетателях и связанных темах перейдите по ссылкам на следующей странице.
,Как работают турбокомпрессоры? | Кто изобрел турбокомпрессоры?
Криса Вудфорда. Последнее изменение: 6 января 2020 г.
Идеального изобретения не бывает: всегда можно сделать что-нибудь лучше, дешевле, более эффективный или более экологически чистый. Возьмите внутренний двигатель внутреннего сгорания. Вы можете подумать, что это замечательно, что машина приводимый в действие жидкостью может сбить вас с дороги или ускорить небо во много раз быстрее, чем вы могли бы путешествовать иначе.Но это всегда можно построить двигатель, который будет работать быстрее, дальше или потреблять меньше топлива. Один из способов улучшить двигатель — использовать турбокомпрессор —a пара вентиляторов, которые используют отработанную мощность выхлопных газов в задней части двигателя, чтобы втиснуть больше воздух впереди, доставляя больше «энергии», чем в противном случае получить. Мы все слышали о турбинах, но как именно они работают? Давайте присмотритесь!
Фото: в типичном автомобильном турбокомпрессоре используется пара таких улиток вентиляторов.Тот, который вы видите здесь, — это Garrett GT2871R, который вот-вот будет установлен на двигатель Pontiac G8. Фото Райана С. Делкора любезно предоставлено ВМС США.
Что такое турбокомпрессор?
Фото: два вида безмасляного турбокомпрессора, разработанного НАСА. Фото любезно предоставлено Исследовательский центр НАСА Гленна (NASA-GRC).
Вы когда-нибудь видели, как мимо вас проносятся машины, из выхлопной трубы которых струится сажистый дым? Очевидно, выхлопные газы вызывают загрязнение воздуха, но это намного меньше очевидно, что они одновременно тратят энергию.Выхлоп смесь горячих газов выкачивается на скорости и вся энергия содержит — тепло и движение (кинетическая энергия) — исчезает бесполезно в атмосферу. Было бы здорово, если бы двигатель Могли бы как-то использовать эту бесполезную энергию, чтобы машина ехала быстрее? Именно это и делает турбокомпрессор.
Автомобильные двигатели получают энергию за счет сжигания топлива в прочных металлических канистрах, называемых цилиндрами. Воздух входит каждый цилиндр смешивается с топливом и горит, чтобы произвести небольшой взрыв который выталкивает поршень, вращая валы и шестерни, которые вращают колеса автомобиля.Когда поршень возвращается внутрь, он нагнетает отработанный воздух. и топливная смесь выходит из цилиндра как выхлоп. Количество мощности Производительность автомобиля напрямую зависит от того, насколько быстро он сжигает топливо. у вас больше цилиндров и чем они больше, тем больше топлива машина может гореть каждую секунду и (по крайней мере теоретически) тем быстрее можешь идти.
Один из способов сделать машину быстрее — это добавить больше цилиндров. Вот почему сверхбыстрые спортивные автомобили обычно имеют восемь и двенадцать цилиндров вместо четырех или шести цилиндры в обычном семейном автомобиле.Другой вариант — использовать турбонагнетатель, который нагнетает больше воздуха в цилиндры каждую секунду, они могут сжигать топливо быстрее. Турбокомпрессор — это простой, относительно дешевый, дополнительный немного обвеса, который может получить больше мощности от того же двигателя!
Как работает турбокомпрессор?
Если вы знаете, как работает реактивный двигатель, вы на полпути к пониманию турбокомпрессора автомобиля. реактивный двигатель всасывает холодный воздух спереди, сжимает его в камеру где он горит топливом, а затем выдувает горячий воздух из спины.Так как горячий воздух уходит, он с ревом проносится мимо турбины (что-то вроде очень компактная металлическая ветряная мельница), которая приводит в движение компрессор (воздушный насос) спереди двигателя. Это бит, который нагнетает воздух в двигатель, чтобы заставить топливо гореть должным образом. Турбокомпрессор на автомобиле применяет очень аналогичный принципу поршневого двигателя. Он использует выхлопные газы для водить турбину. Это вращает воздушный компрессор, который выталкивает дополнительный воздух. (и кислород) в цилиндры, позволяя им сжигать больше топлива каждый второй. Вот почему автомобиль с турбонаддувом может производить больше мощности (что это еще один способ сказать «больше энергии в секунду»).Нагнетатель (или «нагнетатель с механическим приводом», чтобы дать ему полное название) очень похож на турбокомпрессор, но вместо того, чтобы приводиться в действие выхлопными газами с помощью турбины, он приводится в действие вращающимся коленчатым валом автомобиля. Обычно это недостаток: там, где турбокомпрессор питается от отходов энергии выхлопных газов, нагнетатель фактически крадет энергию от собственного источника энергии автомобиля (коленчатого вала), что обычно бесполезно.
