Где используются двигатели внутреннего сгорания: Где ещё, кроме автомобилей, применяют двигатели внутреннего сгорания?

Содержание

устройство, принцип работы и классификация


Что такое ДВС?

ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

ДВС работает  благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).


Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

  • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет.
    Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
  • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM.
    Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
  • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты  (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  1. Блок цилиндров. Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  2. Кривошипно-шатунный механизм (КШМ)
    – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
  3. Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

    Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

    Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

    Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  4. Система питания. В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  5. Система смазки. Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления.
    Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки  выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  6. Система охлаждения. Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.
  7. Выхлопная система. Служит для отвода от мотора продуктов сгорания.
    Включает:
    — выпускной коллектор (приёмник отработанных газов),
    — газоотвод (приёмная труба, в народе- «штаны»),
    — резонатор для разделения выхлопных газов и уменьшения их скорости,
    — катализатор (очиститель) выхлопных газов,
    — глушитель (корректирует направление потока газов, гасит шум).
  8. Система зажигания. Входит в состав только бензодвигателей. Неотъемлемые компоненты системы – свечи и катушки зажигания. Самый популярный вариант конструкции – «катушка на свече». У двигателей внутреннего сгорания старого поколения также были высоковольтные провода и трамблер (распределитель). Но современные производители моторов, прежде всего, благодаря появлению конструкции «катушка на свече», могут себе позволить не включать в систему эти компоненты.
  9. Система впрыска. Позволяет организовать дозированную подачу топлива.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.


Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС. 

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени.

Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

Принцип работы двигателя

Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.

При этом сам процесс преобразования энергии может отличаться.

Самый распространённый вариант такой:

  1. Поршень в цилиндре движется вниз.
  2. Открывается впускной клапан.
  3. В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
  4. Поршень поднимается.
  5. Выпускной клапан закрывается.
  6. Поршень сжимает воздух.
  7. Поршень доходит до верхней мертвой точки.
  8. Срабатывает свеча зажигания.
  9. Открывается выпускной клапан.
  10. Поршень начинает двигаться вверх.
  11. Выхлопные газы выдавливаются в выпускной коллектор.

Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE. 

Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.


Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

  1. Такт выпуска.
  2. Такт сжатия воздуха.
  3. Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
  4. Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

4 такта образуют рабочий цикл.

При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.


Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

  • Поршень двигается снизу-вверх.
  • В камеру сгорания поступает топливо.
  • Поршень сжимает топливно-воздушную смесь.
  • Возникает компрессия. (давление).
  • Возникает искра.
  • Топливо загорается.
  • Поршень продвигается вниз.
  • Открывается доступ к выпускному коллектору.
  • Из цилиндра выходят продукты сгорания.

То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

Важно! Кроме количества тактов есть отличия в механизме газообмена.

В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).


Классификация двигателей

Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.

Классификация двигателей в зависимости от рабочего цикла

В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов: 

  1. Ориентированные на цикл Отто. Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
  2. Ориентированные на цикл Дизеля. Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.

Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.


А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.

И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.


Классификация двигателей в зависимости от конструкции

  • Поршневой. Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
  • Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.

Классификация двигателей по принципу подачи воздуха

Подача воздуха также разделяет ДВС на два класса:

  1. Атмосферные. При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
  2. Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.

Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.


Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.

Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.

Преимущества ДВС

  1. Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
  2. Высокая скорость заправки двигателя топливом.
  3. Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.
  4. Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.

Недостатки ДВС

При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.

Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).

Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

Двигатель внутреннего сгорания

Определение 1

Двигатель внутреннего сгорания — двигатель, в котором топливо сгорает непосредственно в рабочей камере двигателя.

Первый двигатель внутреннего сгорания (коммерчески успешный) был создан Этьеном Ленуар около $1859$ г. и первый современный двигатель внутреннего сгорания был создан в $1876$ году Николаусом Отто.

Двигатели внутреннего сгорания чаще всего используются для приведения в движение транспортных средств — (автомобилей, мотоциклов, судов, локомотивов, самолетов) и других мобильных машин.

Применение

Поршневые двигатели являются на сегодняшний день наиболее распространенным источником питания для наземных и водных транспортных средств, в том числе автомобилей, мотоциклов, кораблей и в меньшей степени, локомотивов (некоторые из них электрические, но большинство используют дизельные двигатели). Роторные двигатели конструкции Ванкеля используются в некоторых автомобилях, самолетах и мотоциклах.

Там, где требуются очень высокие соотношения мощности к весу, двигатели внутреннего сгорания используются в виде турбин внутреннего сгорания или двигателей Ванкеля.

Классификация

Есть несколько возможных способов классификации двигателей внутреннего сгорания.

Поршневые:

По количеству ударов

  • Двухтактный двигатель;
  • Четырехтактный двигатель (с циклом Отто)
  • Шеститактный двигатель

По типу розжига

  • Двигатель с воспламенением от сжатия;
  • Двигатель с искровым зажиганием (обычно встречаются в бензиновых двигателях)

Роторные:

Следующие типы реактивных двигателей также типы газовых турбин:

  • турбореактивный
  • турбовентиляторный
  • турбовинтовой

Запуск (стартер)

Стартер является электродвигателем, пневматическим двигателем, гидравлическим двигателем, двигателем внутреннего сгорания, используемый для вращения двигателя внутреннего сгорания таким образом, чтобы инициировать работу двигателя под его собственной силой.

Двигатели внутреннего сгорания должны иметь циклы, с которых начинается запуск. В поршневых двигателях это достигается путем поворота коленчатого вала, который запускает циклы пуска, сжатия, сгорания и выхлопа.

Замечание 1

Наиболее часто встречающиеся способы запуска ДВС сегодня это с помощью электрического двигателя.

Другой способ запуска является использование сжатого воздуха, который прокачивают в некоторых цилиндрах двигателя, для того, чтобы запустить его.

Турбинные двигатели часто запускаются с помощью электромотора.

Загрязнение воздуха

Двигатели внутреннего сгорания, такие как поршневые двигатели внутреннего сгорания, производят выбросы в воздух, из-за неполного сгорания углеродистого топлива. Основные производные процесса являются диоксид углерода СО2, вода и сажа – ее также называют твердой частицей. Следствия от вдыхания частиц были изучены в организме человека и животных, и включают в себя астму, рак легких, сердечно — сосудистые проблемы, и преждевременную смерть. Есть, однако, некоторые дополнительные продукты процесса горения, которые включают оксиды азота и серы, а также некоторые несгоревшие углеводороды, которые зависят от условий эксплуатации.

Не все топливо полностью израсходуется в процессе сгорания. Небольшое количество топлива, присутствует после сгорания, а некоторое вступает в реакцию с образованием кислородсодержащих соединений, таких как формальдегид или ацетальдегид. Неполное сгорание обычно возникает в результате недостатка кислорода для достижения идеального стехиометрического соотношения.

Угольное топливо содержит серу и примесь, которое в конечном счете производит монооксид и диоксид серы, который содержится в выхлопных газах, что способствует кислотным дождям.

Виды топлива для автомобилей

С момента появления автомобильных двигателей внутреннего сгорания и до сих пор для них используются продукты нефтепереработки: бензин и дизельное топливо. И то, и то – смесь углеводородов с присадками. Разница только в отдельных характеристиках и температурном режиме. От 35 до 2000 градусов для бензина и от 180 до 3600 – для дизеля.

Бензин

Бензин – легкокипящие жидкие углеводороды, которые выделяются при переработке твердого топлива, перегонке нефти, осушке природного газа. Основной критерий – детонационная стойкость, которая характеризуется октановым числом. Чем оно выше – тем выше устойчивость бензина к детонации. Худшие показатели у парафиновых углеводородов, а лучшие – у ароматических. Для улучшения свойств вводятся специальные присадки.

Второй важный критерий – степень сжатия. Чем она выше – тем выше мощность двигателя, но и больше расход топлива. Важно, чтобы степень сжатия и октановое число коррелировали между собой.

Фракционный состав бензина напрямую влияет на пуск двигателя, прогрев, экономичность, долговечность и отсутствие паровых пробок. Исходя из этого, бензины классифицируют на зимние и летние: адаптированные под конкретные температурные условия.

Дизельное топливо

Дизельные топлива – это продукт на основе дистиллятных фракций при прямой перегонке нефти. Основные компоненты – цетан и метилнафталин. Это легко воспламеняемая жидкость и плохо воспламеняемая добавка. Воспламеняемость – главная характеристика, которая выражается в цетановом числе. Это аналог октанового числа для бензина.

Прокачиваемость дизеля определяет его способность циркулировать по системе. Она зависит от предельной температуры фильтруемости, температуры помутнения и застывания. Также нужно учитывать наличие воды и механических примесей.

Альтернативные виды

Во всем мире растет интерес к альтернативным видам автомобильного топлива: более экономичным, экологичным и эффективным. Они производятся из неисчерпаемых запасов и создают меньше выбросов в атмосферу.

Вот некоторые из них:

  • Природный газ. Доступен практически повсеместно, выделяет меньше токсичных веществ, чем бензин или дизель, полностью сгорает при использовании.
  • Электричество. Электрокары на аккумуляторах совершенствуются с каждым годом. Для зарядки они подключаются к источнику питания. Электрохимическая реакция в двигателе не загрязняет окружающую среду.
  • Пропан. Сжиженный нефтяной газ – побочный продукт нефтепромышленности. Его уже используют в быту и для отопительных систем.
  • Водород. Он используется в системах с природным газом и электрических топливных элементах.
  • Метанол. Древесный метиловый спирт пока не пригоден для использования в автомобилях, но со временем может стать перспективным альтернативным источником.
  • Этанол. Этиловый спирт смешивается с бензином для повышения октанового числа топлива и минимизации токсичных выбросов.
  • Биодизель. Изготовлен на основе растительных или животных жиров, включая отходы пищевой промышленности. Поддается биохимическому разложению.

Но что делать, если проблема не в топливе, а в автомобиле?  Если ваше авто временно в ремонте, вы планируете командировку или путешествие либо просто хотите протестировать новую марку, обращайтесь к нам! Компания «Укр-Прокат» предлагает обширный автопарк в Киеве, гибкие условия и выгодные цены!

