Работа четырехтактного v-образного восьмицилиндрового двигателя
Категория:
Устройство и работа двигателя
Публикация:
Работа четырехтактного v-образного восьмицилиндрового двигателя
Читать далее:
Работа четырехтактного v-образного восьмицилиндрового двигателя
В V-образном восьмицилиндровом двигателе цилиндры расположены в два ряда, по четыре цилиндра в каждом. Оси цилиндров пересекаются с осью коленчатого вала и расположены в соседних рядах под углом 90° друг к другу.
Общий коленчатый вал имеет четыре кривошипа. К шатунной шейке каждого кривошипа присоединяются нижние головки шатунов двух цилиндров, расположенных в одной поперечной плоскости. Для равномерного чередования тактов кривошипы вала расположены попарно в двух взаимно перпендикулярных плоскостях и в каждой паре под углом 180°. Если смотреть с переднего конца вала, то кривошипы располагаются следующим образом: I — вверх, IV — вниз, II — вправо и III — влево.
В каждом ряду цилиндров (правом и левом по ходу автомобиля) поршни цилиндров перемещаются навстречу один другому и одновременно приходят в мертвые точки. Поршни цилиндров также перемещаются навстречу один другому и такты, происходящие в них, смещаются относительно первой пары на V4 оборота коленчатого вала.
Рекламные предложения на основе ваших интересов:
При расположении двух рядов цилиндров’ под углом 90°, когда поршень одного цилиндра находится в какой-либо мертвой точке, поршень соседнего цилиндра находится примерно на середине своего хода. Поэтому такты, происходящие в левом ряду цилиндров, смещаются относительно соответствующих тактов, происходящих в цилиндрах правого ряда, на V4 оборота коленчатого вала.
Для цилиндров правого ряда возможно следующее чередование тактов: при первом полуобороте коленчатого вала в цилиндре поршень движется вниз (происходит рабочий ход), а в цилиндре поршень идет вверх (рабочая смесь сжимается). В цилиндре поршень сначала перемещается на половину хода вниз, а затем на половину хода вверх (заканчивается такт впуска и начинается такт сжатия). В цилиндре поршень поднимается на половину хода вверх и на половину хода опускается вниз (заканчивается такт выпуска и начинается такт впуска). При дальнейших полуоборотах вала в каждом цилиндре такты будут чередоваться в обычной для четырехтактного двигателя последовательности, и к концу четвертого полуоборота вала в каждом цилиндре будет завершен полный рабочий цикл.
Указанное чередование тактов для правого ряда цилиндров показано на рис. 1, б. Для левого ряда цилиндров получается аналогичное чередование
тактов со смещением относительно соответствующих тактов в цилиндрах правого ряда на х/4 оборота вала.
Из рис. 1, в видно, что в четырехтактном восьмицилиндровом двигателе с V-образным расположением цилиндров рабочие ходы следуют один за другим с перекрытием на */2 хода поршня при порядке работы 1—5—4—2—6— 3-7-8.
Рис. 1. Схема и порядок работы четырехтактного V-образного восьмицилиндрового двигателя
Такие карбюраторные двигатели устанавливают на грузовых и легковых автомобилях ГАЗ и ЗИЛ. Дизель с такой же компоновкой и порядком работы выпускает Ярославский моторный завод (ЯМЗ-238).
Рекламные предложения:
Читать далее: Работа двухтактного рядного четырехцилиндрового дизеля
Категория: — Устройство и работа двигателя
Главная → Справочник → Статьи → Форум
Работа многоцилиндрового двигателя | Двигатель автомобиля
Во время работы двигателя на его механизмы действуют значительные силы давления газов в цилиндре, силы инерции неравномерно движущихся деталей кривошипно-шатунного механизма, а также центробежные силы, возникающие вследствие вращения деталей. Эти силы непостоянны по величине и направлению своего действия, поэтому они вызывают неравномерную работу двигателя.
При неравномерной работе двигателя его механизмы работают с переменной нагрузкой, вследствие чего происходит интенсивный износ деталей. Особенно велика неравномерность работы одноцилиндрового четырехтактного двигателя.
Для достижения равномерности работы двигателя или устанавливают на коленчатом валу тяжелый маховик, или выполняют его многоцилиндровым.
Маховик накапливает энергию во время рабочего хода и отдает ее при совершении вспомогательных тактов. Но тяжелый маховик применяется только для стационарных двигателей, работающих, как правило, на постоянном режиме. Тяжелый маховик вследствие значительной инерции не обеспечивает необходимой автомобильному двигателю приемистости, т.е. способности двигателя быстро развивать и уменьшать обороты. Поэтому в автомобильных двигателях равномерность работы достигается не увеличением веса маховика, а за счет выполнения двигателя многоцилиндровым. В многоцилиндровом двигателе такты рабочего хода равномерно чередуются в отдельных цилиндрах, вследствие чего в значительной мере уравновешиваются силы инерции, возникающие в кривошипно-шатунном механизме при работе двигателя.
Для обеспечения наибольшей равномерности работы многоцилиндрового двигателя необходимо, чтобы такты рабочего хода в различных цилиндрах чередовались через равные промежутки времени и в определенной последовательности. Эта последовательность повторения одноименных тактов в различных цилиндрах называется порядком работы цилиндров двигателя.
Рис. Таблица чередования тактов четырехцилиндрового четырехтактного двигателя с порядком работы цилиндров 1—2—4—3 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)
Однако не при любом порядке обеспечивается хорошая работа двигателя. Необходимо, чтобы очередные такты рабочего хода следовали в цилиндрах, наиболее удаленных одни от другого. В этом случае нагрузка на коренные подшипники коленчатого вала будет распределяться более равномерно; кроме того, отработавшие газы из цилиндра, в котором начинается выпуск, не будут попадать через выпускной трубопровод в цилиндр, в котором выпуск еще не закончился.
Наиболее удобными порядками работы автомобильных двигателей являются: для четырехцилиндрового — 1—2—4—3 и 1—3—4—2, для шестицилиндрового — 1—5—3—6—2—4 и для восьмицилиндрового — 1—5—4—2—6—3—7—8.
Порядок работы цилиндров обычно изображается в виде таблицы чередования тактов.
Рассмотрим, как происходит работа четырехтактного четырехцилиндрового двигателя с порядком работы цилиндров 1—2—4—3. Так как рабочий цикл четырехтактного двигателя совершается за два оборота коленчатого вала (720°), а число рабочих ходов, происходящих за это время, равно четырем, то для правильного чередования рабочих ходов кривошипы коленчатого вала смещены один относительно другого на 180° (720°: 4), т.е. на пол-оборота коленчатого вала, и находятся, таким образом, в одной плоскости.
Во время работы двигателя поршни в первом и четвертом цилиндрах при первом полуобороте первого оборота коленчатого вала перемещаются от верхней мертвой точки к нижней, в первом цилиндре происходит рабочий ход, в четвертом цилиндре — такт впуска. Во втором и третьем цилиндрах поршни перемещаются в это время к верхней мертвой точке, во втором цилиндре происходит такт сжатия, а в третьем — такт выпуска.
Во время второго полуоборота первого оборота коленчатого вала поршни в первом и четвертом цилиндрах перемещаются от нижней мертвой точки к верхней, в первом цилиндре происходит такт выпуска, а в четвертом — такт сжатия.
Во время первого полуоборота второго оборота коленчатого вала поршни в первом и четвертом цилиндрах перемешаются от верхней мертвой точки к нижней, в первом цилиндре происходит такт впуска, в четвертом — рабочий ход. Поршни второго и третьего цилиндров в это время перемещаются от нижней мертвой точки к верхней, во втором цилиндре происходит такт выпуска, в третьем такт сжатия.
Во время второго полуоборота второго оборота коленчатого вала поршни в первом и четвертом цилиндрах перемещаются от нижней мертвой точки к верхней, в первом цилиндре происходит такт сжатия, в четвертом —такт выпуска. Поршни во втором и третьем цилиндрах перемещаются от верхней мертвой точки к нижней, во втором цилиндре происходит такт впуска, в третьем — рабочий ход.
Четырехцилиндровый четырехтактный двигатель с порядком работы цилиндров 1—3—4—2 отличается от двигателя с порядком работы 1—2—4—3 лишь конструкцией распределительного механизма, которая определяет несколько иную последовательность открытия и закрытия клапанов и чередования тактов.
Оба порядка работы цилиндров, принятые для отечественных четырехтактных четырехцилиндровых двигателей, полностью равноценны и по равномерности, и по качеству работы двигателей. На отечественных автомобилях широко используются шестицилиндровые двигатели, у которых цилиндры расположены в один ряд. Такие двигатели называются рядными в отличие от двигателей, цилиндры которых расположены в два ряда под некоторым углом один к другому.
В шестицилиндровом рядном двигателе коленчатый вал имеет шесть кривошипов. Так как рабочий цикл четырехтактного двигателя совершается за два оборота коленчатого вала (720°), а количество рабочих ходов за это время равно шести, то для правильного чередования рабочих ходов кривошипы коленчатого вала смещены один относительно другого на 120° (720°: 6), т. е. на одну треть оборота вала.
Для однорядных шестицилиндровых двигателей применяется следующее расположение кривошипов: 1—6 — вверх, 2—5 — налево, 3—4 — направо, если смотреть со стороны переднего конца вала.
При вращении коленчатого вала поршни в шестицилиндровом двигателе проходят через мертвые точки не все одновременно, как в четырехцилиндровом двигателе, а только попарно. Поэтому и такты во всех цилиндрах начинаются и кончаются также не одновременно, а смещены в одной паре цилиндров относительно другой на 60°.
Перекрытие тактов и порядок чередования рабочих ходов в шестицилиндровом четырехтактном двигателе показаны в таблице на рисунке.
Рис. Таблица чередования тактов шестицилиндрового четырехтактного двигателя с порядком работы 1—5—3—6—2—4 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)
Особенностью двухтактных дизелей является то, что их рабочий цикл совершается за один оборот коленчатого вала (360°). Поэтому и взаимное расположение кривошипов коленчатых валов имеет свои особенности: в четырехцилиндровом двигателе кривошипы смещены один относительно другого на 90° (360°: 4), в шестицилиндровом — на 60° (360°: 6).
Рис. Таблица чередования тактов шестицилиндрового двухтактного дизеля с порядком работы 1—5—3—6—2—4 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)
Перекрытие тактов и порядок чередования рабочих ходов в двухтактном шестицилиндровом дизеле показаны в таблице на рисунке.
В настоящее время на автомобилях широкое применение получили восьмицилиндровые V-образные двигатели. Цилиндры у этих двигателей располагаются в два ряда, чаще всего под углом 90°. Коленчатый вал таких двигателей имеет четыре кривошипа, смещенных один относительно другого на 90°. На каждую шейку кривошипа опираются одновременно по два шатуна.