Фото: Суть турбокомпрессора: два газовых вентилятора (турбина и компрессор), установленные на одном валу.Когда один поворачивается, другой тоже поворачивается. Фото любезно предоставлено Исследовательским центром Гленна НАСА (NASA-GRC).
Как на практике работает турбонаддув? Турбокомпрессор представляет собой два маленьких вентилятора (также называемых крыльчатками). или бензонасосы), сидящие на одном металлическом валу, так что оба вращаются все вместе. Один из этих вентиляторов, называемый турбиной , находится в выхлопная струя из цилиндров. Когда цилиндры выдувают горячий газ лопасти вентилятора, они вращаются и вал, к которому они присоединены (технически называется вращающийся узел центральной ступицы или CHRA) также вращается.Второй вентилятор называется , компрессор и, поскольку он сидит на том же валу, что и турбина, он тоже вращается. Он установлен внутри воздухозаборника автомобиля и, вращаясь, притягивает воздух в автомобиль и нагнетает его в цилиндры.
Теперь здесь небольшая проблема. Если сжать газ, он станет горячее (вот почему велосипедный насос нагревается, когда вы начинаете накачивать шины). Hotter воздух менее плотный (поэтому теплый воздух поднимается над радиаторами) и меньше эффективны для сжигания топлива, поэтому было бы намного лучше, если бы воздух, поступающий из компрессора, был охлажден перед входом цилиндры.Для его охлаждения мощность компрессора проходит через над теплообменником, который удаляет дополнительное тепло и направляет его в другое место.
Как работает турбокомпрессор — подробнее
Основная идея заключается в том, что выхлоп приводит в движение турбину (красный вентилятор), которая напрямую подключен (и питает) компрессор (синий вентилятор), который нагнетает воздух в двигатель. Для простоты мы показываем только один цилиндр. Итак, вкратце, как все это работает:
- Холодный воздух поступает в воздухозаборник двигателя и направляется к компрессору.
- Вентилятор компрессора помогает всасывать воздух.
- Компрессор сжимает и нагревает поступающий воздух и снова его выдувает.
- Горячий сжатый воздух от компрессора проходит через теплообменник, который охлаждает его.
- Охлажденный сжатый воздух поступает в воздухозаборник цилиндра. Дополнительный кислород помогает сжигать топливо в цилиндре быстрее.
- Поскольку цилиндр сжигает больше топлива, он быстрее вырабатывает энергию и может передавать больше мощности на колеса через поршень, валы и шестерни.
- Отработанный газ из цилиндра выходит через выхлопное отверстие.
- Горячие выхлопные газы, обдуваемые турбинным вентилятором, заставляют его вращаться с высокой скоростью.
- Вращающаяся турбина установлена на том же валу, что и компрессор (показан здесь бледно-оранжевой линией). Итак, когда вращается турбина, вращается и компрессор.
- Выхлопные газы покидают автомобиль, расходуя меньше энергии, чем в противном случае.
На практике компоненты можно было соединить примерно так.Турбина (красная справа) забирает отработанный воздух через впускное отверстие, приводя в действие компрессор (синий, слева), который забирает чистый наружный воздух и нагнетает его в двигатель. Эта конкретная конструкция имеет электрическую систему охлаждения (зеленую) между турбиной и компрессором.
Иллюстрация: Как турбина и компрессор соединены в турбонагнетателе с электрическим охлаждением. Из патента США № 7946118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдано 24 мая 2011 г.Изображение любезно предоставлено Бюро по патентам и товарным знакам США.