Просто о сложном.

Двигатель

Все вышло из воды

Двигатель – это устройство, которое преобразует какой-либо вид энергии в механическую работу.

Двигатели разделяют на первичные и вторичные.

К первичным относятся те виды двигателей, которые преобразуют природные энергетические ресурсы в механическую работу. Это ветряное и водяное колесо, гиревой механизм, тепловые двигатели.

Вторичные – двигатели, которые преобразуют выработанную или накопленную энергию другими источниками. К ним относят электрические, пневматические и гидравлические.

Первичные двигатели, такие как парус и водяное колесо, были известны с незапамятных времен и использовались повсеместно.

До середины XVII века человек обходился первичными двигателями и довольствовался силой воды, ветра и тяжести.

Первым шагом на пути к двигателю стала пароатмосферная машина, созданная по проектам французского физика Дени Папена и английского механика Томаса Севери, которая сама по себе не могла служить механическим приводом, и к ней необходимо было водяное колесо.

В 1763 году механик Иван Ползунов по собственному проекту изготовил стационарную паровую машину, которая хоть и была далека от совершенства, но работала без сбоев.

К 1784 году английский механик Джеймс Уатт создал более совершенную паровую машину, которая была названа универсальным паровым двигателем.

В машине был предусмотрен жесткий поршень, по обе стороны которого поочередно подавался пар. Подача пара происходила автоматически, а поршень через кривошипно-шатунную систему вращал маховик, который обеспечивал плавность хода. Такая модификация машины Севери не была привязана к водонапорной башне и могла стать самостоятельным приводом различных механизмов. Уатт создал элементы, которые в дальнейшей истории двигателестроения в той или иной вариации входили во все паровые машины, получившие широкое распространение. Их использовали как приводы станков, экипажей для перевозки людей и грузов, судов и локомотивов на железных дорогах.

Следующим шагом в двигателестроении стала паровая турбина, изобретенная в конце XIX века, которая применялась на морских судах и на электростанциях в начале XX века.

Индустрия двигателестроения не стояла на месте, и в конце XIX века на первый план вышли двигатели внутреннего сгорания.

Первым в семействе ДВС стал механизм, созданный французским инженером Этьеном Ленуаром в 1860 году. Его конструкция представляла собой одноцилиндровый двухтактный газовый двигатель. Ленуар использовал принцип работы поршня двигателя Уатта, но рабочим телом служил не пар, а продукты сгорания смеси воздуха и светильного газа, вырабатываемого газогенератором.

Двигатель Ленуара стал первым в истории серийно выпускавшимся ДВС.

В 1897 году инженер Рудольф Дизель предложил ДВС с воспламенением рабочей смеси в цилиндре от сжатия воздуха, который был впоследствии назван его именем.

Двигатели внутреннего сгорания стали основой развития автомобильного транспорта в XX веке.

В первой половине XX века были созданы новые типы первичных двигателей: газовые турбины, реактивные двигатели, а в 1950-х и ядерные силовые установки.

В 1834 году русский ученый Борис Якоби создал первый пригодный для практического использования вторичный двигатель – электродвигатель постоянного тока.

Двигатели можно классифицировать по источнику энергии, по типам движения, по устройству, по назначению и т.д.

Отрасль двигателестроения является одной из наиболее развивающихся. В год по всему миру подается до 50 заявок на патентование в категории «Двигатели». В основном это модификации существующих механизмов с новым соотношением элементов либо с принципиальными новинками. Новые конструкции же появляются редко.

А вместо сердца – пламенный мотор

В авиации используются в основном тепловые двигатели, которые создают тягу, необходимую для поднятия летательного аппарата в воздух.

По способу создания тяги авиационные двигатели можно разделить на три группы: винтовые, реактивные и комбинированные.

Винтовые двигатели создают тягу вращением воздушного винта, а реактивные преобразуют энергию топлива в кинетическую энергию вытекающей из двигателя газовой струи, вызывающей силу реакции, непосредственно используемой в качестве движущей силы. Воздушно-реактивные двигатели используют для сгорания кислород атмосферного воздуха.


Комбинированные создают тягу, складывающуюся из силы реакции потока продуктов сгорания, вытекающих из двигателя, и тяги, создаваемой обычным или специальным воздушным винтом. Комбинированные двигатели разделяются на турбовинтовые, турбореактивные и винтовентиляторные. Также их называют газотурбинными авиадвигателями.

Такие двигатели с легкостью поднимают в небо трансатлантические лайнеры, но их мощности недостаточно для того, чтобы поднять ракету в космос.

Для ракет используют реактивные двигатели, в них для сгорания топлива используется окислитель, транспортируемый самим летательным аппаратом.

Кроме того, сила тяги реактивного двигателя не зависит от наличия окружающей среды, а также от скорости самой ракеты.

Взлетные технологии

Развитие отрасли двигателестроения в России, стремящейся к независимости от импортных механизмов, началось в 1980-х гг. Такие предприятия, как УМПО, НПП «Мотор», рыбинское НПО «Сатурн», включились в мировую гонку за создание передового двигателя, который составит конкуренцию продукции таких гигантов промышленности, как Pratt & Whitney, которой комплектуют самолеты линейки Boeing и Airbus.

В результате многолетней кропотливой работы всех предприятий и НИИ отрасли, а также интеграции частного и государственного капитала был создан авиационный двигатель ПД-14. Он предназначен для новейшего российского среднемагистрального самолета МС-21, который в конце 2017 года совершил тестовый перелет с аэродрома корпорации «Иркут» на аэродром Жуковский для проведения дальнейших испытаний.

ПД-14 представляет собой турбореактивный двухконтурный двухвальный двигатель. Взлетная тяга ПД-14 может достигать 18 тонн.

Эксперты сравнивают ПД-14 с двигателями для среднемагистральных самолетов компаний Pratt & Whitney и Rolls-Royce.

На базе ПД-14 ведутся разработки вертолетного двигателя ВК-2500М. Подготовка демонстрационной модели двигателя нового поколения запланирована на 2021 год. Как и в ПД-14, в конструкции ВК-2500М будут использованы новейшие материалы, что позволит облегчить массу на 15% по сравнению с существующими аналогами без потери мощности.

Первая модификация указанного двигателя ВК-2500 активно вводится в эксплуатацию, а также выводится на международный рынок путем валидации сертификатов в странах-импортерах.  

Мы наращиваем объемы производства двигателей ВК-2500 в интересах государственного заказчика, а также планируем существенно нарастить экспорт. При этом сборка ведется полностью из российских комплектующих

Анатолий Сердюков, индустриальный директор авиационного кластера Госкорпорации Ростех

В отличие от своего предшественника, новый вертолетный двигатель оснащен цифровой системой автоматического управления с современным электронным блоком автоматического регулирования и новейшими датчиками. Использование современных технологий и новейших материалов позволило обеспечить поддержание режимов в более широком диапазоне температур наружного воздуха, повысить ресурсы и показатели топливной экономичности. Такие двигатели позволят вертолетам семейства Ми-17 и аналогичным расширить потенциал своих возможностей в высокогорных районах и районах с жарким климатом.

Российское двигателестроение развивается в направлении как гражданской, так и военной авиации. В апреле 2018 года завершились работы по стендовым испытаниям опытного двигателя АЛ-41Ф-1.Данная разработка предприятия «ОДК-Уфимское моторостроительное производственное объединение» является двигателем первого этапа для истребителя пятого поколения Су-57. АЛ-41Ф-1 является авиационным турбореактивным двухконтурным двигателем с форсажной камерой и управляемым вектором тяги.

Несмотря на гонку технологий, существуют системы, проверенные временем и доказавшие свою эффективность даже спустя многие годы. Ракетные двигатели РД 107/108 на протяжении более полувека являются основой пилотируемой космонавтики в России.

Именно благодаря РД 107/108 Юрий Гагарин совершил свой легендарный полет. Двигатели РД-107 устанавливаются на блоках первой ступени, а РД-108 – второй.



РД-107/108 показали себя как одни из самых надежных и удачных двигателей, поднимающих космические корабли. Они стоят на серийном производстве и доставляют на орбиту российских космонавтов, американских астронавтов и космических туристов.

Российский ракетный двигатель уже назван рекордсменом. За 60 лет использования он не утратил своего первенства в отрасли. На основе первых двигательных систем разработано 18 модификаций.

Когда в 2011 году США прекратили использование шаттлов, единственным способом отправки космонавтов на МКС остались корабли «Союз», оснащенные двигателями РД-107/108. 

Выводы

  • Отрасль двигателестроения является одной из наиболее востребованных и перспективных как для развития промышленности страны, так и для выхода на международный рынок.

  • Внедрение частного капитала и интеграция научно-технической базы предприятий, занимающихся разработкой и производством двигательных систем и комплектующих, позволили создать полный производственный цикл отечественных двигателей, способных составить конкуренцию мировым аналогам.

Рекомендации

  • Интеграция научно-технических достижений и новейших технологий в области двигателестроения для оперативного реагирования отрасли на запросы гражданской и военной авиации, а также космонавтики и своевременного ввода в эксплуатацию новых двигательных систем, отвечающих вызовам времени и не уступающих мировым аналогам.

  • Создание и поддержание научно-технической базы, способной обеспечить российскую авиационную отрасль двигательными системами отечественного производства, сокращение объемов импорта, а также вывод конкурентоспособной продукции на мировой рынок.