В восьмицилиндровом двигателе за рабочий цикл (720°) совершается восемь рабочих ходов; их чередование, следовательно, происходит через 90° (720°: 8). Порядок работы цилиндров и чередование тактов в восьмицнлиндровом двигателе показаны в таблице на рисунке.
Рис. Таблица чередования тактов восьмицилиндрового двигателя с порядком работы цилиндров 1—5—4—2—0—3—7—8 (цифры в графе «Положение кривошипов коленчатого вала» обозначают порядковые номера цилиндров)
В многоцилиндровых двигателях вследствие непрерывного чередования рабочих ходов и перекрытия их одного другим обеспечивается более плавное и равномерное вращение коленчатого вала. Многоцилиндровые двигатели работают более устойчиво, без толчков и сотрясений, присущих одноцилиндровым двигателям.
Принцип работы и рабочие циклы двигателя автомобиля (ДВС)
На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу положено свойство газов расширяться при нагревании. Рассмотрим принцип работы двигателя и его рабочие циклы.
Рабочий цикл четырехтактного бензинового двигателя
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).
Принцип работы ДВС — схематично
1. Впуск
По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.2. Сжатие
После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.3. Расширение или рабочий ход
В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.
4. Выпуск
При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.Рабочий цикл четырехтактного дизеля
В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.
Впуск
При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.Сжатие
Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.Расширение или рабочий ход
Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.Выпуск
Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.Принцип работы многоцилиндровых двигателей
На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Значит после рабочего хода в первом цилиндре следующий происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.
Диаграмма работы двигателя по схеме 1-2-4-3
Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.
Рабочий цикл четырехтактного четырехцилиндрового двигателя
Выше был описан рабочий цикл «одноцилиндрового» двигателя. На автомобилях же ставят двух, четырех-, шести-, восьми и двенадцати цилиндровые двигатели. Все зависит от назначения, веса и размеров автомобиля.
Изучив рабочий цикл одноцилиндрового двигателя, легко представить рабочий цикл многоцилиндрового. Допустим, двигатель имеет четыре цилиндра, тогда число рабочих ходов во всех цилиндрах за рабочий цикл двигателя будет равно тоже четырем, а во время рабочего хода в одном цилиндре в трех других будут совершаться вспомогательные такты.
Коленчатый вал будет равномерно вращаться в результате непрерывно повторяющихся рабочих ходов в его отдельных цилиндрах.
Очередность рабочих ходов и других тактов в цилиндрах подчинена строгому порядку работы. У четырехцилиндровых четырехтактных двигателей применяются следующие порядки работы цилиндров: 1—2—4—3 и 1—3—4—2.
При порядке работы 1—2—4—3 рабочий цикл двигателя протекает так:
Полуобороты коленчатого вала | Углы поворота коленчатого вала, град | Цилиндры | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
1-й | 180 | Впуск | Выпуск | Сжатие | Рабочий ход |
2-й | 360 | Сжатие | Впуск | Рабочий ход | Выпуск |
3-й | 540 | Рабочий ход | Сжатие | Выпуск | Впуск |
4-й | 720 | Выпуск | Рабочий ход | Впуск | Сжатие |
Порядок работы цилиндров двигателя внутреннего снорания.
Порядок работы цилиндров двигателя разных авто Порядок работы цилиндров в разных двигателяхК такому двигателю относится четырехтактный дизель ЯМЗ-236. Угол развала между его цилиндрами равен 900. Колена коленчатого вала расположены в трех плоскостях под углом 1200 одно к другому. Особенностью этого двигателя является коленчатый вал, имеющий три кривошипа, к каждому из которых присоединено по два шатуна: к первому кривошипу — шатуны первого и четвертого цилиндров; ко второму второго и пятого цилиндров и к третьему — третьего и шестого цилиндров.
В этом двигателе, имеющем порядок работы 1 — 4 — 2 — 5 — 3 — 6, одноименные такты в цилиндрах происходят неравномерно через 90 и 1500 (табл. 4). Если в первом цилиндре осуществляется рабочий ход, то в четвертом он начинается через 900, во втором — через 1500, в пятом — через 900, в третьем через 1500 и в шестом — через 900. Поэтому двигатель ЯМЗ-236 имеет повышенную неравномерность хода и в нем приходится устанавливать на коленчатом валу маховик с относительно большим моментом инерции (на 60070% большим, чем для однорядного двигателя).
Восьмицилиндровый V-образный двигатель. Цилиндры в таком двигателе (например, двигатели автомобилей ГАЗ-53А, ГАЗ-53-12, ЗИЛ и КамАЗ-5320) расположены под углом 900 один к другому (рис. 24,6). Одноименные такты в цилиндрах начинаются через угол поворота коленчатого вала.
Рис. 24 — Схемы кривошипно-шатунного механизма четырехтактных V -образных двигателей:
а — шестицилиндрового; б — восьмицилиндрового; 1-8 — цилиндры.
Таблица 4. Чередование тактов в четырехтактном V -образном шестицилиндровом двигателе с порядком работы 1 — 4 — 2 — 5 — 3 — 6.
Впуск равный 720: 8 = 900. Следовательно, кривошипы коленчатого вала расположены крестообразно под углом 900. К первому кривошипу присоединены шатуны первого и пятого цилиндров, ко второму — второго и шестого цилиндров, к третьему — третьего и седьмого цилиндров, к четвертому — четвертого и восьмого цилиндров. В восьмицилиндровом четырехтактном двигателе за два оборота коленчатого вала совершается восемь рабочих ходов. Перекрытие рабочих ходов в различных цилиндрах происходит в течение поворота коленчатого вала на угол 90С, что способствует его равномерному вращению. Порядок работы восьмицилиндрового двигателя 1 — 5 — 4 — 2 — 6 — 3 — 7 — 8 (табл. 5).
Таблица 5. Чередование тактов в четырехтактном V -образном с порядком работы 1 — 5 — 4 — 2 — 6.
Зная порядок работы цилиндров двигателя, можно правильно распределить провода по свечам зажигания, присоединить топливопровод к форсункам и отрегулировать клапаны.
Обычно автовладельцы не задумываются о порядке активности цилиндров двигателя своего автомобиля, ограничиваясь знанием числа таковых. И в большинстве случаев просто нет необходимости углубляться в такие технические детали. Но информация о работе цилиндров оказывается полезной, когда нужно, например, выставить зажигания или отрегулировать клапана, в других ситуациях самостоятельной наладки и ремонта, когда нужно починить автомобиль без возможности добраться до СТО, или просто при желании сделать все самому. Далее мы узнаем, каков порядок работы 4-цилиндрового двигателя, и выясним последовательность для некоторых других компоновок.
Теория работы ДВС
Общий принцип функционирования двигателей на бензине или дизтопливе известен, пожалуй, всем – топливо, сгорая в цилиндрах, создает давление газов, которые толкают поршни, и далее усилие преобразуется в крутящий момент, идущий на колеса.
Для того, чтобы двигатель работал равномерно, сгорание топлива происходит не во всех цилиндрах одновременно, а в определенном порядке. За его соблюдение отвечают:
- конструкция газораспределительного механизма;
- углы между кривошипами коленвала автомобиля;
- расположение цилиндров – V-подобное или рядное;
- устройство системы зажигания для бензиновых авто, и ТНВД – у дизельных.
Как проходит рабочий цикл
Весь процесс впрыска топлива, его зажигания, работы поршней и выброса отработанных газов называется «рабочим циклом». Рассмотрим его на примере бензинового четырехтактного ДВС, стандартного для множества легковых автомобилей.
Цикл, как видно из названия, делится на четыре такта работы:
В этом состоянии впускной клапан в открытом состоянии, выпускной, наоборот, закрыт, поршень идет в нижнем направлении, в цилиндр попадает подготовленная топливовоздушная смесь.
Все клапаны цилиндра закрыты, а поршень двигается вверх и сжимает впрыснутую ранее смесь до заданных параметров.
Клапаны по-прежнему открыты, смесь поджигается, образуя газы. Их давление начинает двигать поршень вниз, а последний вращает коленвал.
По завершению рабочего хода клапан выпуска открывается, коленвал двигает поршень вверх, и тот вытесняет отработанные газы в выпускной коллектор.
Иллюстрация процесса:
Интересно: у дизельного двигателя цикл иной. При впуске всасывается только воздух, а горючее впрыскивается посредством ТНВД уже после сжатия воздушной массы в цилиндре. Контактируя с разогретым от сжатия воздухом, дизтопливо воспламеняется.
Чтобы обеспечить стабильную и непрерывную работу, горючее в цилиндрах (иногда называемых «горшками») воспламеняется в особой последовательности. Порядок работы двигателя должен соблюдаться, чтобы создавалось равномерное действие на коленвал.
Очередность цилиндров
Цилиндры имеют номера, в документации их описывают в формате A-B-C-D, где вместо букв указывается цифровое обозначение. Порядок нумерации начинается со стороны цепи или ремня ГРМ – с самого удаленного от коробки передач цилиндра. Тот, что носит номер 1, называется главным.
Важно: если цилиндры работают последовательно, они не должны быть расположены рядом. Именно с учетом этого условия производители моторов разработали определенные схемы порядка чередования тактов.
Цилиндры оснащены клапанами, через которые осуществляется впуск и выпуск газов. Клапанами управляет специальное устройство – распределительный вал, на поверхности которого особым образом расположены специальные кулачки. Именно их расположение отвечает за порядок работы: профиль кулачка и его высота влияет на моменты закрытия-открытия, величину сечения прохода для газов, а также на то, как будет двигаться клапан в зависимости от текущего угла коленвала.
Один из вариантов распредвала:
Коленвал:
Цикл стандартного ДВС на 4 такта проходит за 2 оборота, или за 720 градусов (360 и 360). Расположенные на валу «коленца» смещены на некоторый угол таким образом, чтобы усилие с поршней двигателя постоянно передавалось на вал. Упомянутый угол – величина, зависящая от модели двигателя, тактности такового, и количества цилиндров.
Рассмотрим типичный порядок у некоторых двигателей.
Рядный 4-цилиндровый
Существует две популярные компоновки таких ДВС:
- рядная;
- оппозитная.
Первое означает расположение цилиндров последовательно, в один ряд, а поршни мотора вращают общий коленвал. Двигатели нередко описывают сокращением I4 или L4, можно также встретить название Inline 4 и вариации. Инженеры располагают цилиндры и вертикально, и под некоторым углом – в зависимости от конструкции двигателя.
Пример блока цилиндров:
Эта цилиндровая компоновка получила широкое распространение в массовых моделях автомобилей, а также в тех транспортных средствах, где важна простота обслуживания и ремонта – внедорожниках, машинах, предназначенных для работы в такси, и т. д.
Кривошипы 1 и 4 цилиндров в конструкции коленвала рядного четырехцилиндрового двигателя расположены под углом 180 град., и под углом 90 – к кривошипам цилиндров 2 и 3. Чтобы создать оптимальное соотношение движущих сил, действующих на кривошипы, двигатели действуют в последовательностях:
- система 1–2–4–3 – менее популярная;
- основной вариант 1–3–4–2.