Откуда берется дополнительная мощность?
Турбокомпрессоры дают автомобилю больше мощности, но эта дополнительная мощность не поступать непосредственно из отработанных выхлопных газов — и это иногда сбивает людей с толку. С турбокомпрессором мы используем часть энергии выхлопных газов для привода компрессора, что позволяет двигателю сжигать больше топлива каждую секунду. Это дополнительное топливо — вот где дополнительная мощность автомобиля происходит от. Все выхлопные газы питают турбокомпрессор и, поскольку турбокомпрессор не подключен к коленчатому валу или колесам автомобиля, он не прямо увеличивает мощность автомобиля в любом случае.Это просто включение один и тот же двигатель для более быстрого сжигания топлива, что делает его более мощным.
Сколько дополнительной мощности вы можете получить?
Если турбокомпрессор дает двигателю большую мощность, более крупный и лучший турбокомпрессор даст это даже больше мощности. Теоретически вы можете продолжать улучшать свой турбокомпрессор. чтобы сделать ваш двигатель все более мощным, но в конечном итоге вы достигнете предела. Цилиндры такие большие, и топлива, которое они могут сжечь, так много. Через впускное отверстие определенного размера вы можете втянуть в них столько воздуха, сколько выхлопных газов, что ограничивает энергию, которую вы можете использовать для приведения в движение турбокомпрессора.Другими словами, в игру вступают и другие ограничивающие факторы, которые необходимо учитывать. аккаунт тоже; нельзя просто турбонаддувом проложить себе путь до бесконечности!
Преимущества и недостатки турбокомпрессоров
Вы можете использовать турбокомпрессоры как с бензиновыми, так и с дизельными двигателями и более или менее на любых вид транспортного средства (автомобиль, грузовик, корабль или автобус). Основное преимущество использования турбонагнетателя заключается в увеличении выходной мощности. для двигателя того же размера (каждый ход поршня в каждом цилиндре генерирует большую мощность, чем в противном случае).Тем не менее, большая мощность означает больше энергии выработки в секунду, и закон сохранения энергии говорит нам, что это означает, что вы также должны вкладывать больше энергии, поэтому вы должны соответственно сжигать больше топлива. Теоретически это означает, что двигатель с турбонагнетателем не более экономичен, чем двигатель без него. Однако на практике двигатель, оснащенный турбонагнетателем, намного меньше и легче двигателя, производящего такую же мощность без турбонагнетателя, поэтому автомобиль с турбонагнетателем может обеспечить лучшую экономию топлива в этом отношении.Производители теперь часто могут обойтись без установки гораздо меньшего двигателя на тот же автомобиль (например, V6 с турбонаддувом вместо V8 или четырехцилиндрового двигателя с турбонаддувом вместо V6). И именно здесь автомобили с турбонаддувом получают свое преимущество: при хорошей работе они могут сэкономить до 10 процентов вашего топлива. Поскольку они сжигают топливо с большим количеством кислорода, они, как правило, сжигают его более тщательно и чисто, вызывая меньшее загрязнение воздуха.