Альтернативные силовые установки для транспортных средств

Двигатели внутреннего сгорания (ДВС) уже почти 200 лет служат человечеству. Однако их широкое использование оборачивается целым рядом экологических и ресурсных проблем. 26% всех выбросов антропогенных парниковых газов вызваны сжиганием ископаемого топлива. При этом более 90% топлива,  используемого для автомобилей, судов, локомотивов и самолетов, получено из нефти. При сгорании нефтепродуктов в атмосферу выделяются крайне вредные окись углерода, двуокись углерода, углеводороды, окислы азота и другие компоненты. Загрязнение воздуха выступает причиной каждой девятой смерти в мире и признано одним из крупнейших вызовов в области здравоохранения и окружающей среды. В ряде развитых стран принимаются активные меры по постепенному переводу транспорта с ДВС и расширению использования альтернативных источников топлива. Так, Германия приняла закон о запрете продажи новых автомобилей с ДВС с 2030 г. Страна планирует к 2050 г. сократить автомобильные выхлопы до нуля. Аналогичные инициативы обсуждаются в других странах ЕС, США, Индии.
Более активное использование современных альтернативных силовых установок позволит снизить объем вредных выбросов в атмосферу Земли, сократить расходы на содержание транспортных средств и увеличить их КПД. Разработка таких технологий даст возможность странам, испытывающим дефицит традиционного топлива, уменьшить свою энергетическую зависимость. Ниже рассмотрены перспективные технологии новых типов двигателей для автомобилей, работающих на альтернативном топливе: водородные и метанольные топливные элементы для электромобилей, а также двигатели внутреннего сгорания на диметиловом эфире.

Версия для печати: 

ВОДОРОДНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ ДЛЯ ЭЛЕКТРОМОБИЛЕЙ

Использование водорода в качестве топлива возможно в транпортных средствах как с ДВС, так и с водородными топивными элементами. Однако традиционные поршневые ДВС приспособить к работе на водороде и сложно, и дорого (стоимость эксплуатации и обслуживания такой водородной силовой установки примерно в 100 раз выше, чем у обычного двигателя внутреннего сгорания).

Альтернативные вариантом являются топливные элементы (ТЭ), преобразующие химическую энергию топлива в тепло и постоянный электрический ток, питающий электродвигатель или системы бортового питания транспортного средства. ТЭ представляет собой непрерывно перезаряжаемую батарею из двух покрытых катализатором электродов, между которыми находится электролит. Через один электрод подается водород, через другой — чистый кислород или кислород из воздуха, к которым постоянно добавляются химическое топливо и окислитель. Соединение водорода с кислородом обычно происходит внутри пористой полимерной мембраны. 
Водородные ТЭ намного более экологичны, эффективны (их КПД составляет 45%, современного автомобильного ДВС — 35%), надежны, способны работать при низких температурах, при этом менее габаритны. Они могут  применяться в качестве силовых установок в гибридных автомобилях, а в электромобилях — в качестве суперконденсаторов. 



 

Эффекты

  Экологичность: при сгорании водорода в двигателе образуется практически только вода

 Распределенное энергоснабжение: водород в виде неиспользованного электричестваможно применять для питания домашней электросети

 Возможное сокращение общего объема потребления нефти в секторе автомобильных перевозок на 40% к 2050 г.

Оценки рынка

70 тыс. в год 

к 2027 г. составит выпуск новых водородных автомобилей в мире 

Драйверы и барьеры

  Удобство использования автомобильной техники на ТЭ (не требуют перезарядки, моментально поставляют электроэнергию, выработка энергии ТЭ не зависит от времени суток, погодных условий и др. )

 В перспективе открытие более дешевых и эффективных катализаторов для получения водорода позволит значительно снизить стоимость производства водородных ТЭ

 Высокие затраты на выработку водорода: от $4 до $12 за килограмм в разных странах (бензин-галлоновая эквивалентная стоимость составляет от $1,60 до $4,80)

 Отсутствие автомобильной инфраструктуры

 Сложность в эксплуатации: уязвимость к ударным нагрузкам и сотрясениям, взрывоопасность, при низких температурах ТЭ требуют внешнего подогрева из-за замерзающей воды

 Отсутствие единых стандартов безопасности, хранения, транспортировки, распределения и применения водородных ТЭ






Международные

научные публикации
Международные

патентные заявки

Уровень развития

технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 



МЕТАНОЛЬНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ

Метанол — высококачественное моторное топливо для ДВС — хорошо зарекомендовал себя и как энергоноситель в ТЭ, используемых в портативной электронике, транспортных приложениях, а также в электромобилях. В ТЭ метанол расщепляется при взаимодействии с атмосферным кислородом (воздухом), в результате этой реакции возникает электрический ток и образуется вода в качестве побочного продукта. 

В настоящее время разрабатываются технологии получения метанола из природного газа (минуя синтез-газ) посредством гидрирования из промышленных выбросов углекислого газа (в долгосрочной перспективе его научатся извлекать прямо из окружающего воздуха). Также ведутся разработки по производству биометанола из биомассы (лигноцеллюлозы), что послужит толчком к массовому распространению метанольных ТЭ.  



 

Эффекты

  Сокращение выбросов углекислого газа более чем на 70% при расщеплении биометанола в ТЭ

  Электромобили нового типа могут проезжать до 800 км на одном заряде батареи с применением метанольных ТЭ

Оценки рынка

40 млн ед.  

к 2020 г. составит объем рынка автотранспортных средств, работающих на метанольных ТЭ (благодаря чему на 104 млн т будут сокращены выбросы углекислого газа по сравнению с объемом выбросов от автомобилей на бензиновом ДВС)

Драйверы и барьеры

 Экологичность: метанол менее биологически опасен, чем нефтепродукты

 Возможность использования существующей транспортной инфраструктуры для заправки транспортного средства

  Простота эксплуатации: в частности, метанол не улетучивается при транспортировке

 Возможно создание технологии производства биометанола в промышленных масштабах, что увеличит его использование в ТЭ

 Высокая себестоимость производства метанола с помощью существующих технологий

 Используемые в качестве катализаторов в ТЭ драгоценные металлы (платиноиды) значительно повышают рыночную стоимость установок и вырабатываемой ими энергии






Международные

научные публикации
Международные

патентные заявки

Уровень развития

технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 



ДВИГАТЕЛИ НА ДИМЕТИЛОВОМ ЭФИРЕ 

Серьезным конкурентом традиционным видам ископаемого и синтетического топлива и основной альтернативой дизелю может стать диметиловый эфир (ДМЭ). В сравнении с дизельным топливом эфир лучше горит и более экологичен (не содержит серы, в течение суток полностью разлагается в атмосфере на воду и углекислый газ). Это в целом более чистое топливо, некоррозионноактивное, нетоксичное, не вызывает мутаций, в том числе канцерогенного характера. 

Сегодня ДМЭ производится из переработанного угля, природного газа, биомассы, бытовых и промышленных отходов. Также разрабатывается синтетическое биотопливо второго поколения (BioDME), которое может быть изготовлено из лигноцеллюлозной биомассы. Преобразовать дизельный двигатель в ДМЭ-двигатель можно без больших затрат, что будет стимулировать массовое распространение технологии. 





 

Эффекты

    Значительное сокращение уровня вредных выбросов с отработавшими газами: оксидов азота в 3-4 раза, углеводородных соединений — в 3 раза, угарного газа — в 5 раз, при практически бездымной работе двигателя во всех режимах

 Повышение экономичности ДВС (до 5%) и его КПД по сравнению с работой на дизельном топливе

 Оптимизация расходов на производство и транспортировку топлива (сократятся в 10 раз относительно показателей сжиженного природного газа)

 Легкое преобразование ДМЭ в бензин, характеризующийся высокой стабильностью и повышенным экологическим качеством, минимальным содержанием нежелательных примесей (отсутствие серы, незначительное содержание бензола (0,1% при норме 1%), непредельных углеводородов (~1%))

 Создание дополнительных рабочих мест в добывающей промышленности благодаря развитию производства диметилового эфира из ископаемого сырья (природный газ, уголь) 

Оценки рынка

$9,7  млрд

к 2020 г. достигнет объем глобального рынка ДМЭ (среднегодовые темпы роста 16-19% в 2015-2020 гг.)

Драйверы и барьеры

 Ужесточение экологических стандартов

 Наличие соответствующей инфраструктуры: применение ДМЭ не требует серьезной конструкционной доработки дизельных двигателей и установки специальных фильтров. Использование ДМЭ на автомобилях с ДВС возможно даже при 30%-м его содержании в топливе без трансформации систем питания и зажигания двигателя.

 Масштабная сырьевая база: сырьем для производства ДМЭ является природный газ, доказанные запасы которого в России по состоянию на 2015 г. остаются крупнейшими в мире.

  Ряд нерешенных проблем с хранением ДМЭ

  Сравнительно высокая рыночная цена ДМЭ относительно других видов топлива

 При производстве ДМЭ затрачивается существенно больший объем сырьевого газа, чем для других топливных продуктов с эквивалентной теплотворной способностью

  При меньшей в 1,5 раза полноте сгорания по сравнению с дизельным топливом увеличивается расход ДМЭ в 1,5–1,6 раза

  ДМЭ является наркотическим галлюциногенным веществом






Международные

научные публикации
Международные

патентные заявки

Уровень развития

технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 


какой двигатель наиболее эффективный? – Богдан-Авто Холдинг

В настоящее время существует большое количество двигателей и альтернативных приводов. Предложение различных моторных решений для автомобилей часто вызывает у клиентов вопрос: какой же двигатель работает наиболее эффективно? Эксперты издания futurezone.de пришли к выводу, что самым высоким коэффициентом полезного действия (КПД) обладает электродвигатель. Для «зеленого» привода он составляет до 99%, а это означает, что 99% вырабатываемой электрической энергии преобразовывается в кинетическую энергию движения. Сегодня мы рассмотрим, чем отличаются наиболее известные типы двигателей и сравним их преимущества и недостатки.