Из отечественных автомашин порядок работы четырехцилиндрового двигателя второго вида использован, к примеру, в продукции концерна ВАЗ, а первый актуален для некоторых двигателей ЗМЗ.
4-цилиндровая оппозитная компоновка
В таком моторе «горшки» размещены в два ряда под 180 градусов. Это позволяет сделать силовой агрегат сбалансированным и снизить центр тяжести, а коленвал получает меньшие нагрузки. Благодаря этому мотор подобной компоновки, при той же массе, выдает больше снимаемой мощности и оборотов.
Цилиндры в этих ДВС работают по отличной схеме: основная 1–3–2–4, и альтернативная 1–4–2–3.
Здесь поршни достигают т.н. «верхней мертвой точки», часто сокращаемой до ВМТ, одновременно с обеих сторон.
Интересно: встречаются машины с V-образными агрегатами на 4 цилиндра, но подобные образцы на рынке относительно редки, основную массу составляют рядные и оппозитные.
Пятицилиндровые
Это агрегаты с 5 цилиндрами, стоящими в ряд. Относительное смещение шатунных шеек коленвала – 72 градуса. Встречаются как двух- так и четырехтактные образцы, для первых (2 такта) стандартный порядок оптимальной работы блока цилиндров для данных двигателей – очередность активации 1–2–4–3–5. Ею обеспечивается равномерность возгорания топлива. Эти моторы широко применяются в судовой технике.
На легковых автомобилях инженерами сообщается иной порядок работе «горшков» 5 цилиндровых типичных двигателей – система 1–2–4–5–3.
Блок цилиндров:
Как действуют ДВС V6
Для эффективности порядка работы сегодняшних шестицилиндровых двигателей таковой строится также по особой системе. Типичный порядок работы 6 цилиндрового двигателя рядного исполнения – метод 1–5–3–6–2–4. В рассматриваемом форм-факторе силовой агрегат получается достаточно длинным и требует большого подкапотного пространства.
Чтобы снизить габариты, иногда применяют «вэ-подобную» систему. Схема порядка работы «горшков» 6 цилиндровых современных двигателей, V образного форм-фактора – очередность активации 1-4-2-5-3-6.
Интересно: рассматриваемая шестицилиндровая конструкция считается одной из наименее сбалансированных.
Агрегат от Audi, для которого актуален указанный порядок работы V-образного шестицилиндрового автомобильного двигателя:
ДВС на 8 цилиндров
Из-за габаритов двигатели делаются V-образной компоновки.
Восьмицилиндровый ДВС от Chevrolet:
Возможный порядок работы восьмицилиндрового двигателя современной машины:
- вариант 1–5–4–2–6–3–7–8 – основной;
- принцип 1–8–4–3–6–5–7–2 – другая вариация.
Различие это мнимое и произошло из-за разницы в подсчете цилиндров. В США цилиндр 1 расположен спереди по направлению движения авто, слева, а в европейской системе – справа. Нумерация цилиндров производится в шахматной последовательности, в направлении назад и слева направо, поэтому обе классификации представляют, по сути, одно и то же, что иллюстрирует схема:
Интервал между зажиганием топлива 90 град.
Как определить порядок
Чтобы узнать, по какой схеме работает мотор, необходимо изучать документацию на автомобиль и конкретный силовой агрегат, визуально определить это затруднительно.
Порядок работы цилиндров в разных двигателях отличается, даже с одним и тем же количеством цилиндров порядок работы может быть разным. Рассмотрим, в каком порядке работают серийные двигатели внутреннего сгорания различного расположения цилиндров и их конструктивные особенности. Для удобства описания порядка работы цилиндров, отсчёт будет производиться от первого цилиндра, первый цилиндр- это тот который спереди двигателя, последний, соответственно, возле коробки передач.
3-х цилиндровый
В таких двигателях всего 3 цилиндра и порядок работы самый простой: 1-2-3 . Запомнить легко, и работает быстро.
Схема расположения кривошипов на коленвале выполнена в виде звёздочки, они расположены под углом 120° друг к другу. Вполне возможно применить схему 1-3-2, но производители не стали этого делать. Так что единственной последовательностью работы трёхцилиндрового двигателя является последовательность 1-2-3. Для уравновешивания моментов от сил инерции на таких двигателях применяется противовес.
4-х цилиндровый
Существуют как рядные, так и оппозитные четырёх цилиндровые двигатели, коленвалы у них выполнены по одной и той же схеме, а порядок работы цилиндров разный. Это связано с тем, что угол между парами шатунных шеек равен 180 градусов, то есть, 1 и 4 шейки находятся на противоположных сторонах со 2 и 3 шейками.
1 и 4 шейки с одной стороны, 3 и 4- на противоположной.В рядном двигатели применяется порядок работы цилиндров 1-3-4-2 — это самая распространённая схема работы, так работают практически все машины, от Жигулей до Мерседеса, бензиновые и дизельные. В ней последовательно работают цилиндры с расположенные на противоположных сторонах шейках коленвала. В данной схеме можно применить последовательность 1-2-4-3, то есть поменять местами цилиндры, шейки которых расположены на одной стороне. Используется в 402 двигателе. Но такая схема встречается крайне редко, в них будет другая последовательность в работе распредвала.
Оппозитный 4-х цилиндровый двигатель имеет другую последовательность: 1-4-2-3 либо 1-3-2-4. Дело в том, что поршни достигают ВМТ одновременно, как с одной стороны, так и с другой. Такие двигатели чаще всего встречаются на Субару (у них почти все оппозитники, кроме некоторых малолитражек для внутреннего рынка).
5-ти цилиндровый
Пятицилиндровые двигатели нередко применялись на Мерседесах или АУДИ, сложность такого коленвала заключается в том, что все шатунные шейки не имеют плоскости симметрии, и развёрнуты относительно друг друга на 72° (360/5=72).
Порядок работы цилиндров 5-ти цилиндрового двигателя: 1-2-4-5-3 ,
6-ти цилиндровый
По расположению цилиндров 6-ти цилиндровые двигатели бывают рядными, V-образными и оппозитными. У 6-ти цилиндрового мотора есть много различных схем последовательности работы цилиндров, они зависят от типа блока и применяемого в нём коленвала.
Рядный
Традиционно применяется такой компанией, как БМВ и некоторыми другими компаниями. Кривошипы расположены под углом 120° друг к другу.
Порядок работы может быть трёх видов:
1-5-3-6-2-4
1-4-2-6-3-5
1-3-5-6-4-2
V-образный
Угол между цилиндрами в таких двигателях составляет 75 либо 90 градусов, а угол между кривошипами составляет 30 и 60 градусов.
Последовательность работы цилиндров 6-ти цилиндрового V-образного двигателя может быть следующей:
1-2-3-4-5-6
1-6-5-2-3-4
Оппозитный
6-ти цилиндровые оппозитники встречаются на автомобилях марки Subaru, это традиционная компоновка двигателей для японцев. Угол между кривошипами коленвала составляет 60 градусов.
Последовательность работы двигателя: 1-4-5-2-3-6.
8-ти цилиндровый
В 8-ми цилиндровых двигателях кривошипы установлены под углом 90 градусов друг к другу, так уак в двигателе 4 такта, то на каждый такт работает по 2 цилиндра одновременно, что сказывается на эластичности двигателя. 12-ти цилиндровый работает ещё мягче.
В таких двигателях, как правило, наиболее популярной используется одна и та же последовательность работы цилиндров: 1-5-6-3-4-2-7-8 .
Но Феррари использовала другую схему- 1-5-3-7-4-8-2-6
В данном сегменте каждый производитель использовал ему только известную последовательность.
10-ти цилиндровый
10 цилиндровый не особо популярный мотор, редко производители использовали такое количество цилиндров. Тут возможны несколько вариантов последовательностей воспламенения.
1-10-9-4-3-6-5-8-7-2 — используется на Dodge Viper V10
1-6-5-10-2-7-3-8-4-9 — BMW заряженных версий
12-ти цилиндровый
На самых заряженных машинах ставили 12-ти цилиндровые двигатели, к примеру, Феррари, Ламборгини или более распространённые у нас Фольцвагеновские двигатели W12.
Самым простым автолюбителям не нужно знать все тонкости работы цилиндров двигателя. Работает как-то, ну и ладно. Весьма сложно с этим согласится. Наступает тот самый момент, пока нужно будет отрегулировать систему зажигания, а также клапанов зазора.
Не будет лишней информацией о порядке работы цилиндров, когда нужно будет подготовить высоковольтные провода к свечам или трубопроводы большого давления.
Порядок работы цилиндров двигателя. Что это означает?
Порядок работы любого двигателя — это определенная последовательность, при которой происходит чередование одноименных тактов в разных цилиндрах.
Порядок работы цилиндров и от чего он зависит? Есть несколько основных факторов его работы.
К ним можно отнести следующее:
- Система расположения цилиндров: однорядная, V-образная.
- Количество цилиндров.
- Распределенный вал и его конструкция.
- Коленвал, а также его конструкция.
Что такое рабочий цикл двигателя автомобиля?
Этот цикл состоит, прежде всего, из распределения газораспределительных фаз. Последовательность должна четко распределяться по силе воздействия на коленчатый вал. Только так и добиваться равномерной работы.
Цилиндры не должны находиться рядом, это основное условие. Производители создают схемы работы цилиндров. Старт работы начинается с первого цилиндра.
Разные двигатели и разных порядок работы цилиндров.
Разные модификации, разные двигатели, их работа может распределяться. Двигатель ЗМЗ. Определенный порядок работы цилиндров двигателя 402 — один-два-четыре-три. Порядок работы двигателя модификации — один-три-четыре-два.
Если сделать углубление в теорию работы двигателя, то мы сможем увидеть следующую информацию.
Полный цикл работы четырехтактного двигателя происходит за два оборота, то есть 720 градусов. Двухтактный двигатель, догадайтесь за сколько?
Коленвал смещают на угол для того, чтобы получить максимальное углубление поршней. Данный угол зависит от тактов, а также количества цилиндров.
1. Четырехцилиндровый двигатель происходит через 180 градусов, порядок работы цилиндров может быть один-три-четыре-два (ВАЗ), один-два-четыре-три (ГАЗ).
2. Шестицилиндровый двигатель и порядок его работы один-пять-три-шесть-два-четыре (интервалы между воспламенениями составляют 120 градусов).
3. Восьмицилиндровый двигатель один-пять-четыре-восемь-шесть-три-семь-два (интервал составляет 90 градусов).
4. Есть и двенадцати цилиндровый двигатель. Левый блок — один-три-пять-два-четыре-шесть, правый блок — семь-девять-одинадцать-восемь-десять-двенадцать.