« Большинство отраслевых экспертов ожидают, что к 2027 году более половины автомобилей, проданных в США, будут оснащаться одним двигателем. ”
The New York Times, 2018
Большая мощность при том же размере двигателя — это замечательно, так почему же не все двигатели имеют турбонаддув? Одна из причин заключается в том, что преимущества экономии топлива, обещанные ранними турбокомпрессорами, не всегда оказывались столь впечатляющими, как утверждали производители (стремящиеся воспользоваться любым маркетинговым преимуществом над своими конкурентами). Одно исследование, проведенное в 2013 году Consumer Reports, показало, что небольшие двигатели с турбонаддувом дают значительно худшую экономию топлива, чем их «безнаддувные» (обычные) аналоги, и пришел к выводу: «Не принимайте экологические хвастовства двигателей с турбонаддувом за чистую монету.Есть более эффективные способы экономии топлива, включая гибриды, дизели и другие передовые технологии ». Надежность тоже часто была проблемой: турбокомпрессоры добавляют еще один уровень механической сложности к обычному двигателю — короче говоря, есть еще немало вещей, которые нужно пойти не так. Это может сделать обслуживание турбин значительно дороже. По определению, турбонаддув — это получение большего от той же базовой конструкции двигателя, и многие компоненты двигателя должны испытывать более высокие давления и температуры, что может привести к более быстрому выходу деталей из строя; вот почему, вообще говоря, двигатели с турбонаддувом служат не так долго.Даже вождение с турбонаддувом может отличаться: поскольку турбокомпрессор приводится в действие выхлопными газами, часто наблюдается значительная задержка («турбо-задержка») между тем, когда вы нажимаете ногу на акселератор, и моментом включения турбонагнетателя, и это может привести к турбо машины очень разные (а иногда и очень хитрые) в управлении. В последние несколько лет ведущие производители, такие как Garrett и BorgWarner, активно разрабатывают частично или полностью электрические турбокомпрессоры для решения этой проблемы; Предложение Гарретта называется E-Turbo, а предложение Борга — eBooster®.
Кто изобрел турбокомпрессор?
Кому мы благодарим за турбокомпрессоры? Альфред Дж. Бюхи (1879–1959), инженер-автомобилестроитель, работавший в двигательной компании Gebrüder Sulzer в Винтертуре, Швейцария. Как и в случае с турбонагнетателем, который я проиллюстрировал выше, в его первоначальной конструкции использовался приводной от выхлопных газов вал турбины для питания компрессора, который нагнетал больше воздуха в цилиндры двигателя. Первоначально он разработал турбокомпрессор за годы до Первой мировой войны и запатентовал его в Германии в 1905 году, но продолжал работать над улучшенными конструкциями до своей смерти четыре десятилетия спустя.
ОднакоБючи была не единственной важной фигурой в этой истории. Несколькими годами ранее сэр Дугалд Кларк (1854–1932), шотландский изобретатель двухтактного двигателя, экспериментировал с разделением ступеней сжатия и расширения внутреннего сгорания с помощью двух отдельных цилиндров. Это немного похоже на наддув, увеличивая как поток воздуха в цилиндр, так и количество топлива, которое можно сжечь. Другие инженеры, включая Луи Рено, Готлиба Даймлера и Ли Чедвик также успешно экспериментировал с системами наддува.
Изображение: один из проектов турбокомпрессора Альфреда Бючи конца 1920-х годов (патент был подан в 1927 году и выдан в апреле 1934 года). Я раскрасил его, чтобы вы могли быстро разобраться в этом. Вы можете увидеть один цилиндр (желтый) и поршень, кривошип и шатун (красный) слева. Выхлопные газы из цилиндра проходят по трубе (зеленого цвета), приводящей в движение турбину. Он подключен к оранжевому «нагнетателю» (компрессору) и охладителю (синяя рамка), который нагнетает воздух в цилиндр через синюю трубу.Есть множество других сложных деталей, но я не буду вдаваться во все детали; Если вам интересно, взгляните на патент США № 1,955,620: Двигатель внутреннего сгорания (обслуживается через Google Patents). Изображение любезно предоставлено Бюро по патентам и товарным знакам США.
Узнать больше
На сайте
Книги для старших читателей
Книги для юных читателей
- Car Science Ричард Хаммонд.Дорлинг Киндерсли, 2007. Объясняет, почему ваша машина работает (в возрасте 9–12 лет).
Статьи
- Garrett E-Turbo обещает большую мощность, лучшую эффективность и меньшее отставание от Аарона Терпена, New Atlas, 20 октября 2019 года. История новых электрических турбин Гарретта.
- «Прыжки с турбонаддувом с гоночной трассы на Кюль-де-Сак», автор Стивен Уильямс. The New York Times, 25 октября 2018 года. Как турбокомпрессоры стали неотъемлемой частью двигателя современного автомобиля.
- Маленький вентилятор, решающий самую большую проблему турбокомпрессора. Автор Алекс Дэвис.Wired, 24 августа 2017 г. Краткий обзор eBooster от BorgWarner.