Электро

Интересно, что принцип работы электродвигателя был открыт еще в 1830-х годах, за несколько десятилетий до появления двигателя внутреннего сгорания. На сегодняшний день существуют различные типы электродвигателей, которые работают на постоянном или переменном токе. В качестве топлива используется электричество, которое обеспечивает бортовая аккумуляторная батарея. Сегодня в основном применяются литий-ионные аккумуляторы благодаря хорошим характеристикам и длительному сроку службы. Несмотря на то, что многие модели электромобилей обладают пока еще низким запасом хода, а для зарядки потребуется в общей сложности несколько часов, электродвигатели обладают явными преимуществами. Во-первых, они не загрязняют окружающую среду, так как выбросы равны нулю. Во-вторых, в отличие от двигателей внутреннего сгорания, электромотор имеет меньше деталей, которые подлежат износу, а это означает, что Вас ожидает меньше расходов на ремонт и обслуживание. В дополнение к этому, электромотор предлагает отличную динамику, так как максимальный крутящий момент уже доступен на низких оборотах двигателя.

Водород

С точки зрения эксплуатационных характеристик, близкими по духу чистым электромобилям являются электромобили на водородных двигателях. Данный тип привода использует топливный элемент для производства электроэнергии из газообразного водорода и кислорода. При этом из выхлопной трубы выделяется только вода. Помимо экологического аспекта, водородный двигатель имеет практические преимущества по сравнению с электромотором. Автомобили на водороде быстро заправляются и не нуждаются в длительной зарядке, а также обладают более широким запасом хода при меньшем весе по сравнению с электромобилями, оснащенными тяжелыми аккумуляторными батареями.

Гибрид

Менее эффективными, чем электродвигатели, но более экономичными по сравнению с двигателями внутреннего сгорания являются гибриды. В автомобилях с гибридным приводом применяются как двигатели внутреннего сгорания, так и электромоторы, что позволяет использовать преимущества обеих систем. В таких моделях аккумулятор для электродвигателя обычно заряжается во время движения от двигателя внутреннего сгорания или от восстановления энергии торможения. Более низкий расход топлива обеспечивается в основном при движении в городе, так как в большинстве случаев система автоматически переключается на электропривод при низких скоростях, таких как остановка и движение в пробках. Во время путешествий на дальние расстояния гибридные приводы практически не экономят топливо. При этом гибриды стоят на порядок выше, чем автомобили с двигателями внутреннего сгорания.

Газ

Если сравнивать линейку классических двигателей внутреннего сгорания, то Вашим фаворитом легко может стать газ. Во-первых, двигатель, работающий на природном газе, более экологически чистый, чем бензиновый или дизельный мотор. Сжигание природного газа, который в принципе состоит из метана, является относительно чистым, а это означает, что при этом не образуется сажа и значительно снижается количество других загрязняющих веществ. Во-вторых, двигатель, работающий на газе, до 10% более эффективный, чем бензиновый. Помимо этого, цена на газ существенно ниже по сравнению со стоимостью бензина или дизельного топлива. Но при всех плюсах Вы должны учитывать, что за авто на газе Вам придется заплатить дополнительные тысячи евро, и к тому же газ предлагается не на каждой АЗС.

Дизель

Выбирая дизельный двигатель, клиенты сознательно платят более высокую стоимость за автомобиль с целью сэкономить в будущем на затратах на топливо, так как главный плюс дизеля – это более низкий расход топлива. В дизельных моторах воздух всасывается в камеру цилиндра, где он смешивается с дизельным топливом путем прямого впрыска. Дизельно-воздушная смесь воспламеняется самостоятельно, поэтому дизельный двигатель не нуждается в свечах зажигания. При этом давление сжатия составляет от 30 до 50 бар, а температура на 700-900 градусов Цельсия выше, чем у бензинового двигателя. Учитывая данные значения, дизель должен иметь более устойчивую конструкцию и соответственно больше весить. Тем не менее, дизель имеет более высокую плотность энергии и КПД дизеля составляет около 33%, в результате чего снижается расход топлива.   

Бензин

Бензиновый двигатель обладает наименьшим КПД среди двигателей – 25%. Это означает, что 75% энергии, получаемой при сжигании бензина, преобразуется в тепло, и только 25% в движение.  Но сегодня многие бензиновые двигатели оснащаются системой непосредственного впрыска, а также турбонаддувом. Данные технологии позволяют увеличить производительность мотора, а также снизить вредные выбросы. Не смотря на более низкую эффективность, бензиновый двигатель обладает другими полезными характеристиками. По сравнению с дизелем, у бензина более низкие выбросы оксида азота. Помимо этого, бензиновый двигатель дает широкий диапазон оборотов, что идеально подходит для спортивного вождения. Именно по этой причине мотоциклы ездят исключительно на бензине. В дополнение, автомобили с бензиновым двигателем являются самыми доступными по стоимости на рынке.

Виды двигателей, которыми оборудованы автомобили дилерской сети «Богдан-Авто Холдинг»

Модель автоТип двигателяРасход топлива в смешанном цикле (л / 100 км)
Subaru
Subaru XVБензин7
Subaru OutbackБензин7,3
Subaru ForesterБензин7,2
Hyundai
Hyundai i30Бензин/ Дизель6 / 5,3
Hyundai i10Бензин4
ElantraБензин6,6
CretaБензин7
Santa Fe NewБензин/ Дизель7,1 / 5,2
TucsonБензин/ Дизель7,9/ 5,3
AccentБензин5,7
Grand Santa FeТурбодизель7,8
Ioniq ElectricЭлектро0
Ioniq HybridГибрид3,4
GrandeurБензин9,1
Great Wall
Wingle 5Дизель7,4
Wingle 6Бензин/ Дизель11,2 / 8,6
HAVAL
HAVAL h3Бензин6,7
HAVAL H6Бензин8,5
HAVAL H9Бензин/ Дизель10,9 / 9,1
JAC
JAC S2Бензин6,5
JAC S3Бензин5,6
JAC iEV 7SЭлектро0

Подготовлено по материалам Futurezone. de]]>

Урок 25. тепловые двигатели. кпд тепловых двигателей — Физика — 10 класс

Физика, 10 класс

Урок 25. Тепловые двигатели. КПД тепловых двигателей

Перечень вопросов, рассматриваемых на уроке:

1) Понятие теплового двигателя;

2)Устройство и принцип действия теплового двигателя;

3)КПД теплового двигателя;

4) Цикл Карно.

Глоссарий по теме

Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.

КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.

Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.

Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).

Рабочее тело — тело, которое расширяясь, совершает работу (им является газ или пар)

Основная и дополнительная литература по теме урока:

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.

Открытые электронные ресурсы по теме урока

http://kvant.mccme.ru/1973/12/teplovye_mashiny.htm

Теоретический материал для самостоятельного изучения

Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.

Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.

Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.

Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.

Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.

В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.

В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.

Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.

Для определения эффективности работы теплового двигателя вводят понятие КПД.

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Q1 – количество теплоты полученное от нагревания

Q2 – количество теплоты, отданное холодильнику

– работа, совершаемая двигателем за цикл.

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле

Передача неиспользуемой части энергии холодильнику.

В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов

Цикл Карно — самый эффективный цикл, имеющий максимальный КПД.

Не существует теплового двигателя, у которого КПД = 100% или 1.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

КПД:

Паровой двигатель – 8%.

Паровая турбина – 40%.

Газовая турбина – 25-30%.

Двигатель внутреннего сгорания – 18-24%.

Дизельный двигатель – 40– 44%.

Реактивный двигатель – 25%.

Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.

Примеры и разбор решения заданий

1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?

Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м3, s = 100 км = 105 м, ɳ = 25% = 0,25, ρ = 700 кг/м3, q = 46 × 106 Дж/кг.

Найти: N.

Решение:

Запишем формулу для расчёта КПД теплового двигателя:

Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:

Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:

Учитывая всё это, мы можем записать:

Время работы двигателя можно найти по формуле:

Из формулы КПД выразим среднюю мощность:

.

Подставим числовые значения величин:

После вычислений получаем, что N=60375 Вт.

Ответ: N=60375 Вт.

2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?

Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.

Найти: Q1.

Решение

  =

– это количество теплоты, отданное холодильнику

Двигатель внутреннего сгорания — обзор

1 ВВЕДЕНИЕ

Топливная эффективность двигателя внутреннего сгорания может быть увеличена за счет снижения механических потерь, вызванных, главным образом, трением. Использование соответствующих масел снижает трение, увеличивает топливную экономичность и в то же время сохраняет низкий износ. Существует два подхода, с помощью которых можно достичь снижения трения в двигателях внутреннего сгорания: за счет снижения вязкости масла, что приводит к снижению трения в режиме смазки жидкой пленкой, и за счет использования присадок, снижающих трение, которые минимизируют трение в смешанной / граничной смазке. режим при контакте неровностей поверхности [1].

Очень важным классом присадок, снижающих трение, широко используемых в составах картерных масел, являются молибденосодержащие соединения, такие как диалкилдитиокарбамат молибдена (MoDTC). Общее количество присадок в масле может составлять от 5 до 25% [2], а эффективность MoDTC в снижении трения сильно зависит от синергических или антагонистических эффектов с другими присадками, особенно с диалкилдитиофосфатом цинка (ZDDP) [3– 5]. Присадка ZDDP, помимо антиоксидантных свойств, как известно, очень эффективна для защиты поверхностей от износа в условиях граничной смазки; свойства, которые делают его незаменимым ингредиентом в подавляющем большинстве существующих составов масел [6]. Поэтому понимание взаимодействия ZDDP и MoDTC в трибологических характеристиках как двух ключевых компонентов масел является важным для достижения оптимальных характеристик. Предыдущая работа [7] также показала, что необходимо усовершенствовать математические модели смазки клапанного механизма, чтобы повысить их чувствительность к характеристикам состава масла. Такие улучшения станут возможными только путем развития лучшего понимания образования трибопленки, структуры, химических и морфологических свойств и их соотнесения с приработкой систем клапанного механизма.