Для понятности небольшое пояснение. У восьмицилиндрового двигателя ЗиЛ порядок работы всех цилиндров: один-пять-четыре-два-шесть-три-семь-восемь. Угол — 90 градусов.
В одном цилиндре происходит рабочий цикл, через девяносто градусов рабочий цикл в пятом цилиндре и дальше последовательно. Один поворот коленвала — четыре рабочих хода. Восьмицилиндровый двигатель, конечно, работает плавно, чем двигатель из шести цилиндров.
Мы дали только общее представление работы, более глубокие знания Вам не нужны. Желаем Вам успехов в изучении порядка работы цилиндров двигателя.
Многие автовладельцы не стремятся вникать в принцип работы основных устройств автомобиля, считая это уделом специалистов из автомастерских. С одной стороны, такое утверждение верно, с другой же – не понимая хотя бы основные процессы, легко пропустить поломку на самом начальном этапе, и затруднительно сделать мелкий ремонт. Зачастую отказ двигателя происходит вдали от мест, где можно получить квалифицированную помощь, и определенные знания не помешают.
Одно из ключевых понятий эксплуатации двигателя – это порядок работы цилиндров. Под этим понимается последовательность чередования в них одноименных тактов. Этот показатель различается в зависимости от следующих особенностей:
- Количество цилиндров (в современных двигателях — 4, 6 или 8)
- Расположение (двурядное V-образное или однорядное)
- Особенности конструкций, как распределительного, так и коленчатого валов
Рабочий цикл двигателя – это определенная устойчивая последовательность газораспределительных фаз, происходящих внутри данных устройств, расположенных не рядом друг с другом. Это обеспечивает стабильное воздействие на коленвал без излишних напряжений.
Последовательность цилиндров, в которых происходят газораспределительные фазы, определяется схемой порядка работы, заложенной при проектировании. Цикл всегда начинается с главного цилиндра №1, а потом, в зависимости от исполнения может различаться: например, 1-2-4-2 или 1-3-4-2.
Последовательность работы у различных моделей
Целью воздействия каждого поршня является поворот коленвала на заданный угол при соблюдении определенного такта. Например, полный цикл четырехтактного двигателя обеспечивает два полных поворота коленвала, а двухтактного – один. Наиболее распространенные схемы:
- Однорядный четырехцилиндровый двигатель, с чередованием тактов через сто восемьдесят градусов: 1-3-4-2 или 1-2-4-3
- Однорядный шестицилиндровый двигатель: 1-5-2-6-2-4 (при повороте каждый раз на сто двадцать градусов)
- V-образный восьмицилиндровый: 1-5-4-8-6-3-7-2 (при повороте каждый раз на девяносто градусов). После того, как в цилиндре №1 заканчивается газораспределительная фаза, коленчатый вал, повернувшись на девяносто градусов, сразу же попадает под действие цилиндра №5. Для одного полного поворота требуется четыре рабочих хода
Количество цилиндров напрямую влияет на плавность хода – очевидно, что восьмицилиндровый с его 90 градусами, работает плавнее, нежели четырехцилиндровый. На практике, данные знания пригодятся при
Порядок работы цилиндров — основные моменты
Не каждому владельцу автомобиля нужно знать, каким образом происходит зажигание двигателя автомобиля и благодаря какой детали машины. Но если вдруг у вас сломалось зажигание или нужно отрегулировать зазоры в клапанах своими руками, то вам придется разобраться с порядком работы цилиндров двигателя.
Что представляет собой цилиндр?
Цилиндр двигателя – это рабочая камера объемного вытеснения. Внешние и внутренние его части постоянно нагреваются до разных температур и состоят из 2 частей: наружная выглядит как рубашка, внутренняя представляет собой рабочую втулку, называемую гильзой цилиндра. Рубашки изготавливаются из одной отливки для всех цилиндров и называются блоком цилиндров. Гильзы цилиндра выполняют из высокопрочных специальных сталей или чугуна.
Цилиндры в двигателе вырабатывают одноименные такты в каждом цилиндре, которые чередуются в определенной последовательности, читаем статью устройство ДВС. Такое чередование тактов является порядком работы цилиндров.
Факторы, влияющие на работоспособность цилиндров.
- Как цилиндры расположены: в один ряд либо V образно.
- В каком количестве.
- Тип и конструкция коленчатого вала.
- Конструкция распределительного вала.
- Расположение шатунных шеек.
У двухтактных двигателей цилиндры отличаются от цилиндров четырехтактных двигателей своей конструкцией. А также у одинаковых двигателей, но различных модификаций, работа цилиндров может быть разной. Например, весь рабочий цикл четырехтактного двигателя, происходит за два оборота коленчатого вала, что в градусах означает 720, а в двухтактном – 360 градусов. Коленчатый вал сдвигается на определенный угол, что происходит для того, чтобы коленвал постоянно был под усилием поршня. Угол на который он смещается зависит от тактности двигателя и количества цилиндров.
Порядок работы разных двигателей.
С четырьмя цилиндрами.
Двигатель с 4 цилиндрами расположенными в один ряд:
такты чередуются через 180 гр., а порядок работы цилиндров первый — второй — четвертый — третий (как пример).
С шестью цилиндрами.
Двигатель с шестью цилиндрами однорядными:
такты чередуются через 120 гр. в порядке первый — пятый — третий — шестой — второй — четвертый.
Порядок работы двигателя V8.
Двигатель с 8 цилиндрами, расположенными образом V:
чередование происходит через 90 гр. в порядке первый — пятый — четвертый — восьмой — шестой — третий — седьмой — второй.
Порядок работы двигателя W12.
Есть еще и двенадцатицилиндровые двигатели, в которых цилиндры расположены W-образно:
блок цилиндров разбит на левые головки и правые, поэтому чередование тактов происходит в них по-разному. В левых первый — третий — пятый — второй — четвертый — шестой, а в правых седьмой — девятый — одиннадцатый — восьмой — десятый — двенадцатый.
Чтобы разобраться до конца, что означает порядок работы цилиндров и эти наборы цифр, можно рассмотреть как пример работу двигателя с 4 цилиндрами с таким порядком чередования первый — второй — четвертый — третий через 180 гр.: это означает, что 1 рабочий цилиндр проходит свой цикл и через 180 гр. поворота коленчатого вала цикл проходит уже 2 цилиндр, и так далее в определенной последовательности.
Видео
Рекомендую прочитать:
Порядок работы двигателя | Расточка-шлифовка.рф
Порядок работы цилиндров
Многие автовладельцы не стремятся вникать в принцип работы основных устройств автомобиля, считая это уделом специалистов из автомастерских. С одной стороны, такое утверждение верно, с другой же – не понимая хотя бы основные процессы, легко пропустить поломку на самом начальном этапе, и затруднительно сделать мелкий ремонт. Зачастую отказ двигателя происходит вдали от мест, где можно получить квалифицированную помощь, и определенные знания не помешают.
Одно из ключевых понятий эксплуатации двигателя – это порядок работы цилиндров. Под этим понимается последовательность чередования в них одноименных тактов. Этот показатель различается в зависимости от следующих особенностей:
- Количество цилиндров (в современных двигателях — 4, 6 или 8)
- Расположение (двурядное V-образное или однорядное)
- Особенности конструкций, как распределительного, так и коленчатого валов
Рабочий цикл двигателя – это определенная устойчивая последовательность газораспределительных фаз, происходящих внутри данных устройств, расположенных не рядом друг с другом. Это обеспечивает стабильное воздействие на коленвал без излишних напряжений.
Последовательность цилиндров, в которых происходят газораспределительные фазы, определяется схемой порядка работы, заложенной при проектировании. Цикл всегда начинается с главного цилиндра №1, а потом, в зависимости от исполнения может различаться: например, 1-2-4-2 или 1-3-4-2.
Последовательность работы у различных моделей
Целью воздействия каждого поршня является поворот коленвала на заданный угол при соблюдении определенного такта. Например, полный цикл четырехтактного двигателя обеспечивает два полных поворота коленвала, а двухтактного – один. Наиболее распространенные схемы:
- Однорядный четырехцилиндровый двигатель, с чередованием тактов через сто восемьдесят градусов: 1-3-4-2 или 1-2-4-3
- Однорядный шестицилиндровый двигатель: 1-5-2-6-2-4 (при повороте каждый раз на сто двадцать градусов)
- V-образный восьмицилиндровый: 1-5-4-8-6-3-7-2 (при повороте каждый раз на девяносто градусов). После того, как в цилиндре №1 заканчивается газораспределительная фаза, коленчатый вал, повернувшись на девяносто градусов, сразу же попадает под действие цилиндра №5. Для одного полного поворота требуется четыре рабочих хода
Количество цилиндров напрямую влияет на плавность хода – очевидно, что восьмицилиндровый с его 90 градусами, работает плавнее, нежели четырехцилиндровый. На практике, данные знания пригодятся при замене блока цилиндров и ремонте ГБЦ.
Смотрите также:
Все статьи >>
Как работает четырехтактный двигатель? — MechStuff
Это самые основные двигатели, используемые в автомобилях и мотоциклах, например, 4-тактный бензиновый двигатель ИЛИ 4-тактный двигатель (часто называемый). Это очень легко понять, пока и если вы не хотите проводить все термодинамические расчеты и все такое!
4-тактный двигатель: — 4-тактный двигатель
Анимация — 1. Впуск 2. Компрессия 3. Мощность 4. Выхлоп! Кредиты — Zephyris
Само название дает нам представление — это двигатель внутреннего сгорания, в котором поршень совершает 4 хода, одновременно поворачивая коленчатый вал дважды.Под ходом понимается полный ход поршня в любом из направлений. Цикл завершается, когда выполнены все 4 удара. Четырехтактный двигатель был впервые продемонстрирован Nikolaus Otto в 1876 году, поэтому он также известен как цикл Отто.
Давайте перейдем к деталям, которые имеет 4-тактный двигатель,
Поршень — В двигателе поршень используется для передачи расширяющей силы газов на механическое вращение коленчатого вала через шатун.Поршень способен на это, потому что он плотно закреплен внутри цилиндра с помощью поршневых колец, чтобы минимизировать зазор между цилиндром и поршнем!
Коленчатый вал — Коленчатый вал — это деталь, которая может преобразовывать возвратно-поступательное движение во вращательное движение.
Шатун — Шатун передает движение от поршня к коленчатому валу, который действует как плечо рычага.
Маховик — Маховик — это вращающееся механическое устройство, которое используется для хранения энергии.
Впускные и выпускные клапаны — Позволяют подавать свежий воздух с топливом и выводить отработанную топливно-воздушную смесь из цилиндра.
Свеча зажигания — Свеча зажигания подает электрический ток в камеру сгорания, которая воспламеняет воздушно-топливную смесь, что приводит к резкому расширению газа.
Четыре такта 4-тактного двигателя получили название —
1. Ход всасывания / впуска: —
В этом такте поршень перемещается из ВМТ в НМТ [( Top Dead Центр — самое дальнее положение поршня к коленчатому валу) до ( Нижняя мертвая точка — ближайшее положение поршня к коленчатому валу)].