- Как сделать турбодвигатели более эффективными? «Просто добавь воды» Ник Чап. The New York Times, 29 сентября 2016 г. Компания Bosch возрождает идею распыления воды на цилиндры с турбонаддувом, чтобы они работали более прохладно и менее беспорядочно.
- Автопроизводители считают, что турбины — мощный путь к экономии топлива Лоуренс Ульрих. The New York Times, 26 февраля 2015 г. Почему такие производители, как Ford и BMW, с энтузиазмом продвигают двигатели с турбонаддувом.
- 50 лет назад Джим Коскс сделал турбонагнетатель революционной технологией. The New York Times, 19 декабря 2014 года. Как первые турбокомпрессоры в конечном итоге преодолели свои первые проблемы.
- Чак Скватриглиа, «Если ты не водишь турбо», то скоро будешь. Wired, 24 сентября 2010 г. Ожидается, что к 2015 году количество автомобилей с установленными турбокомпрессорами увеличится вдвое, поскольку производители ищут новые способы повышения производительности от двигателей меньшего размера.
- Turbo приветствует зеленый сертификат Йорна Мадслиена.BBC News, 11 октября 2009 г. Турбины заставляют автомобили двигаться быстрее; они также могут сделать их «экологичнее» за счет снижения расхода топлива.
Патенты
Если вы ищете подробные технические описания того, как все работает, патенты — хорошее место для начала. Вот Вот некоторые недавние патенты на турбокомпрессоры, которые стоит проверить:
- Патент США № 1,955,620: Двигатель внутреннего сгорания Альфреда Дж. Бючи, выдан 17 апреля 1934 г. Первый турбодвигатель, разработанный самим изобретателем турбокомпрессоров.
- Патент США № 2 309 968: Управление турбокомпрессором и метод, выданный Ричардом Дж. Ллойдом, Корпорация Гарретт, выдан 1 февраля 1977 г. Основное внимание уделяется системе управления турбокомпрессором, которая эффективно работает при различных оборотах двигателя.
- Патент США № 4083188: Система турбонаддува двигателя, выданная Emerson Kumm, The Garrett Corporation, 11 апреля 1978 года. Современный турбонагнетатель для дизельного двигателя с низкой степенью сжатия.
- Патент США № 7,946,118: Охлаждение турбонагнетателя с электрическим управлением Уиллом Хиппеном и др., Ecomotors International, выдан 24 мая 2011 г.Новый метод охлаждения турбокомпрессора.
Как работает турбовинтовой двигатель
Турбовинтовые двигатели сочетают в себе надежность реактивных двигателей с эффективностью винтовых самолетов на малых и средних высотах. Турбовинтовые двигатели, которые можно найти на чем угодно, от пассажирского самолета на 50+ до одного пилотного трактора, идеально подходят для безопасных и эффективных региональных поездок. Вот как они работают …
Из всех турбовинтовых двигателей одним из самых популярных является Pratt & Whitney PT6. С тех пор, как это семейство поступило на вооружение в 1960-х годах, было произведено более 41 000 двигателей PT6A, налет которых составил более 335 миллионов часов.Мощность моделей 69 PT6 варьируется от 500 до более 2000 л.с. Хотя не все турбовинтовые двигатели работают точно так же, как PT6, все они основаны на одних и тех же основных принципах. Из-за своей широкой популярности это отличный пример, на котором стоит сосредоточиться.
Обратный поток
В отличие от ТРДД или ТРД воздух движется через турбовинтовые двигатели, такие как PT6, за счет обратного потока.
Большие воздухозаборники под винтом или рядом с ним забирают воздух в воздухозаборники, где он движется назад к брандмауэру двигателя.Достигнув кормовой границы забора, воздух поворачивается на 180 градусов назад к передней части самолета.
Вдобавок к этому, когда воздух достигает камеры сгорания, он снова меняет направление, что позволяет создать более короткий и компактный двигатель.
Сжатие
Первые ступени компрессора, которые являются «осевыми», используют ряд вращающихся лопастей аэродинамической формы для ускорения и сжатия воздуха. Это называется осевым потоком, потому что воздух проходит через двигатель в направлении, параллельном валу двигателя. По мере прохождения воздуха через компрессор каждый набор лопастей становится немного меньше, что добавляет воздуху больше энергии и сжатия.