MoDTC зарегистрировано для уменьшения трения за счет образования пленки, содержащей MoS 2 , на металлических поверхностях [8–12]. Было замечено, что трение уменьшилось через определенное время, определяемое как фаза индукции, после чего трение упало с высоких значений примерно 0,12 до уменьшенных значений порядка 0,05. Ямамото и Гондо [9, 13, 14] в своей работе с использованием рентгеновской фотоэлектронной спектроскопии (XPS) предположили, что для образования MoS 2 необходимо предварительное формирование слоя MoO 3 . Было видно, что образование M0S 2 из MoDTC происходит в результате контакта твердое тело-твердое тело [15]. Образование MoO 3 перед любым падением трения предполагает, что произойдет увеличение шероховатости, которое может способствовать образованию M0S2, что указывает на физический эффект MoO 3 на образование M0S 2 . Хотя в нескольких работах [9, 11, 15] было показано, что только MoDTC эффективен в уменьшении трения, есть сообщения, которые показывают, что MoDTC может быть эффективным в уменьшении трения только в присутствии добавки ZDDP [3-5].Sogawa et al. [16] показали, что присутствие ZDDP способствует образованию M0S 2 из MoDTC. Они обнаружили, что при использовании модельного масла, содержащего как ZDDP, так и MoDTC, около 40% S из ZDDP было использовано для образования трибопленки M0S 2 в рубце износа, но точный механизм не был исследован. С другой стороны, Martin et al. [17] предложила реакцию элиминирования M0O3 фосфатом цинка, генерируемым из ZDDP, в соответствии с принципом жестких и мягких кислот и оснований (HSAB). Устранение M0O 3 считалось причиной того, почему система ZDDP / MoDTC более эффективна в снижении трения, чем только MoDTC — химический эффект ZDDP на снижение трения MoDTC. Однако топографический анализ трибопленок ZDDP подтвердил высокую шероховатость этой пленки [18, 19], что свидетельствует о влиянии ZDDP на формирование M0S 2 , которое имеет физическую природу .

Хотя указание на виды, образующиеся при использовании добавки MoDTC, можно получить из анализа работы, проделанной несколькими группами, последовательность реакций, с помощью которых MoDTC образует M0S 2 , еще не установлена ​​и не доказана экспериментально.Кроме того, влияние ZDDP на механизм образования M0S 2 от MoDTC до сих пор полностью не изучено. В настоящей статье представлена ​​полная характеристика с точки зрения химических и топографических свойств трибопленок, образовавшихся до падения трения, и обсуждаются условия, благоприятные для образования M0S 2 и, следовательно, снижения трения. Процедура испытания, включающая замену масла одной модели на другую, использовалась для того, чтобы понять, имеют ли взаимодействия ZDDP / MoDTC физическую природу или химическую или их комбинацию.

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

Двигатель внутреннего сгорания (ВС) был доминирующим двигателем в нашем обществе с момента его изобретения в последней четверти XIX века [подробнее см., Например, Heywood (1988)]. Его цель — генерировать механическую энергию из химической энергии, содержащейся в топливе и высвобождаемой при сгорании топлива внутри двигателя. Именно этот конкретный момент, когда топливо сжигается внутри производственной части двигателя, дает двигателям внутреннего сгорания их название и отличает их от других типов, таких как двигатели внешнего сгорания.Хотя газовые турбины соответствуют определению двигателя внутреннего сгорания, этот термин традиционно ассоциируется с с искровым зажиганием (иногда называемым Otto, бензиновые или бензиновые двигатели ) и с дизельными двигателями (или с двигателями с воспламенением от сжатия ).

Двигатели внутреннего сгорания используются в самых разных областях, от судовых силовых установок и энергетических установок мощностью более 100 МВт до ручных инструментов, мощность которых составляет менее 100 Вт.Это означает, что размер и характеристики современных двигателей сильно различаются между большими дизелями, имеющими диаметр цилиндра более 1000 мм и совершающим возвратно-поступательное движение со скоростью до 100 об / мин, и маленькими бензиновыми двухтактными двигателями с диаметром цилиндра около 20 мм. К этим двум крайностям относятся среднеоборотные дизельные двигатели, автомобильные дизели для тяжелых условий эксплуатации, двигатели грузовых и легковых автомобилей, авиационные двигатели, двигатели мотоциклов и небольшие промышленные двигатели. Среди всех этих типов бензиновые и дизельные двигатели для легковых автомобилей занимают видное место, поскольку они, безусловно, являются крупнейшими производимыми двигателями в мире; как таковые, их влияние на социальную и экономическую жизнь имеет первостепенное значение.

Большинство поршневых двигателей внутреннего сгорания работают в так называемом четырехтактном цикле (рис. 1), который подразделяется на четыре процесса: впуск, сжатие, расширение / мощность и выпуск. Для каждого цилиндра двигателя требуется четыре хода поршня, что соответствует двум оборотам коленчатого вала, чтобы завершить последовательность, ведущую к выработке мощности.

Рисунок 1. Цикл четырехтактного двигателя.

Такт впуска инициируется движением вниз поршня, который втягивает в цилиндр свежую топливно-воздушную смесь через узел порта / клапана и заканчивается, когда поршень достигает нижней мертвой точки (НМТ).Смесь создается либо с помощью карбюратора (как в обычных двигателях), либо путем впрыска бензина под низким давлением во впускной канал через инжектор игольчатого типа с электронным управлением (как в более совершенных двигателях). Фактически, процесс впуска начинается с открытия впускного клапана непосредственно перед верхней мертвой точкой (ВМТ) и заканчивается, когда впускной клапан (или клапаны в четырехклапанных двигателях на цилиндр) закрывается вскоре после НМТ. Время закрытия впускного клапана (ов) является функцией конструкции впускного коллектора, которая влияет на газовую динамику и объемный КПД двигателя, а также на частоту вращения двигателя.

За тактом впуска следует такт сжатия и , который фактически начинается при закрытии впускного клапана. Его цель — подготовить смесь к горению за счет повышения ее температуры и давления. Горение инициируется энергией, выделяемой через свечу зажигания в конце такта сжатия, и связано с быстрым ростом давления в цилиндре.

Ход поршня с усилением или расширением начинается с поршня в ВМТ сжатия и заканчивается в НМТ.В этот момент газы с высокой температурой и давлением, образующиеся при сгорании, толкают поршень вниз, заставляя рукоятку вращаться. Непосредственно перед достижением поршнем НМТ открывается выпускной клапан (ы), и сгоревшие газы могут выйти из цилиндра из-за разницы давлений между цилиндром и выпускным коллектором.

Этот ход выхлопа завершает цикл двигателя, откачивая цилиндр от сгоревших, частично сгоревших или даже несгоревших газов, выходящих из процесса сгорания; следующий цикл двигателя начинается, когда впускной клапан открывается около ВМТ, а выпускной клапан закрывается на несколько градусов позже.

Важно отметить, что свойства бензина в сочетании с геометрией камеры сгорания оказывают значительное влияние на продолжительность горения, скорость повышения давления и образование загрязняющих веществ . При определенных условиях смесь конечного газа может самовоспламеняться до того, как пламя достигнет этой части цилиндра, что приведет к детонации , которая вызывает колебания давления высокой интенсивности и частоты.

Способность бензинового топлива противостоять самовоспламенению и, таким образом, предотвращать возможное повреждение двигателя в результате детонации характеризуется своим октановым числом .До недавнего времени добавление небольшого количества свинца в бензин было предпочтительным методом подавления детонации, но связанные с этим риски для здоровья в сочетании с необходимостью использования катализаторов для снижения выбросов выхлопных газов вызвали необходимость введения неэтилированного бензина. Это требует уменьшения степени сжатия двигателя (отношения объема цилиндра в НМТ к объему в ВМТ), чтобы предотвратить детонацию с нежелательным влиянием на термический КПД.

Как уже упоминалось, четырехтактный цикл, также известный как цикл Отто по имени его изобретателя Николауса Отто, который построил первый двигатель в 1876 году, обеспечивает рабочий ход на каждые два оборота коленчатого вала.Один из способов увеличить выходную мощность двигателя заданного размера — преобразовать ее в двухтактный цикл (рис. 2), в котором мощность вырабатывается при каждом обороте двигателя.

Рисунок 2. Цикл двухтактного двигателя.

Поскольку этот режим работы приводит к увеличению выходной мощности — хотя и не до двойного уровня, ожидаемого из простых вычислений, — он широко используется в мотоциклах, легковых автомобилях и морских судах с искровым зажиганием и дизельными двигателями.Дополнительным преимуществом является простая конструкция двухтактных двигателей, поскольку они могут работать с боковыми отверстиями в гильзе, закрытыми и открытыми движением поршня, вместо громоздкой и сложной конструкции верхнего кулачка.

В двухтактном цикле такт сжатия и начинается после того, как впускные и выпускные боковые окна закрываются поршнем; топливно-воздушная смесь сжимается и затем воспламеняется свечой зажигания, аналогично зажиганию в четырехтактном бензиновом двигателе, чтобы инициировать сгорание около ВМТ. В то же время свежий заряд может попасть в картер перед его последующим сжатием движущимся вниз поршнем во время хода мощности или расширения . В этот период сгоревшие газы толкают поршень, пока он не достигнет НМТ, что позволяет открыть сначала выпускные отверстия, а затем впускные (переходные) отверстия. Открытие выпускных отверстий позволяет сгоревшим газам выходить из цилиндра, в то время как частично в то же время свежий заряд, сжатый в картере, входит в цилиндр через правильно ориентированные перекачивающие каналы.

Перекрытие тактов впуска и выпуска в двухтактных двигателях является причиной того, что часть свежего заряда вытекает непосредственно из цилиндра во время процесса продувки. Несмотря на различные попытки уменьшить масштаб этой проблемы путем введения дефлектора в поршень (рис. 2) и направления входящего заряда от места расположения выпускных отверстий, эффективность зарядки в обычных двухтактных двигателях остается относительно низкой. Решение этой проблемы состоит в том, чтобы подавать топливо непосредственно в цилиндр, отдельно от свежего воздуха, через форсунки с подачей воздуха в период, когда и выпускной, и перекачивающий каналы закрыты. Несмотря на короткий период, доступный для перемешивания, распылители с подачей воздуха могут создавать однородную бедную смесь во время воспламенения за счет образования капель бензина со средним диаметром менее 40 мкм, которые очень легко испаряются во время такта сжатия.