Поршень движется вниз, всасывая топливовоздушную смесь из впускного клапана.
Ключевые точки : —
Впускной клапан — ОТКРЫТО
Выпускной клапан — ЗАКРЫТО
Вращение коленчатого вала — 180 °
2. Ход сжатия: —
Здесь поршень перемещается из НМТ в ВМТ, сжимая воздушно-топливная смесь. Импульс маховика помогает поршню двигаться вверх.
Ключевые точки : —
Впускной клапан — ЗАКРЫТО
Выпускной клапан — ЗАКРЫТО
Вращение коленчатого вала — 180 ° (всего = 360 °)
3. Рабочий ход: —
Началось второе вращение коленчатого вала, когда он совершает один полный оборот во время такта сжатия. Рабочий ход начинается с расширения топливовоздушной смеси, воспламеняемой свечой зажигания. Здесь поршень перемещается из ВМТ в НМТ. Этот ход вызывает механическую работу по вращению коленчатого вала.
Ключевые точки : —
Впускной клапан — ЗАКРЫТО
Выпускной клапан — ЗАКРЫТО
Вращение коленчатого вала — 180 ° (всего = 540 °)
4.Ход выхлопа: —
И снова импульс маховика перемещает поршень вверх из НМТ в ВМТ, тем самым выталкивая выхлопные газы наружу через выпускной клапан.
Ключевые точки : —
Впускной клапан — ЗАКРЫТО
Выпускной клапан — ОТКРЫТО
Вращение коленчатого вала — 180 ° (всего = 720 °)
Здесь завершаются два полных оборота (720 °) коленчатого вала наряду с одним циклом (Один цикл, потому что термодинамический цикл представляет собой серию термодинамических процессов , которые возвращают систему в исходное состояние.Здесь во время ударов происходит ряд термодинамических процессов. 4 такта = 4 процесса!)
Предлагаемая статья — Как работают двухтактные двигатели?
Как впускные и выпускные клапаны открываются и закрываются в определенное время хода?
Ну, они не рассчитываются с помощью таймера или часов (шутите меня). Ответ настолько удивительный, а решение чертовски простое — Распределительный вал !
Распределительный вал соединен с коленчатым валом через зубчатый механизм или зацеплен с помощью цепи привода ГРМ.
Анимация вверху — Кулачок на распределительном валу, преобразующий вращательное движение в колебательное движение клапанов, тем самым открывая и закрывая клапаны в точное время. Источник
Опять же, это доказывает, что иногда все, что нам нужно, — это простой дизайн.
Вам может понравиться — Различия, преимущества и недостатки 4-тактного и 2-тактного двигателей!
Свеча зажигания используется только в бензиновых двигателях и поэтому используется здесь.В дизельных двигателях нет свечей зажигания. Смесь настолько сжата, что способна воспламениться.
Как запускается двигатель ИЛИ при запуске двигателя как опускается поршень?
Ответ: когда вы вставляете ключ в машину, чтобы «включить», аккумулятор вращает маленький мотор, который зацепляется с большей шестерней маховика. Таким образом, двигатель запускается путем всасывания в него топливовоздушной смеси, а затем следует вышеуказанному циклу.
Вот видео как запускаются двигатели?
Соответствующие
Четырехтактный цикл | Инжиниринг | Fandom
Четырехтактный цикл (или цикл Отто ) двигателя внутреннего сгорания — это цикл, наиболее часто используемый сегодня для автомобильных и промышленных целей (легковые и грузовые автомобили, генераторы и т. Д.).Он был разработан французским инженером Альфонсом Бо де Роша в 1862 году и независимо от него немецким инженером Николаусом Отто в 1876 году. Четырехтактный цикл является более экономичным и экологически чистым, чем двухтактный цикл, но требует значительно большего. движущиеся части и производственный опыт. Более того, его легче производить в многоцилиндровых конфигурациях, чем в двухтактных, что делает его особенно полезным в высокопроизводительных системах, таких как автомобили. Позднее изобретенный двигатель Ванкеля имеет четыре аналогичные фазы, но представляет собой роторный двигатель внутреннего сгорания, а не гораздо более обычный поршневой двигатель четырехтактного цикла.
Четырехтактный цикл (или цикл Отто)
Цикл Отто характеризуется четырьмя ходами или попеременными прямыми движениями поршня внутри цилиндра вперед и назад:
- ход впуска (впуска)
- ход сжатия
- рабочий ход (сгорание)
- такт выпуска
Цикл начинается в верхней мертвой точке , когда поршень находится в самой верхней точке.При первом ходе вниз (, впуск ) поршня смесь топлива и воздуха втягивается в цилиндр через впускное (впускное) отверстие. Впускной (впускной) клапан (или клапаны) затем закрывается (ы), и следующий ход вверх ( сжатие ) сжимает топливно-воздушную смесь.
Затем воздушно-топливная смесь воспламеняется, обычно свечой зажигания для бензинового двигателя или двигателя с циклом Отто, или за счет тепла и давления сжатия для дизельного двигателя с воспламенением от сжатия, примерно в верхней части такта сжатия.Возникающее в результате расширение горящих газов затем заставляет поршень опускаться для третьего хода (, мощность ), а четвертый и последний ход вверх (, выхлоп ) выводит отработавшие выхлопные газы из цилиндра мимо открытого в то время выпускного клапана или клапанов. через выхлопное отверстие.
Время работы клапана[править | править источник]
В своей первоначальной конфигурации четырехтактный двигатель полностью полагается на движение поршня для всасывания топлива и воздуха и вытеснения выхлопных газов.Когда поршень опускается во время такта впуска (впуска), в цилиндре создается частичный вакуум, который втягивает топливно-воздушную смесь. Затем впускной клапан закрывается, поршень поднимается, смесь сжимается и воспламеняется, в результате чего поршень снова опускается. Когда выпускной клапан открывается, поршень снова поднимается вверх и вытесняет выхлопные газы. Этот метод использовался в первых четырехтактных двигателях. Однако вскоре было обнаружено, что при скоростях вращения, приближающихся к 100 оборотам в минуту (об / мин) или выше, выхлопные газы не могут менять направление достаточно быстро, чтобы выходить за выпускной клапан одним движением поршня.
При высоких скоростях вращения постоянный поток через впускное и выпускное отверстия поддерживается за счет одновременного открытия впускного и выпускного клапанов в верхней мертвой точке (известной как , перекрытие клапанов ). Импульс выхлопного газа поддерживает выходящий поток и создает эффект всасывания в цилиндре, известный как продувка , помогая втягивать всасываемый заряд в цилиндр. Однако, чтобы сохранить эффективность, выпускной клапан должен быть закрыт достаточно быстро, чтобы слишком много топливно-воздушной смеси из впускного отверстия не попало в выхлоп двигателя, тратя топливо. В ситуации с высокой мощностью, например, в гонках, где обычно используются высокие обороты двигателя и принудительная индукция, этот расход топлива может служить для охлаждения выпускного клапана и предотвращения детонации.
После воспламенения топливно-воздушного заряда по мере приближения поршня к нижней мертвой точке сгорание замедляется. Непосредственно перед тем, как заряд закончится сгорать, выпускной клапан открывается примерно при 20 градусах поворота коленчатого вала до дна мертвой точки . Это позволяет все еще расширяющимся газам внутри цилиндра выталкиваться через выхлопное отверстие, создавая поток выхлопных газов и давая импульс выхлопному потоку.Хотя небольшое количество силы теряется через выпускное отверстие, которое может приводить в движение поршень, сила, которую поршень должен оказывать на газы, чтобы вывести их из цилиндра, уменьшается, что приводит к повышению эффективности.
Выхлопные системы во многих ситуациях представляют собой компромисс между стоимостью производства, оптимальным потоком, низким уровнем выбросов и низким уровнем шума. Ограничения в выхлопной системе, включая выхлопное оборудование, глушители и простые выхлопные трубы, могут ограничивать надлежащий поток выхлопных газов.В многоцилиндровых приложениях, в которых многие цилиндры имеют общую выхлопную трубу, волны давления, создаваемые выхлопными газами цилиндров, могут препятствовать потоку выхлопных газов из других цилиндров. Поскольку это предотвращает выход выхлопных газов из цилиндра, перекрытие впускного клапана приводит к изменению на , когда выхлопные газы входят во впускное отверстие. Проблемы с внутренним давлением из-за того, что многоцилиндровый двигатель имеет общую впускную камеру, можно преодолеть, используя карбюратор или инжектор для каждого цилиндра.
Достижение максимального объемного КПД для данного двигателя не является шаблонным процессом. Такие переменные, как скорость потока, перекрытие, подъем клапана , и местоположение клапана, создают большой набор переменных. Различное впускное и выпускное оборудование испытывается при разных скоростях и нагрузках, и конечным результатом обычно является компромисс между мощностью, выбросами и стоимостью, за исключением ситуаций, когда требуется максимальная мощность независимо от стоимости или выбросов (например, гонки).
Клапаны обычно приводятся в действие распределительным валом, который представляет собой шток с рядом выступающих кулачков (кулачков), каждый с тщательно рассчитанным профилем, предназначенным для того, чтобы толкать клапан на требуемую степень в нужный момент и удерживать его. открывать по мере необходимости по мере вращения распределительного вала.Между штоком клапана и кулачком находится толкатель, толкатель кулачка, который учитывает изменения в линии контакта кулачка. В более старых конструкциях двигателей распределительный вал находился в картере, и его движение передавалось толкателем и коромыслом (вся цепочка деталей известна как клапанный механизм). Клапан удерживается в закрытом состоянии сильной пружиной, против силы которой кулачок толкает, чтобы открыть его. Каждый клапан должен открываться только один раз в течение четырехтактного цикла. Следовательно, распределительный вал совершает один оборот на каждые два оборота коленчатого вала.
Предполагая, что двигатель имеет достаточно прочную конструкцию, чтобы не ломаться, скорость и, следовательно, выходная мощность двигателя обычно ограничиваются способностью поддерживать большой объемный поток каждой из топливовоздушной смеси и выхлопного газа через соответствующие отверстия клапана. . Поэтому на создание этой части двигателя уходит много работы. Общие стратегии заключаются в увеличении клапанов, чтобы они занимали как можно больший диаметр цилиндра, в облегчении клапанного механизма за счет исключения деталей, в открытии клапанов как можно дальше в цилиндр или в использовании нескольких клапанов меньшего размера с большей общей площадью .Каждый из этих методов имеет свои недостатки, из-за которых в последнее время были разработаны двигатели с управляемой компьютером работой клапана, позволяющие оптимизировать работу двигателя при любой скорости и нагрузке. На иллюстрациях показан двигатель с двойным верхним расположением кулачков, который на протяжении многих лет был стандартной стратегией увеличения скоростных характеристик двигателя.