Между каждым набором лопаток компрессора находятся неподвижные лопатки в форме аэродинамического профиля, называемые «статорами». Эти статоры (также называемые лопатками) увеличивают давление воздуха, преобразовывая энергию вращения в статическое давление. Статоры также подготавливают воздух для входа в следующий набор вращающихся лопастей. Другими словами, они выпрямляют и стабилизируют поток воздуха.
После прохождения последней ступени компрессора с осевым потоком воздух перемещается в ступень компрессора с центробежным потоком. Воздух выбрасывается наружу от сердечника двигателя к камерам сгорания. Воздух сделал еще один поворот на 90 градусов.
Сгорание
Возгорание происходит в камере сгорания. Когда воздух выходит из компрессора и попадает в камеру сгорания, он смешивается с топливом и воспламеняется. Звучит просто, но на самом деле это очень сложный процесс. Это потому, что камера сгорания должна поддерживать стабильное, постоянное сгорание топливно-воздушной смеси, в то время как воздух проходит через камеру сгорания с чрезвычайно высокой скоростью.
Диффузор замедляет выход воздуха из компрессора, облегчая воспламенение. Купол и завихритель добавляют воздуху турбулентность, что облегчает его смешивание с топливом. А форсунки топливных форсунок, как вы, наверное, догадались, распыляют топливо в воздух, создавая топливно-воздушную смесь, которая может воспламениться. Оттуда происходит фактическое сгорание гильзы. Вкладыш имеет несколько входных отверстий, позволяющих воздуху поступать в нескольких точках зоны горения.
Воспламенители являются последними частями стадии горения; они очень похожи на свечи зажигания в вашем автомобиле или самолете с поршневым двигателем. Как только воспламенители зажигают огонь, он становится самоподдерживающимся, а воспламенители выключаются (хотя они часто используются как резервные в плохую погоду и при обледенении).
Турбины
Как только воздух проходит через камеру сгорания, он проходит через турбину компрессора. Турбина представляет собой серию лопаток в форме аэродинамического профиля, которые очень похожи на лопатки компрессора. Когда горячий воздух с высокой скоростью проходит через лопатки турбины, они извлекают энергию из воздуха, вращая турбину компрессора по кругу и вращая вал двигателя, с которым она связана.Это тот же вал, к которому подсоединяются компрессорная секция и все вспомогательные устройства с приводом от двигателя. Это самоподдерживающийся цикл мощности, пока горит пламя в камере сгорания. Около 70% общей мощности двигателя расходуется на вращение компрессорной секции и вспомогательного оборудования с приводом от двигателя в PT6.
Думаете, вы просто перечитываете статью о том, как работает газотурбинный двигатель? Что ж, здесь все действительно начинает меняться …
Хотя турбина компрессора может вращать заднюю часть вала двигателя (секция компрессора и вспомогательные устройства, приводимые в действие двигателем) со скоростью более 37 000 об / мин, она НЕ вращает гребной винт.Совершенно отдельный вал второго двигателя расположен прямо перед турбиной компрессора.
Воздушный поток, проходящий мимо турбины компрессора, затем встречает силовые турбины двигателя. Эти силовые турбины вращаются так же, как турбина компрессора, с лопатками в форме аэродинамического профиля. Этот передний вал двигателя напрямую связан с гребным винтом, обеспечивая ему вращение. Около 30% общей мощности двигателя используется для вращения гребного винта в PT6.
Интересный факт: Поскольку PT6 является двигателем со свободной турбиной, теоретически вы можете держать гребной винт в руке при запуске двигателя.Единственное, что крутит пропеллер, — это воздух, проходящий через колеса силовой турбины. Поскольку эти турбины подключены к собственному валу двигателя, отдельному от секции компрессора, вполне возможно, что при чрезвычайно низких настройках мощности пропеллер может оставаться неподвижным, когда воздушный поток движется мимо турбин … Но, пожалуйста, не пытайтесь делать это дома ,
Редуктор
Нет никакого способа, чтобы пропеллер на передней части турбовинтового двигателя мог вращаться со скоростью примерно 33 000 об / мин силовых турбин.Установлен ряд понижающих редукторов, чтобы снизить число оборотов до 1900 об / мин, что ограничено в большинстве двигателей PT6.