Среди различных типов двигателей внутреннего сгорания дизельный двигатель или двигатель с воспламенением от сжатия славится своим высоким КПД, пониженным расходом топлива и относительно низкими общими выбросами газов. Его название происходит от немецкого инженера Рудольфа Дизеля (1858–1913), который в 1892 году описал в своем патенте вид двигателя внутреннего сгорания, который не требует внешнего источника воспламенения и в котором горение инициируется самовоспламенением жидкого топлива, впрыскиваемого в воздух с высокой температурой и давлением в конце такта сжатия.

Преимущества, присущие дизельному двигателю с точки зрения эффективности, обусловлены его обедненной общей смесью, высокой степенью сжатия двигателя, обеспечиваемой из-за отсутствия воспламенения (детонации) отходящих газов и большей степени расширения. Как следствие, дизельные двигатели в двухтактной или четырехтактной конфигурации традиционно были предпочтительными силовыми установками для коммерческих применений, таких как корабли / катера, энергогенераторы, локомотивы и гусеницы, и в течение последних 20 лет или около того. , легковые автомобили, особенно в Европе.

Недостаток низкой выходной мощности дизельных двигателей был устранен за счет использования нагнетателей или турбонагнетателей, которые увеличивают отношение мощности к массе двигателя за счет увеличения плотности воздуха на входе. Ожидается, что турбокомпрессоры станут стандартными компонентами всех будущих дизельных двигателей, независимо от области применения.

Работа дизельного двигателя отличается от работы двигателя с искровым зажиганием, главным образом, тем, как смесь образуется перед сгоранием.Только воздух вводится в двигатель через винтовой или направленный канал, и топливо смешивается с воздухом во время такта сжатия после его впрыска под высоким давлением в форкамерный дизель с непрямым впрыском или IDI) или в главную камеру (дизельное топливо с прямым впрыском. или DI) непосредственно перед началом горения.

Необходимость в достижении хорошего смешивания топлива и воздуха в дизельных двигателях удовлетворяется за счет систем впрыска топлива под высоким давлением, которые генерируют капли со средним диаметром около 40 мкм. Для легковых автомобилей системы впрыска топлива состоят из роторного насоса, нагнетательных трубок и форсунок топливных форсунок, конструкция которых различается в зависимости от области применения; В дизельных двигателях с прямым впрыском используются форсунки с отверстиями, а в дизелях с непрямым впрыском используются форсунки игольчатого типа.В более крупных дизельных двигателях используются насосы с рядным впрыском топлива, насос-форсунки (насос и форсунка, объединенные в один блок) или отдельные одноствольные насосы, которые устанавливаются рядом с каждым цилиндром.

За последние 20 лет или около того осознание того, что ресурсы сырой нефти ограничены и что окружающая среда, в которой мы живем, становится все более и более загрязненной, побудило правительства принять законы, ограничивающие уровней выбросов выхлопных газов транспортных средств. и двигатели всех типов. С момента их введения в Японии и США в конце 60-х годов и в Европе в 1970 году нормы выбросов постоянно становятся более строгими, и производители двигателей сталкиваются с самой серьезной проблемой, связанной со стандартами, согласованными на 1996 год и позднее, которые кратко изложены для легковых автомобилей в таблице. 1.Ожидается, что новые стандарты, которые будут введены в Европе в 2000 году, будут еще ниже, после калифорнийских уровней, которые требуют нулевых уровней выбросов после начала века. Однако неясно, будут ли существующие двигатели соответствовать этим ограничениям, несмотря на отчаянные попытки инженеров по всему миру.

Таблица 1. Европейские стандарты выбросов в 1996 г.

Рисунок 3. Модель трехкомпонентного каталитического нейтрализатора.

Из таблицы 1 видно, что основными загрязнителями в двигателях с искровым зажиганием являются углеводороды (HC), монооксид углерода (CO) и оксиды азота (NO x = NO + NO 2 ), а в дизельных двигателях. , NO x и твердые частицы, состоящие из частиц сажи, образующихся при сгорании смазочного масла и углеводородов, являются наиболее вредными.

В настоящее время трехкомпонентные катализаторы, которые являются стандартным компонентом современных легковых автомобилей, оснащенных двигателем с искровым зажиганием, работающим на неэтилированном бензине, позволяют примерно на 90% снизить выбросы HC, CO и NO x путем их преобразования в двуокись углерода ( CO 2 ), вода (H 2 O) и N 2 .

К сожалению, эти катализаторы требуют стехиометрической (соотношение воздух-топливо ~ 14,5) работы двигателя, что нежелательно как с точки зрения расхода топлива, так и с точки зрения выбросов CO 2 .Альтернативным подходом является концепция сжигания обедненной смеси, которая обещает одновременное снижение расхода топлива и выбросов выхлопных газов за счет удовлетворительного сгорания бедных смесей с соотношением воздух-топливо, намного превышающим 20. Ожидается, что разработка катализаторов сжигания обедненной смеси с эффективностью преобразования более 60% может позволить двигателям, работающим на обедненной смеси, соответствовать будущему законодательству по выбросам; это область активных исследований как в промышленности, так и в академических кругах. С другой стороны, новые дизельные двигатели зависят от двухкомпонентных или окислительных катализаторов для уменьшения количества твердых частиц в выхлопных газах за счет преобразования углеводородов в CO 2 и H 2 O, а также от рециркуляции выхлопных газов и замедленного времени впрыска для снижения NO. х уровней.

ССЫЛКИ

Аркуманис, К. (Ред.) (1988) Двигатели внутреннего сгорания . Академическая пресса.

Блэр, Г. П. (1990) Базовая конструкция двухтактных двигателей . Общество Автомобильных Инженеров.

Фергюсон, К. Р. (1986) Двигатели внутреннего сгорания . Джон Вили и сыновья.

Хейвуд, Дж. Б. (1988) Основы двигателя внутреннего сгорания . Макгроу Хилл.

Стоун Р. (1992) Введение в двигатели внутреннего сгорания .Macmillan Education Ltd. 2-е изд.

Уивинг, Дж. Х. (ред.) (1990) Техника внутреннего сгорания: наука и технологии . Прикладная наука Elsevier.

Двигатель внутреннего сгорания — Энциклопедия New World

Четырехтактный цикл (или цикл Отто)
1. Впуск
2. Компрессия
3. Мощность
4. Выпуск

Двигатель внутреннего сгорания — это двигатель, в котором сгорание топлива происходит в ограниченном пространстве, называемом камерой сгорания.Эта экзотермическая реакция топлива с окислителем создает газы с высокой температурой и давлением, которые могут расширяться. Отличительной чертой двигателя внутреннего сгорания является то, что полезная работа выполняется расширяющимися горячими газами, действующими непосредственно, вызывая движение, например, воздействуя на поршни, роторы или даже путем нажатия и перемещения самого двигателя.

Это контрастирует с двигателями внешнего сгорания, такими как паровые двигатели, в которых процесс сгорания используется для нагрева отдельной рабочей жидкости, обычно воды или пара, которые затем, в свою очередь, работают, например, при нажатии на поршень, приводимый в действие паром.

Термин Двигатель внутреннего сгорания (ДВС) почти всегда используется для обозначения поршневых двигателей, двигателей Ванкеля и аналогичных конструкций, в которых сгорание является прерывистым. Однако двигатели непрерывного сгорания, такие как реактивные двигатели, большинство ракет и многие газовые турбины, также являются двигателями внутреннего сгорания.

Двигатели внутреннего сгорания используются в основном на транспорте. Несколько других применений предназначены для любой переносной ситуации, когда вам нужен неэлектрический двигатель.Самым большим применением в этой ситуации будет двигатель внутреннего сгорания, приводящий в действие электрический генератор. Таким образом, вы можете использовать стандартные электроинструменты с приводом от двигателя внутреннего сгорания.

Преимущество этого — портативность. Этот тип двигателя удобнее использовать в транспортных средствах над электричеством. Даже в случае гибридных автомобилей они по-прежнему используют двигатель внутреннего сгорания для зарядки аккумулятора. Недостатком является загрязнение, которое они тушат. Не только очевидное загрязнение воздуха, но и загрязнение сломанными или устаревшими двигателями и отработанными частями, такими как масло или резиновые изделия, которые необходимо выбросить.Еще одним фактором является шумовое загрязнение, многие двигатели внутреннего сгорания очень громкие. Некоторые из них настолько громкие, что людям нужны средства защиты органов слуха, чтобы не повредить уши. Еще один недостаток — размер. Очень непрактично иметь небольшие двигатели, которые могут иметь любую мощность. Электродвигатели для этого гораздо практичнее. Вот почему более вероятно увидеть электрический генератор, работающий на газе, в районе, где нет электричества для питания более мелких предметов.

История

Демонстрация непрямого или всасывающего принципа внутреннего сгорания.Это может не соответствовать определению двигателя, потому что процесс не повторяется. Ранние двигатели внутреннего сгорания использовались для питания сельскохозяйственного оборудования, аналогичного этим моделям.

Первые двигатели внутреннего сгорания не имели компрессии, но работали на той топливно-воздушной смеси, которая могла всасываться или вдуваться во время первой части такта впуска. Наиболее существенное различие между современными двигателями внутреннего сгорания и ранними конструкциями заключается в использовании сжатия, в частности сжатия в цилиндре.