Десмодромные фазы газораспределения [править | править источник]
В подавляющем большинстве четырехтактных двигателей клапаны закрываются просто возвратной пружиной.По мере увеличения скорости вращения двигателя время, необходимое пружине для закрытия клапана, может стать значительным. При этом толкатель кулачка не может следовать замыкающему профилю кулачка, изменяя синхронизацию и, следовательно, производительность двигателя. Чтобы уменьшить это, используются более легкие клапаны и более прочные пружины, но есть практический предел того, насколько мала может быть уменьшена инерционная масса клапана, а увеличение прочности возвратной пружины клапана значительно увеличивает и без того значительный износ распределительного вала и седла клапана.
Одним из решений этой проблемы является система с десмодромной синхронизацией клапана . Это исключает возвратную пружину клапана и использует механическое устройство для прямого открытия и прямого принудительного закрытия клапана. Тогда можно получить гораздо более высокие обороты двигателя. В одних конструкциях используется дополнительный кулачок и коромысло, в других — кулачок, в котором на его вертикальной поверхности врезан канал, в который входит толкатель (в отличие от следования только внешнему профилю), в других — кривошипное устройство, подобное коленчатому валу. Недостатком системы является ее повышенная сложность и, как следствие, стоимость. Одним из производителей, использующих эту систему, является Ducati [1] для некоторых двигателей мотоциклов.
Пневматические пружины клапана[редактировать | править источник]
Последние двигатели Формулы 1 [2] прибегают к использованию пружин эвматических клапанов для преодоления ограничений металлических пружин на высоких оборотах при одновременном использовании обычных распределительных валов. «Пружина» клапана на самом деле представляет собой поршень, заполненный азотом с высоким давлением. Когда клапан приводится в действие кулачком, азот сжимается, и когда кулачок продолжает вращаться, повышенное давление в поршне возвращает клапан в закрытое положение.Благодаря этой системе ранее немыслимые обороты двигателя стали обычным явлением.
Величина выходной мощности, генерируемой 4-тактным двигателем, в конечном итоге ограничивается скоростью поршня из-за прочности материала. Поскольку поршни и шатуны ускоряются и замедляются очень быстро, материал физически достаточно прочен, чтобы выдерживать ограниченные скорости. Может произойти как физическая поломка, так и флаттер поршневого кольца, что приведет к потере мощности или даже к разрушению двигателя. Дрожание поршня возникает, когда поршневые кольца меняют направление так быстро, что их можно оттолкнуть от стенок цилиндра, что приводит к потере уплотнения цилиндра и потери мощности.
Одним из важных факторов в конструкции двигателя является передаточное число r OD / ход . Соотношение шток / ход — это отношение длины шатуна к длине хода коленчатого вала. Увеличение соотношения шток / ход (более длинный шток, более короткий ход или и то, и другое) приводит к снижению скорости поршня. Однако, опять же из-за проблем с прочностью и размером, существует предел длины стержня по отношению к ходу. Более длинный шток (и, следовательно, более высокое соотношение шток / ход) потенциально может создавать большую мощность из-за того, что с более длинным шатуном большее усилие от поршня передается по касательной к вращению коленчатого вала, обеспечивая больший крутящий момент. Более короткое отношение штока к ходу обеспечивает более высокую скорость поршня, но это может быть полезно в зависимости от других характеристик двигателя. Повышенная скорость поршня может создать завихрение или завихрение внутри цилиндра и уменьшить детонацию. Повышенная скорость поршня также может быстрее втягивать топливно-воздушную смесь в цилиндр через больший впускной канал, что способствует хорошему наполнению цилиндра.
Двигатель, у которого размер отверстия больше, чем ход поршня, обычно называют двигателем с квадратной формой, и такие двигатели могут достигать более высоких оборотов.И наоборот, двигатель с диаметром отверстия меньше его хода является двигателем под квадратным сечением. Соответственно, он не может достичь такого количества оборотов в минуту, но может увеличить крутящий момент на более низких оборотах. Кроме того, двигатель с одинаковым диаметром цилиндра и ходом называется квадратным двигателем.
- Харденберг, Хорст О. , Средние века двигателя внутреннего сгорания , Общество автомобильных инженеров (SAE), 1999
[3]
Различные части 4-тактного двигателя
4-тактный двигатель — это тип небольшого двигателя внутреннего сгорания, в котором для завершения одного рабочего цикла используются четыре различных хода поршня.Во время этого цикла коленчатый вал дважды поворачивается, а поршень дважды поднимается и опускается, зажигая свечу зажигания.
Перечень деталей 4-тактного двигателяВ состав 4-тактного двигателя малого объема входят:
- Поршень
- Коленчатый вал
- Распредвал
- Свеча зажигания
- Цилиндр
- Клапаны
- Карбюратор
- Маховик
- Шатун
- Форсунки топливные
Циклы 4-тактного двигателя
Вот детали и функции 4-х тактного дизельного двигателя.
1. Ход всасывания
Малые двигатели получают топливо и воздух через карбюратор. Затем карбюратор объединяет топливо и воздух для сгорания. Во время такта впуска впускной клапан между камерой сгорания и карбюратором открывается, что позволяет атмосферному давлению выталкивать топливно-воздушную смесь в цилиндр, когда поршень движется вниз.
2. Ход сжатия
Впускной и выпускной клапаны закрыты в такте сжатия. По мере движения вверх поршень сжимает топливно-воздушную смесь.Сжатие облегчает зажигание свечи зажигания топливно-воздушной смеси в рабочем такте.
3. Рабочий ход
Когда поршень достигает вершины, это оптимальная точка для воспламенения топлива. Свеча зажигания создает высокое напряжение, необходимое для зажигания. Тепло, создаваемое искрой, воспламеняет газ, который затем заставляет поршень вернуться в цилиндр.
4. Ход выхлопа
Когда поршень достигает дна, открывается выпускной клапан.Когда поршень движется обратно вверх, он вытесняет выхлопные газы из цилиндра. Как только поршень достигает вершины, выпускной клапан снова закрывается. Впускной клапан снова открывается, и 4-тактный процесс повторяется.
Свяжитесь с Prime Source Parts and Equipment сегодня
В Prime Source Parts and Equipment мы предлагаем решения по поддержке продукции и стремимся помочь нашим клиентам найти только нужные запчасти. Благодаря нашей обширной сети поставщиков у нас есть беспрецедентный доступ к лучшим запасным частям.
Если вам нужны мелкие детали двигателя или услуги, свяжитесь с нами сегодня. Наши опытные сотрудники и технические специалисты помогут вам точно определить, какие решения лучше всего подходят для ваших нужд.
В чем разница между 4-тактным и 2-тактным двигателем?
Что такое ход двигателя?
Большинство новых автомобилей, грузовиков и внедорожников имеют двигатели, которые очень экономичны. Чтобы любой двигатель работал правильно, он должен завершить процесс сгорания, который включает четыре отдельных хода шатуна и поршня внутри камеры сгорания в четырехтактном двигателе или два для двухтактного двигателя. Основное различие между двухтактным двигателем и четырехтактным двигателем — это выбор времени зажигания. То, как часто они стреляют, говорит вам, как они преобразовывают энергию и как быстро это происходит.
Чтобы понять разницу между двумя двигателями, вы должны знать, что такое ход. Для сжигания топлива требуется четыре процесса, каждый из которых включает один такт. Ниже перечислены четыре отдельных хода, которые участвуют в четырехтактном процессе.
Первый ход — такт впуска .Процесс работы двигателя начинается с такта впуска, когда поршень тянется вниз. Это позволяет смеси топлива и воздуха попадать в камеру сгорания через впускной клапан. Во время процесса запуска мощность для завершения такта впуска подается стартером, который является электродвигателем, прикрепленным к маховику, который вращает коленчатый вал и перемещает каждый отдельный цилиндр.
Второй ход — сжатие .А они говорят, что то, что падает, должно подниматься. Это то, что происходит во время такта сжатия, когда поршень движется обратно вверх по цилиндру. Во время этого хода впускной клапан закрывается, что сжимает накопленные топливные и воздушные газы, когда поршень движется к верху камеры сгорания.
Третий ход — сгорание . Здесь создается сила. Когда поршень достигает верхней части цилиндра, сжатые газы воспламеняются свечой зажигания.Это создает небольшой взрыв внутри камеры сгорания, который толкает поршень обратно вниз.
Такт четвертый — выхлоп . Это завершает четырехтактный процесс сгорания, так как поршень толкается вверх шатуном, а выпускной клапан открывается и выпускает сгоревшие выхлопные газы из камеры сгорания.
Ход считается одним оборотом, поэтому, когда вы слышите термин «Число оборотов в минуту», это означает, что это один полный цикл двигателя — или четыре отдельных хода на оборот.Итак, когда двигатель работает на холостом ходу со скоростью 1000 об / мин, это означает, что ваш двигатель выполняет четырехтактный процесс 1000 раз в минуту, или примерно 16 раз в секунду.
Различия между двухтактными и четырехтактными двигателями
Первое отличие состоит в том, что свечи зажигания срабатывают один раз на каждый оборот в двухтактном двигателе и срабатывают один раз на каждый второй оборот в четырехтактном двигателе. Революция — это один набор из четырех ударов. Четырехтактные двигатели позволяют каждому такту происходить независимо.Двухтактный двигатель требует, чтобы четыре процесса происходили при движении вниз и вверх, что и дало название двухтактному.
Еще одно отличие состоит в том, что двухтактные двигатели не нуждаются в клапанах, потому что впуск и выпуск являются частью сжатия и сгорания поршня. Вместо этого в камере сгорания есть выхлопное отверстие.
Двухтактные двигатели не имеют отдельной камеры для масла, поэтому его необходимо смешивать с топливом в надлежащих количествах. Конкретное соотношение зависит от транспортного средства и указано в руководстве по эксплуатации.Два наиболее распространенных соотношения — 50: 1 и 32: 1, причем 50 и 32 относятся к количеству бензина на одну часть масла. Четырехтактный двигатель имеет отдельный отсек для масла и не требует перемешивания. Это один из самых простых способов определить разницу между двумя типами двигателей.
Другой метод их идентификации — по звуку. Двухтактные двигатели часто бывают громкими с высоким гудением, в то время как четырехтактные двигатели издают больше мягкого гудения. Двухтактные двигатели часто используются в газонокосилках и высокопроизводительных внедорожниках (например, мотоциклах и снегоходах), а четырехтактные двигатели — это то, что вы найдете в дорожных транспортных средствах и высокоэффективных двигателях большого объема.
Посмотрите на внутреннее сгорание в действии с помощью этого прозрачного двигателя [видео] — Новости — Автомобиль и водитель
Искаженное восприятие
В большинстве современных автомобилей используется четырехтактный поршневой двигатель. Однако объяснить, как они работают, может быть сложно, а поскольку они обычно строятся из металла, трудно увидеть, что происходит. Сотрудники Warped Perception придумали умное решение этой проблемы, построив головку блока цилиндров из прозрачного пластика.