Далее? Вы уже догадались … тяга. Теперь, когда гребной вал вращается с разумной скоростью, гребной винт может создавать тягу. Прочтите эту статью, чтобы узнать, как создается эта тяга.
Выхлоп
Отработанный воздух, проходящий через силовые турбины, не имеет практического применения. Его просто отводят от двигателя через выхлопные трубы.В некоторых самолетах POH предоставляет число, которое показывает тягу, создаваемую непосредственно выхлопными газами. Обычно это всего несколько процентов от общей создаваемой тяги. Пропеллер по-прежнему побеждает!
Преимущества турбовинтового двигателя
Хотя турбовинтовые самолеты обычно имеют более низкие эксплуатационные ограничения, чем турбовентиляторные или турбореактивные самолеты, они сжигают значительно меньше топлива на одного пассажира. Благодаря кривой эффективности движителя они наиболее эффективны на скоростях ниже 400 узлов. Хотя они дороги, они чрезвычайно надежны.
Это делает турбовинтовые двигатели идеальным типом двигателя для относительно коротких региональных рейсов. Вот почему вы найдете их на таких самолетах, как Dash-8-Q400, Cessna Caravan, Pilatus PC-12 и Beechcraft King Air.
Берналь Саборио Г. (berkuspic)Собираем все вместе
Оснащение самолета турбовинтовым двигателем — лучшее из обоих миров для региональных полетов на малых высотах. Воздух сжимается, сгорает и превращается в энергию, которая вращает пропеллер.По сравнению с поршневыми самолетами у них относительно мало движущихся частей с гораздо меньшей вибрацией, что делает их чрезвычайно надежными. А еще лучше … они сжигают Jet-A, который более чем на доллар дешевле за галлон, чем AvGas!
Вы летали на турбовинтовом двигателе? Расскажите об этом в комментариях ниже.
Станьте лучшим пилотом.
Подпишитесь, чтобы получать последние видео, статьи и викторины, которые сделают вас более умным и безопасным пилотом.
,
Как это работает: турбонаддув | Вождение
Раньше турбокомпрессоры использовались в основном на мощных спортивных автомобилях. Они по-прежнему дают быстроходным автомобилям дополнительный прирост мощности, но автопроизводители все чаще используют их на двигателях меньшего размера для увеличения мощности, когда это необходимо, но с большей общей экономией топлива. Они также используются практически во всех дизельных двигателях для увеличения мощности.
Турбокомпрессор — это, по сути, воздушный насос, нагнетающий в двигатель дополнительный кислород по мере необходимости, чтобы он мог сжигать больше топлива для получения большей мощности.
Двигатели содержат поршни, которые перемещаются вверх и вниз в цилиндрах. Они вращают тяжелый центральный коленчатый вал так же, как ваши ноги двигаются вверх и вниз, чтобы привести в движение велосипед. Вращение коленчатого вала используется для поворота колес автомобиля.
Двигатель Audi 3,0-литровый V6 с двумя последовательно расположенными турбонагнетателями.Все это движется паром воздуха и бензина в верхней части поршня. Когда он воспламеняется свечой зажигания, сила сгорания толкает поршень вниз, чтобы повернуть кривошип.Затем сгоревшие газы удаляются как выхлопные газы.
Каждый поршень скользит вниз в начале своего цикла, создавая вакуум. В двигатель без турбонаддува, известный как безнаддувный, воздух врывается внутрь при открытии впускного клапана, но он может заполнить цилиндр только при атмосферном давлении. Сжигание большего количества топлива дает больше мощности, но поскольку смесь топлива и воздуха должна быть точной для правильной работы двигателя, добавление бензина не сработает, и цилиндр не сможет втянуть лишний воздух.
В двигателе с турбонаддувом турбонагнетатель перекачивает больший объем воздуха под давлением, и компьютер транспортного средства отвечает, добавляя правильное количество дополнительного топлива.