  • 1509: Леонардо да Винчи описал двигатель без сжатия. (Его описание не может подразумевать, что эта идея исходила от него или что она действительно была построена.)
  • 1673: Христиан Гюйгенс описал двигатель без сжатия. [1]
  • 1780-е годы: Алессандро Вольта построил игрушечный электрический пистолет, в котором электрическая искра взорвала смесь воздуха и водорода, выпустив пробку из конца пистолета.
  • Семнадцатый век: английский изобретатель сэр Сэмюэл Морланд использовал порох для привода водяных насосов.
  • 1794: Роберт Стрит построил двигатель без сжатия, принцип работы которого будет доминировать в течение почти столетия.
  • 1806: Швейцарский инженер Франсуа Исаак де Риваз построил двигатель внутреннего сгорания, работающий на смеси водорода и кислорода.
  • 1823: Сэмюэл Браун запатентовал первый двигатель внутреннего сгорания для промышленного применения. Он был без сжатия и основан на том, что Харденберг называет «циклом Леонардо», который, как следует из этого названия, к тому времени уже устарел.Как и сегодня, раннее крупное финансирование в области, где стандарты еще не были установлены, шло к лучшим шоуменам раньше, чем к лучшим работникам.
  • 1824: Французский физик Сади Карно основал термодинамическую теорию идеализированных тепловых машин. Это научно установило необходимость сжатия для увеличения разницы между верхней и нижней рабочими температурами, но неясно, знали ли конструкторы двигателей об этом до того, как сжатие уже стало широко использоваться. Это могло ввести в заблуждение дизайнеров, которые пытались имитировать цикл Карно бесполезными способами.
  • 1826 г. 1 апреля: американец Сэмюэл Мори получил патент на «газовый или паровой двигатель» без сжатия.
  • 1838: Патент был выдан Уильяму Барнету (англ.). Это было первое зарегистрированное предположение о компрессии в цилиндре. Он, очевидно, не осознавал его преимуществ, но его цикл был бы большим достижением, если бы был достаточно развит.
  • 1854: итальянцы Эухенио Барсанти и Феличе Маттеуччи запатентовали первый работающий эффективный двигатель внутреннего сгорания в Лондоне (pt.Num. 1072), но в производство не попал. Он был похож по концепции на успешный двигатель непрямого действия Отто Лангена, но не так хорошо проработан в деталях.
  • 1860: Жан Жозеф Этьен Ленуар (1822-1900) создал газовый двигатель внутреннего сгорания, внешне очень похожий на горизонтальный паровой двигатель двойного действия, с цилиндрами, поршнями, шатунами и маховиком, в которых газ, по существу, поглощал место пара. Это был первый серийный двигатель внутреннего сгорания.Его первый двигатель с компрессией шокировал сам себя.
  • 1862: Николаус Отто разработал двигатель непрямого действия со свободным поршнем без сжатия, более высокая эффективность которого завоевала поддержку Лангена, а затем и большей части рынка, который в то время в основном предназначался для небольших стационарных двигателей, работающих на газовом топливе.
  • 1870: В Вене Зигфрид Маркус установил первый мобильный бензиновый двигатель на ручной тележке.
  • 1876: Николаус Отто, работая с Готлибом Даймлером и Вильгельмом Майбахом, разработал практичный четырехтактный двигатель (цикл Отто).Немецкие суды, однако, не удержали его патент на все двигатели с цилиндрическим компрессором или даже на четырехтактный цикл, и после этого решения внутрицилиндровое сжатие стало универсальным.
  • 1879: Карл Бенц, работавший независимо, получил патент на свой двигатель внутреннего сгорания, надежный двухтактный газовый двигатель, основанный на конструкции четырехтактного двигателя Николауса Отто. Позже Бенц разработал и построил свой собственный четырехтактный двигатель, который использовался в его автомобилях, которые стали первыми автомобилями в производстве.
  • 1882: Джеймс Аткинсон изобрел двигатель цикла Аткинсона. Двигатель Аткинсона имел одну фазу мощности на оборот вместе с разными объемами впуска и расширения, что делало его более эффективным, чем цикл Отто.
  • 1891: Герберт Акройд Стюарт передает права аренды нефтяного двигателя Хорнсби, Англия, для производства двигателей. Строят первые двигатели с холодным запуском и воспламенением от сжатия. В 1892 году они устанавливают первые на водонасосной станции. Экспериментальная версия с более высоким давлением производит самоподдерживающееся воспламенение только за счет сжатия в том же году.
  • 1892: Рудольф Дизель разрабатывает двигатель типа теплового двигателя Карно, сжигающий угольную пыль.
  • 1893 23 февраля: Рудольф Дизель получил патент на дизельный двигатель.
  • 1896: Карл Бенц изобрел оппозитный двигатель, также известный как горизонтально расположенный двигатель, в котором соответствующие поршни одновременно достигают верхней мертвой точки, таким образом уравновешивая друг друга по импульсу.
  • 1900: Рудольф Дизель продемонстрировал дизельный двигатель в 1900 году на выставке Exposition Universelle (Всемирная выставка) с использованием арахисового масла (биодизеля).
  • 1900: Вильгельм Майбах спроектировал двигатель, построенный в Daimler Motoren Gesellschaft — в соответствии со спецификациями Эмиля Еллинека — который требовал, чтобы двигатель был назван Daimler-Mercedes в честь его дочери. В 1902 году автомобили с этим двигателем были запущены в производство компанией DMG.

Приложения

Двигатели внутреннего сгорания чаще всего используются в качестве передвижных двигателей в автомобилях, оборудовании и другом переносном оборудовании. В мобильных сценариях внутреннее сгорание является преимуществом, поскольку оно может обеспечить высокое соотношение мощности к весу вместе с превосходной плотностью энергии топлива.Эти двигатели используются почти во всех автомобилях, мотоциклах, лодках, а также в самых разных самолетах и ​​локомотивах. Там, где требуется очень большая мощность, например, реактивные самолеты, вертолеты и большие корабли, они появляются в основном в виде турбин. Они также используются в электрических генераторах и в промышленности.

Операция

Все двигатели внутреннего сгорания зависят от экзотермического химического процесса сгорания: реакция топлива, обычно с воздухом, хотя могут использоваться другие окислители, такие как закись азота.

Наиболее распространенное топливо, используемое сегодня, состоит из углеводородов и, в основном, из нефти. К ним относятся виды топлива, известные как дизельное топливо, бензин и нефтяной газ, а также редкое использование пропана. Большинство двигателей внутреннего сгорания, разработанных для бензина, могут работать на природном газе или сжиженном нефтяном газе без значительных модификаций, за исключением компонентов подачи топлива. Также можно использовать жидкое и газообразное биотопливо, такое как этанол и биодизель, форма дизельного топлива, которое производится из сельскохозяйственных культур, которые дают триглицериды, такие как соевое масло. Некоторые также могут работать на водороде.

Все двигатели внутреннего сгорания должны иметь способ зажигания в цилиндрах для создания сгорания. В двигателях используется либо электрический метод, либо система воспламенения от сжатия.

Процесс воспламенения бензина

Электрические / бензиновые системы зажигания (которые также могут работать на других видах топлива, как упоминалось ранее) обычно основаны на комбинации свинцово-кислотной батареи и индукционной катушки для создания электрической искры высокого напряжения для воспламенения топливовоздушной смеси в цилиндры двигателя.Эту батарею можно заряжать во время работы с помощью устройства, вырабатывающего электричество, такого как генератор переменного тока или генератор, приводимый в действие двигателем. Бензиновые двигатели впитывают смесь воздуха и бензина и сжимают до менее 170 фунтов на квадратный дюйм и используют свечу зажигания для воспламенения смеси, когда она сжимается головкой поршня в каждом цилиндре.

Процесс зажигания дизельного двигателя

Системы воспламенения от сжатия, такие как дизельный двигатель и двигатели HCCI (гомогенный заряд и воспламенение от сжатия), для воспламенения полагаются исключительно на тепло и давление, создаваемые двигателем в процессе сжатия.Возникающая компрессия обычно более чем в три раза выше, чем у бензинового двигателя. Дизельные двигатели будут всасывать только воздух, и незадолго до пикового сжатия небольшое количество дизельного топлива впрыскивается в цилиндр через топливную форсунку, которая позволяет топливу мгновенно воспламениться. Двигатели типа HCCI будут потреблять как воздух, так и топливо, но по-прежнему будут полагаться на процесс самовоспламенения без посторонней помощи из-за более высокого давления и тепла. По этой же причине дизельные двигатели и двигатели HCCI также более подвержены проблемам с холодным запуском, хотя после запуска они также будут работать в холодную погоду.Большинство дизелей также имеют аккумуляторные батареи и системы зарядки, однако эта система является вторичной и добавляется производителями в качестве роскоши для простоты запуска, включения и выключения топлива, что также может быть выполнено с помощью переключателя или механического устройства, а также для работы вспомогательных электрических компонентов и аксессуаров. . Однако большинство современных дизелей полагаются на электрические системы, которые также контролируют процесс сгорания для повышения эффективности и сокращения выбросов.

Энергия

После успешного воспламенения и сгорания продукты сгорания, горячие газы, имеют больше доступной энергии, чем исходная сжатая топливно-воздушная смесь (которая имела более высокую химическую энергию).Доступная энергия проявляется в виде высокой температуры и давления, которые могут быть переведены в работу двигателем. В поршневом двигателе газы продукта высокого давления внутри цилиндров приводят в движение поршни двигателя.

После того, как доступная энергия удалена, оставшиеся горячие газы сбрасываются (часто путем открытия клапана или выхода выхлопных газов), что позволяет поршню вернуться в свое предыдущее положение (верхняя мертвая точка — ВМТ). Затем поршень может перейти к следующей фазе своего цикла, который варьируется в зависимости от двигателя.Любое тепло, не переведенное в работу, обычно считается отходом и удаляется из двигателя с помощью системы воздушного или жидкостного охлаждения.

Детали

Иллюстрация нескольких ключевых компонентов типичного четырехтактного двигателя.

Детали двигателя различаются в зависимости от типа двигателя. Для четырехтактного двигателя ключевыми частями двигателя являются коленчатый вал (фиолетовый), один или несколько распределительных валов (красный и синий) и клапаны. Для двухтактного двигателя вместо клапанной системы могут быть просто выпускной патрубок и впускное отверстие для топлива.В обоих типах двигателей имеется один или несколько цилиндров (серый и зеленый), и для каждого цилиндра есть свеча зажигания (темно-серый), поршень (желтый) и кривошип (фиолетовый). Однократное движение поршня вверх или вниз по цилиндру называется ходом, а ход вниз, который происходит непосредственно после воспламенения топливовоздушной смеси в цилиндре, известен как рабочий ход.