На видео ниже команда устанавливает нестандартную головку на одноцилиндровый поршневой двигатель Briggs & Stratton и запускает его, снимая при этом в сверхзамедленном движении. В результате вы можете четко видеть каждый этап процесса, когда двигатель проходит свой цикл.
На виде сверху на этот двигатель видны четыре части. Слева находится поршень, большой цилиндр, который движется вверх и вниз. Справа находятся впускной и выпускной клапаны вверху и внизу соответственно.Прямо между ними находится свеча зажигания, которая воспламеняет топливо.
Это четырехтактный двигатель, что означает, что полный цикл состоит из четырех ступеней. Шаг первый — открытие впускного клапана, подача топлива и воздуха в камеру, в то время как поршень движется вниз. На втором этапе поршень движется вверх, сжимая топливно-воздушную смесь. На третьем этапе топливо воспламеняется, и сила сгорания снова толкает поршень вниз. И, наконец, на четвертом шаге поршень движется вверх, выталкивая отработанную смесь через открытый выпускной клапан.
Так должен работать простой поршневой двигатель. Конечно, так бывает не всегда. Команда Warped Perception экспериментирует с использованием изопропилового спирта и ацетилена в качестве топлива вместо бензина, и двигатель явно не слишком заботится об этом.
Этот контент импортирован с YouTube. Вы можете найти то же содержание в другом формате или найти дополнительную информацию на их веб-сайте.
Версия этой истории впервые появилась на Popular Mechanics.
Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano.io.
Цикл четырехтактного двигателя
Большинство двигателей внутреннего сгорания работают по одному из двух принципов работы: двухтактный цикл или четырехтактный цикл. Четырехтактные двигатели являются преобладающим типом в авиации общего назначения и составляют тему этого поста.
Поршневые двигатели классифицируются по количеству отдельных шагов, которые двигатель выполняет за один полный цикл двигателя. Двухтактные двигатели совершают цикл за один оборот коленчатого вала с двумя движениями; ход поршня вверх и вниз, который включает впуск, сжатие, сгорание и выпуск. Двухтактные двигатели распространены на легких легких и некоторых сверхлегких самолетах меньшего размера, поскольку эти двигатели имеют меньшее количество деталей, что делает их более простыми в эксплуатации и более дешевыми в приобретении и обслуживании.
Четырехтактные двигатели являются наиболее распространенным типом двигателей, используемых в авиастроении общего назначения, и именно этот тип двигателя мы изучим далее. Четырехтактному двигателю требуется два оборота коленчатого вала для завершения одного цикла двигателя, при этом поршень перемещается на 180 ° для завершения каждого этапа цикла. Четырехтактный цикл включает в себя этап впуска и сжатия (один оборот коленчатого вала) и этап мощности и выпуска (один оборот коленчатого вала).
Номенклатура циклов
Есть ряд определений, которые следует хорошо понять, прежде чем переходить к деталям четырехтактного цикла.См. Изображение ниже и определения под изображением.
Рисунок 1: Диаметр цилиндра и ход поршня, движущегося в цилиндреВерхняя мертвая точка (ВМТ) — это относится к положению поршня, когда он находится в верхней части своего хода. Поршень расположен рядом с верхней частью головки блока цилиндров, а шатунная шейка находится в крайнем верхнем положении.
Нижняя мертвая точка (BDC) — это точка цикла, в которой поршень находится в нижней части своего хода, а шатунная шейка находится в самом нижнем положении.
Ход — ход двигателя — это возвратно-поступательное движение, на которое поршень перемещается в цилиндре от НМТ до ВМТ.
Диаметр цилиндра — это внутренний диаметр цилиндра.
Степень сжатия — объем пространства в цилиндре можно определить с поршнем в НМТ и ВМТ. Соотношение между ними и дает степень сжатия. Например, двигатель со степенью сжатия, равной 9, имеет объем в цилиндре в девять раз больше при поршне в НМТ, чем в ВМТ.2} {4} \ times Ход
$$
Где:
\ (D: \) Диаметр цилиндра
\ (S.V .: \) Рабочий объем
Четырехтактный цикл
Пока двигатель работает, он будет продолжать непрерывно повторять четыре шага в четырехтактном цикле. Каждый этап цикла представляет собой поворот поршня на 180 °, что соответствует половине оборота коленчатого вала. Поскольку для завершения одного четырехтактного цикла требуется два оборота коленчатого вала, полный цикл будет завершен при половине оборотов двигателя e.Двигатель g, работающий на 3000 об / мин, выполнит 1500 полных циклов за одну минуту.
Двигатель всегда завершает цикл в одном и том же порядке:
Рисунок 2: Элементы четырехтактного циклаВпускной или индукционный
Целью такта впуска или впуска является втягивание смеси воздуха и топлива в цилиндр. Этот ход происходит при движении поршня вниз из ВМТ в НМТ. Впускной клапан должен быть открыт, чтобы воздушно-топливная смесь попала в цилиндр, а выпускной клапан остается закрытым.Движение поршня вниз вызывает падение давления в цилиндре, в результате чего смесь всасывается в полость, оставшуюся после движения поршня.
Рисунок 3: Ход впуска или впускаСжатие
Как следует из названия, такт сжатия предназначен для сжатия топливовоздушной смеси, которая всасывается в головку блока цилиндров перед воспламенением. Это достигается за счет движения поршня вверх от НМТ к ВМТ. Движение поршня уменьшает объем, занимаемый смесью, вызывая повышение давления и температуры внутри цилиндра.Впускной и выпускной клапаны остаются закрытыми на протяжении большей части хода (впускной клапан остается открытым примерно на 50 ° после НМТ, чтобы оптимальное количество смеси поступало в цилиндр). Когда поршень приближается к ВМТ, загорается свеча зажигания, воспламеняя смесь. Искра рассчитана таким образом, чтобы инерция движущегося вверх поршня не замедлялась зажиганием, а продолжалась до ВМТ, где ход заканчивается.
Рисунок 4: Ход сжатияМощность
Быстро расширяющийся газ, воспламеняемый свечой зажигания, вызывает скачок давления внутри цилиндра, заставляя поршень вернуться из ВМТ в НМТ.По мере того как поршень движется вниз, увеличивающийся объем вызывает снижение давления и температуры в цилиндре. Именно этот рабочий ход заставляет коленчатый вал вращаться, что в конечном итоге приводит в движение гребной винт и создает тягу. Впускной и выпускной клапаны остаются закрытыми на протяжении большей части рабочего хода, при этом выпускной клапан открывается непосредственно перед тем, как поршень достигает НМТ. Время открытия клапана устанавливается таким образом, чтобы обеспечить выработку максимальной мощности и в то же время обеспечить наиболее эффективное удаление сгоревшего газа во время такта выпуска.
Рисунок 5: Рабочий ходВыхлоп
Выпускной клапан открывается непосредственно перед завершением рабочего хода и остается открытым во время движения поршня из НМТ в ВМТ. Движение поршня вытесняет выхлопные газы через открытый выпускной клапан, очищая цилиндр до начала такта впуска. На этом цикл завершается, и поршень снова начнет двигаться вниз по мере повторения шага индукции.
Рисунок 6: Такт выпуска, полный четырехтактный цикл
Полный цикл показан на изображении ниже.
Рисунок 7: Полный четырехтактный цикл работы клапанаОдно из фундаментальных свойств материи — то, что она обладает массой и, следовательно, инерцией. Это означает, что, как и твердое тело, топливно-воздушная смесь подчиняется законам Ньютона и требует силы, чтобы преодолеть ее инерцию и ускориться в цилиндр. Эта сила возникает из-за падения давления в цилиндре при движении поршня вниз, но движение газа не является мгновенным. Следовательно, открытие впускного и выпускного клапанов в ВМТ и НМТ соответственно не приведет к максимальной мощности, вырабатываемой двигателем из-за инерции газа.В результате впускной и выпускной клапаны открываются и закрываются не в ВМТ или НМТ, а скорее по обе стороны от этих положений, чтобы обеспечить оптимальную производительность. Важно помнить, что во время нормальной работы двигателя поршни движутся с очень высокими оборотами, что очень затрудняет отслеживание газом движения поршня.
Вывод клапана — клапан открывается преждевременно (до ВМТ или НМТ) для оптимальной работы двигателя.
Задержка клапана — закрытие клапана задерживается (после ВМТ или НМТ) для улучшения характеристик двигателя.
Вывод клапана | Задержка клапана | |
---|---|---|
Впускной клапан | Впускной клапан открывается до достижения ВМТ во время такта выпуска, чтобы подготовить цилиндр к приему топливно-воздушной смеси в начале такта впуска. | Впускной клапан не закрывается, поскольку НМТ достигается во время такта впуска, а скорее задерживается, пока поршень не пройдет мимо НМТ и не начнет такт сжатия. |
Выпускной клапан | Выпускной клапан открывается в конце рабочего хода непосредственно перед достижением НМТ. Это позволяет наиболее эффективно отводить газ во время такта выпуска. | Выпускной клапан немного закрывается после ВМТ сразу после начала такта впуска. Это помогает удалить весь выхлопной газ, поскольку свежая смесь, поступающая в цилиндр, вытесняет последний оставшийся газ. |
Опережение и запаздывание клапана приводит к периоду около ВМТ и НМТ, когда впускной и выпускной клапаны открыты одновременно. Этот период определяется как перекрытие клапана .На изображении ниже представлено графическое представление цикла четырехтактного двигателя, где периоды перекрытия клапанов можно увидеть по перекрытию двух цветных дуг.
Рисунок 8: Области перекрытия клапанов в цикле четырехтактного двигателяЦикл Отто
Четырехтактный цикл, описанный выше, приводит к изменениям давления и объема газа внутри цилиндра, когда поршень перемещается вверх и вниз во время различных ходов цикла. Термодинамическое представление этого цикла упоминается как цикл Отто, названный в честь немецкого инженера Николауса Отто ; первый человек, построивший рабочий четырехтактный двигатель в 1860-х годах.
Цикл Отто может быть представлен на графике с объемом по оси x и давлением по оси y, и описывает четырехтактный цикл следующим образом:
Рисунок 9: Цикл ОттоПроцесс 0–1: газообразная топливно-воздушная смесь (заряд) фиксированной массы втягивается в цилиндр при постоянном давлении (ход впуска).
Процесс 1–2: заряд сжимается адиабатически (предполагается отсутствие потерь тепла в окружающую среду), когда поршень перемещается из НМТ в ВМТ (ход сжатия).
Процесс 2–3: заряд воспламеняется от свечи зажигания, что приводит к быстрому увеличению давления в цилиндре. Это происходит при постоянном объеме и представляет собой момент, когда поршень находится в ВМТ перед движением вниз для завершения рабочего хода.