Турбо приводится в движение выхлопными газами. Одна сторона турбонагнетателя расположена у выпускного коллектора, другая — у воздухозаборника двигателя, и он содержит два небольших вентилятора, соединенных валом. Когда выхлопные газы проходят через турбонагнетатель, он вращает один вентилятор, называемый турбиной. Это, в свою очередь, вращает второй вентилятор, называемый компрессором, который всасывает свежий воздух, нагнетает его и нагнетает его в двигатель. Разница между атмосферным давлением и давлением воздуха, создаваемым турбонаддувом, называется наддувом и измеряется в фунтах на квадратный дюйм (psi).
Вместо турбонагнетателя в некоторых транспортных средствах используется нагнетатель, который также нагнетает воздух, но работает механически от коленчатого вала двигателя, а не от выхлопного потока.
В разрезе турбокомпрессор показаны вентиляторы турбины и компрессора, соединенные валом.Одна из проблем с турбонаддувом заключается в том, что воздух нагревается при сжатии, а это противоположно тому, что вы хотите. Холодный воздух более насыщен кислородом, поэтому его можно смешивать с большим количеством топлива и при этом правильно сгорать в цилиндре.Автопроизводители добавляют к турбо-системе теплообменник, называемый промежуточным охладителем, который поглощает тепло и снижает температуру воздуха, поступающего в цилиндры двигателя.
Вентиляторы турбонагнетателя вращаются очень быстро — до 250 000 оборотов в минуту или более — и существует вероятность слишком высокого давления в двигателе при максимальной нагрузке. В этом случае открывается клапан, называемый перепускным клапаном, который отводит часть выхлопных газов от турбины.
Турбокомпрессор не нагнетает двигатель постоянно.Если вы едете умеренно, достаточно воздуха, всасываемого при атмосферном давлении, и двигатель работает как безнаддувный. Когда вы нажимаете на дроссельную заслонку, двигатель работает сильнее и создает большее давление выхлопных газов. Это раскручивает турбокомпрессор, который, в свою очередь, увеличивает мощность двигателя, который, в свою очередь, получает больше топлива — вот почему эти малолитражные двигатели могут внезапно стать намного более жаждущими, чем ожидалось, когда вы их сильно водите. (С другой стороны, этот дополнительный кислород имеет тенденцию более полно сжигать топливо в цилиндре, повышая эффективность двигателя и сокращая вредные выбросы.)
Турбокомпрессор также создает головную боль инженерам, потому что он не сразу выходит на полную мощность. Существует небольшая задержка между моментом, когда вы опускаете ногу, и моментом, когда турбокомпрессор набирает скорость, достаточную для обеспечения наддува и желаемого ускорения. Это известно как турбо-задержка.
Раньше он был гораздо более заметным в старых автомобилях, но сегодня автопроизводители используют другие методы, чтобы уменьшить его. Используются легкие лопатки турбины, поэтому для их вращения требуется меньшее давление.Турбонагнетатели меньшего размера раскручиваются быстрее, и некоторые автопроизводители устанавливают два из них на двигатель, комбинируя небольшой для быстрого начального наддува с более крупным, который может обеспечить большую мощность при более высоких оборотах двигателя. Несколько автопроизводителей, включая Volvo, для достижения этой цели используют в двигателе как нагнетатель с механическим приводом, так и турбонагнетатель с приводом от выхлопных газов.
Другая технология — это изменяемая геометрия, которая автоматически регулирует направление потока выхлопных газов в турбинное колесо в зависимости от частоты вращения двигателя и требований к мощности.
Двигателис турбонаддувом, как правило, не требуют какого-либо дополнительного обслуживания, кроме рекомендованной замены масла в автомобиле и замены свечей зажигания. Некоторые более новые двигатели с турбонаддувом отлично работают на бензине обычного качества, но проверьте в руководстве пользователя любые требования к бензину премиум-класса.
Большинство автопроизводителей просто говорят «с турбонаддувом», но некоторые используют собственные названия, такие как Audi TFSI (для стратифицированного впрыска топлива с турбонаддувом) или Ford EcoBoost. Если вы не уверены, перед покупкой спросите, турбо это.
.