Процесс 3–4: Воспламеняющийся заряд заставляет поршень двигаться вниз, что приводит к адиабатическому (изэнтропическому) расширению газа (рабочий ход).
Процесс 4–1: Вся энергия (тепло), выделяемая при сгорании заряда, была преобразована в движение цилиндра вниз, и тепло рассеивается в процессе постоянного объема, пока поршень находится в НМТ.
Процесс 1–0: масса воздуха и любого остаточного топлива, которое остается после сгорания, выбрасывается в атмосферу через открытый выпускной клапан в процессе постоянного давления (такт выпуска).
Нумерация цилиндров и порядок работы
Важно понимать, что не все цилиндры в любом двигателе выполняют одну и ту же часть цикла одновременно; скорее, каждый из них срабатывает в определенной последовательности, предназначенной для обеспечения плавной работы двигателя и передачи постоянной мощности на винт.Производители авиационных двигателей всегда маркируют каждый цилиндр двигателя и публикуют порядок его включения.
Порядок зажигания предназначен для максимального уравновешивания двигателя путем обеспечения (в случае горизонтально расположенного двигателя), что противоположные поршни перемещаются в одном направлении. В четырехтактном четырехцилиндровом двигателе каждый цилиндр должен совершать один из четырех тактов одновременно.
Предварительное зажигание и детонация
Предварительное зажигание и детонация — два отдельных, но схожих явления, которые приводят к преждевременному воспламенению топливно-воздушного заряда, вызывая повреждение поршней и потерю мощности.
Предварительное зажигание: относится к воспламенению топливно-воздушной смеси до возгорания свечи зажигания и вызывается любым источником в цилиндре, достаточно горячим, чтобы вызвать воспламенение. Распространенными причинами преждевременного зажигания являются горячие точки в камере сгорания, горячий выпускной клапан, перегретая свеча зажигания или раскаленные частицы углерода, отложившиеся в цилиндре. Предварительное воспламенение обычно происходит в одном цилиндре (самом горячем цилиндре), тогда как детонация происходит во всех цилиндрах одновременно.
Детонация (детонация): во время такта сжатия топливно-воздушный заряд подвергается быстро возрастающему давлению и температуре по мере уменьшения объема. Чем выше степень сжатия двигателя, тем горячее становится заряд. При очень высоких степенях сжатия может возникнуть ситуация, когда заряд мгновенно воспламенится (взорвется) до назначенного момента возгорания. Это называется детонацией и вызывает удар по поршню, похожий на молоток, вместо контролируемого плавного толчка во время рабочего хода. При использовании топлива с неправильным октановым числом может возникнуть детонация. Топливо с более высоким октановым числом способно выдерживать большее сжатие перед воспламенением; поэтому крайне важно использовать топливо с правильным октановым числом для конкретного двигателя. Если рекомендованное топливо с октановым числом недоступно, следует использовать топливо с самым высоким октановым числом. Использование топлива с октановым числом ниже рекомендованного может сделать человека уязвимым для детонации.
Детонация все еще может происходить, даже если используется топливо с правильным октановым числом.Следующие элементы также могут вызвать детонацию, если не устранить их во время полета:
- Полет с более высоким давлением в коллекторе, чем рекомендуется — это приведет к повышению температуры и давления головки цилиндров за пределы нормальных рабочих пределов.
- Полет на слишком бедной смеси — более бедная смесь увеличивает температуру головки блока цилиндров. Детонация может произойти при добавлении мощности, но при отсутствии обогащения смеси до этого.
- Допускает повышение температуры головки цилиндров за пределы нормальных рабочих пределов из-за отсутствия аэродинамического охлаждения.Авиационные двигатели с воздушным охлаждением могут перегреваться во время набора высоты, если за ними не следить. В случаях, когда температура головки блока цилиндров приближается к пределу, может потребоваться уменьшить скорость набора высоты или выполнить ступенчатый набор высоты.
На этом мы подошли к концу нашего обсуждения цикла четырехтактного двигателя внутреннего сгорания. В следующем посте мы перейдем к более практическим аспектам эксплуатации поршневого самолета. Мы начнем с кабины и обсудим инструменты двигателя, общие для большинства легких самолетов, прежде чем перейти к некоторым общим проблемам с двигателями; как их диагностировать и что делать, если вы видите их во время полета.
Вам понравился этот пост? Почему бы не продолжить чтение этой серии статей о поршневых двигателях самолетов и их системах?
Как работают двухтактные и четырехтактные подвесные двигатели.
Evinrude Как работают 2-тактные и 4-тактные подвесные двигатели Отчет капитана
Узнайте о том, как подвесные двигатели генерируют мощность, почему в разных двигателях используются разные системы и что все это означает.
Вы когда-нибудь задумывались, как на самом деле работает подвесной двигатель?
Современные подвесные двигатели, аналогичные двигателям других товаров, таких как автомобили или мотоциклы, используют внутреннее сгорание топлива для перемещения поршней, которые, в свою очередь, вращают приводной вал.Все двигатели этого типа требуют, чтобы три элемента работали вместе для сгорания и движения —
1. Воздух
2. Топливо
3. Искра
В двигателе есть системы для определения количества каждого из них и того, когда они должны применяться. В случае подвесного двигателя сгорание создает вращающую силу на коленчатом валу, которая, в свою очередь, используется для вращения гребного винта.
Для 4-тактных двигателей требуется на 100 движущихся частей больше, чем для 2-тактных двигателей.
2 различных технологии
В подвесных двигателях используются две основные технологии для выработки энергии за счет сгорания.У каждого есть сходства и различия для достижения одной и той же цели — поворота пропеллера для создания движущей силы.
Один тип подвесного двигателя называется четырехтактным, а другой — двухтактным. Причина, по которой они названы таким образом, связана с тем, как двигатель настроен на выполнение необходимых функций для осуществления сгорания.
«Ход» — это когда один поршень перемещается от одного конца цилиндра к другому. Для одного типа двигателя, используемого в подвесных двигателях, требуется четыре такта для каждого сгорания, поэтому он называется четырехтактным двигателем.Другой требует всего два такта для каждого сгорания, поэтому он называется двухтактным двигателем.
Четырехтактному двигателю требуется один такт для выполнения всех основных потребностей двигателя.
Как работает 4-тактный двигатель
В 4-тактном двигателе для обеспечения сгорания происходит четыре этапа, в каждом из которых поршень перемещает длину цилиндра или совершает «ход».
1. Сначала поршень перемещается на вниз в цилиндре, создавая вакуум.При этом открывается клапан, расположенный в верхней части цилиндра, впуская смесь воздуха и топлива. Это называется тактом впуска . Клапан удерживается закрытым с помощью пружинного механизма и открывается кулачком (выступ на распределительном валу), который толкает клапан и сжимает пружину. Как только кулачок проходит клапан, пружина снова закрывает клапан.
Когда поршень движется вниз (обозначен розовой стрелкой), впускной клапан открывается (показан желтой стрелкой), впуская топливно-воздушную смесь в цилиндр.
2. Затем поршень перемещается вверх на , чтобы сжать смесь воздуха и топлива в камере сгорания. Это называется тактом сжатия . Когда поршень достигает верхней части цилиндра, воздушно-топливная смесь сжимается.
При движении поршня вверх он сжимает топливно-воздушную смесь в камере сгорания в верхней части цилиндра.
3. Когда поршень находится в верхней части цилиндра , свеча зажигания воспламеняет смесь, создавая взрыв, который толкает поршень вниз.Это когда поршень совершает третий проход через цилиндр. Это такт сгорания или «рабочий ход».
Когда свеча зажигания воспламеняет топливно-воздушную смесь, она заставляет поршень опускаться в цилиндр.
4. Четвертый ход — когда поршень снова поднимается , выпускной клапан открывается, и отработанный газ выталкивается в выпускной коллектор. Он называется такт выпуска .
По мере того, как поршень движется вверх по цилиндру (показан розовой стрелкой), он выталкивает выхлопные газы из теперь открытого выпускного клапана (обозначен желтой стрелкой).
Как работает обычный 2-тактный двигатель с карбюратором
2-тактный двигатель проходит две ступени для обеспечения сгорания, каждая из которых включает в себя перемещение поршня по длине цилиндра или выполнение «хода».
1. Когда поршень начинает двигаться вверх , он сжимает топливно-воздушную смесь в цилиндре и закрывает впускные и выпускные клапаны. На 2-тактном двигателе клапаны представляют собой отверстия в стенке цилиндра, а не в верхней части цилиндра в камере сгорания, как на 4-тактном.Таким образом, первый такт в обычном карбюраторном 2-тактном двигателе выполняет функции впуска и сжатия.
Это чертеж обычного карбюраторного двухтактного двигателя. Когда поршень движется вверх, смесь воздуха и топлива в картере нагнетается в цилиндр через впускной клапан (показан желтой стрелкой). Желтая стрелка показывает выхлопное отверстие, через которое выхлопные газы недавно вышли из камеры. Оба эти клапана скоро будут заблокированы поршнем, перемещающимся вверх в цилиндре.
Когда искра воспламеняет топливно-воздушную смесь, поршень движется вниз, сжимая воздух в картере.
2. Когда поршень находится в верхней части цилиндра , свеча зажигания воспламеняет топливно-воздушную смесь, и происходит взрыв, толкающий поршень вниз в начале его второго хода. Проходя вниз по цилиндру, поршень открывает выпускной клапан, и отработанные газы выходят из камеры. Таким образом, этот двигатель выполняет как рабочий такт, так и функцию выпуска за один такт.
В то же время нижняя часть поршня сжимает воздух в картере, проталкивая воздушно-топливную смесь через недавно открытый впускной клапан в цилиндр. И процесс повторяется.
После сгорания поршень опускается (показан розовой стрелкой) и создает давление в картере. Это заставляет воздух из картера поступать в цилиндр через впускной клапан (обозначен желтыми стрелками), а также открывает выпускной клапан, так что газы могут выходить (показано оранжевой стрелкой) в выпускной коллектор.
Сделай математику
Все это означает, что естественная механика двухтактного двигателя внутреннего сгорания производит вдвое больше рабочих ходов за каждый оборот коленчатого вала. Как мы видели, поршень четырехтактного подвесного двигателя выполняет два дополнительных прохода через цилиндр: один для выталкивания выхлопных газов, а другой — для всасывания топливно-воздушной смеси.
На 2-тактном двигателе ступени впуска и выпуска регулируются направленным вниз давлением поршня на воздух картера, который толкается в поршень при открытии клапана боковой стенки цилиндра.
2000 ходов мощности по сравнению с 1000
Взглянем на это с другой стороны: при 2000 об / мин каждый цилиндр в двухтактном двигателе запускается и генерирует энергию 2 000 раз. Неважно, сколько там цилиндров. Независимо от того, поворачивает ли коленчатый вал двухтактного подвесного двигателя один поршень, четыре, шесть или восемь, все они совершают полный цикл движения вверх-вниз при каждом повороте коленчатого вала.