Двигатель Ванкеля имеет треугольный ротор, вращающийся в эпитрохоидальной камере (в форме фигуры 8) вокруг эксцентрикового вала.Четыре фазы работы (впуск, сжатие, мощность, выпуск) происходят в разных местах, а не в одном месте, как в поршневом двигателе.

В двигателе Bourke используется пара поршней, встроенных в кулису, которая передает возвратно-поступательное усилие через специально разработанный подшипниковый узел для поворота кривошипно-шатунного механизма. Впуск, сжатие, мощность и выпуск — все это происходит при каждом такте вилки.

Классификация

Существует широкий спектр двигателей внутреннего сгорания, соответствующих их многочисленным применениям.Аналогичным образом существует множество способов классификации двигателей внутреннего сгорания, некоторые из которых перечислены ниже.

Хотя термины иногда вызывают путаницу, реальной разницы между «двигателем» и «мотором» нет. Когда-то слово «двигатель» (от латинского через старофранцузское, ingenium, «способность») означало любую часть механизма. «Мотор» (от латинского мотор, «движитель») — это любая машина, которая производит механическую энергию. Традиционно электродвигатели не называют двигателями, но двигатели внутреннего сгорания часто называют двигателями.»(Электродвигатель относится к локомотивам, работающим от электричества.)

С учетом сказанного, нужно понимать, что обычное использование часто требует определений. Многие люди рассматривают двигатели как те объекты, которые генерируют энергию изнутри, а двигатели — как требующие внешнего источника энергии для выполнения своей работы. Очевидно, корни слов действительно указывают на настоящую разницу. Кроме того, как и во многих определениях, корневое слово объясняет только начало слова, а не его текущее использование.Конечно, можно утверждать, что так обстоит дело со словами мотор и двигатель.

Принципы работы

Поршневой:

  • Двигатель на сырой нефти
  • Двухтактный цикл
  • Четырехтактный цикл
  • Двигатель с горячей лампой
  • Тарельчатые клапаны
  • Рукавный клапан
  • цикл Аткинсона
  • Предлагаемый
  • Улучшения
  • Управляемый двигатель внутреннего сгорания

Поворотный:

  • Продемонстрировано:
  • Предложено:
    • Орбитальный двигатель
    • Квазитурбина
    • Роторный двигатель цикла Аткинсона
    • Тороидальный двигатель

Непрерывное сгорание:

  • Газовая турбина
  • Реактивный двигатель
  • Ракетный двигатель

Цикл двигателя

Двухтактный

Двигатели, основанные на двухтактном цикле, используют два хода (один вверх, один вниз) для каждого рабочего хода.Поскольку не существует специальных тактов впуска или выпуска, необходимо использовать альтернативные методы очистки цилиндров. Наиболее распространенный метод в двухтактных двигателях с искровым зажиганием заключается в использовании движения поршня вниз для создания давления свежего заряда в картере, который затем продувается через цилиндр через отверстия в стенках цилиндра. Двухтактные двигатели с искровым зажиганием маленькие и легкие (для их выходной мощности) и очень просты в механическом отношении. Общие области применения включают снегоходы, газонокосилки, средства для удаления сорняков, цепные пилы, водные мотоциклы, мопеды, подвесные моторы и некоторые мотоциклы.К сожалению, они, как правило, громче, менее эффективны и загрязняют больше, чем их четырехтактные аналоги, и плохо масштабируются до больших размеров. Интересно, что самые большие двигатели с воспламенением от сжатия являются двухтактными и используются в некоторых локомотивах и больших кораблях. Эти двигатели используют принудительную индукцию для продувки цилиндров. Двухтактные двигатели менее экономичны, чем другие типы двигателей, потому что неизрасходованное топливо, распыляемое в камеру сгорания, иногда может выходить из выхлопного тракта вместе с ранее отработанным топливом.Без специальной обработки выхлопных газов это также приведет к очень высокому уровню загрязнения, требуя, чтобы во многих областях применения небольших двигателей, таких как газонокосилки, использовались четырехтактные двигатели, и в некоторых странах с двухтактными двигателями меньшего размера, оснащенными каталитическими преобразователями.

Четырехтактный

Двигатели, основанные на четырехтактном цикле или цикле Отто, имеют один рабочий ход на каждые четыре хода (вверх-вниз-вверх-вниз) и используются в автомобилях, больших лодках и многих легких самолетах. Как правило, они тише, эффективнее и крупнее своих двухтактных собратьев.Есть несколько разновидностей этих циклов, в первую очередь циклы Аткинсона и Миллера. В большинстве дизельных двигателей грузовиков и автомобилей используется четырехтактный цикл, но с системой зажигания с подогревом от сжатия. Этот вариант называется дизельным циклом.

Пятитактный

Двигатели, основанные на пятитактном цикле, представляют собой вариант четырехтактного цикла. Обычно четыре цикла — это впуск, сжатие, сгорание и выпуск. Пятый цикл, добавленный Delautour [2] , — это охлаждение.Двигатели, работающие с пятитактным циклом, на 30 процентов более эффективны, чем эквивалентный четырехтактный двигатель.

Двигатель Бурка

В этом двигателе два диаметрально противоположных цилиндра соединены с кривошипом шатунным штифтом, который проходит через общую вилку. Цилиндры и поршни сконструированы таким образом, что, как и в обычном двухтактном цикле, происходит два рабочих хода на оборот. Однако, в отличие от обычного двухтактного двигателя, отработанные газы и поступающий свежий воздух не смешиваются в цилиндрах, что способствует более чистой и эффективной работе.Кулисный механизм также имеет низкую боковую тягу и, таким образом, значительно снижает трение между поршнями и стенками цилиндров. Фаза сгорания двигателя Бурка более точно соответствует сгоранию с постоянным объемом, чем четырехтактный или двухтактный цикл. В нем также используется меньше движущихся частей, поэтому необходимо преодолевать меньшее трение, чем у двух других типов возвратно-поступательного движения. Кроме того, его более высокий коэффициент расширения также означает, что используется больше тепла от его фазы сгорания, чем используется в четырехтактных или двухтактных циклах.

Двигатель с регулируемым сгоранием

Это также цилиндрические двигатели, которые могут быть одно- или двухтактными, но вместо коленчатого вала и поршневых штоков используются два соединенных зубчатых колеса концентрических кулачка, вращающихся в противоположных направлениях, для преобразования возвратно-поступательного движения во вращательное движение. Эти кулачки практически нейтрализуют боковые силы, которые в противном случае оказывались бы на цилиндры поршнями, значительно повышая механический КПД. Профили кулачков (которые всегда нечетные и по крайней мере три) определяют ход поршня в зависимости от передаваемого крутящего момента.В этом двигателе есть два цилиндра, которые разнесены на 180 градусов для каждой пары кулачков встречного вращения. Для одноходовых версий существует такое же количество циклов на пару цилиндров, как и кулачков на каждом кулачке, в два раза больше для двухтактных агрегатов.

Ванкель

Двигатель Ванкеля работает с тем же разделением фаз, что и четырехтактный двигатель (но без ходов поршня, правильнее было бы назвать четырехфазным двигателем), поскольку фазы расположены в разных местах двигателя.Этот двигатель обеспечивает три «такта» мощности на оборот на ротор, что в среднем дает ему большее отношение мощности к массе, чем поршневые двигатели. Этот тип двигателя используется в нынешних моделях Mazda RX8 и RX7 ранее, а также в других моделях.

Газовая турбина

В газотурбинных циклах (особенно реактивных двигателях) вместо использования одного и того же поршня для сжатия и последующего расширения газов используются отдельные компрессоры и газовые турбины; давая постоянную мощность. По сути, всасываемый газ (обычно воздух) сжимается, а затем сжигается с топливом, что значительно повышает температуру и объем.Затем больший объем горячего газа из камеры сгорания подается через газовую турбину, которая затем легко может приводить в действие компрессор.

Вышедшие из употребления методы

В некоторых старых двигателях внутреннего сгорания без сжатия: в первой части хода поршня вниз была засосана или вдувалась топливно-воздушная смесь. В остальной части хода поршня вниз впускной клапан закрылся, и топливно-воздушная смесь сгорела. При ходе поршня вверх выпускной клапан был открыт. Это была попытка имитации работы поршневого парового двигателя.

Виды топлива и окислителя

Используемые виды топлива включают нефтяной спирт (североамериканский термин: бензин, британский термин: бензин), автогаз (сжиженный нефтяной газ), сжатый природный газ, водород, дизельное топливо, реактивное топливо, свалочный газ, биодизель, биобутанол, арахисовое масло и другие растительные масла. , биоэтанол, биометанол (метиловый или древесный спирт) и другие виды биотоплива. Даже псевдоожиженные металлические порошки и взрывчатые вещества нашли применение. Двигатели, в которых в качестве топлива используются газы, называются газовыми двигателями, а двигатели, в которых используются жидкие углеводороды, называются масляными двигателями.Однако, к сожалению, бензиновые двигатели также часто называют «газовыми двигателями».

Основные ограничения для топлива заключаются в том, что топливо должно легко транспортироваться через топливную систему в камеру сгорания, и что топливо выделяет достаточно энергии в виде тепла при сгорании, чтобы можно было использовать двигатель на практике.

Окислителем обычно является воздух, и его преимущество заключается в том, что он не хранится в транспортном средстве, что увеличивает удельную мощность.Однако воздух можно сжимать и переносить на борту транспортного средства. Некоторые подводные лодки предназначены для перевозки чистого кислорода или перекиси водорода, что делает их независимыми от воздуха. Некоторые гоночные автомобили содержат закись азота в качестве окислителя. Другие химические вещества, такие как хлор или фтор, нашли экспериментальное применение; но большинство из них непрактично.

Дизельные двигатели обычно тяжелее, шумнее и мощнее на более низких оборотах, чем бензиновые двигатели. Они также более экономичны в большинстве случаев и используются в тяжелых дорожных транспортных средствах, некоторых автомобилях (в большей степени из-за их более высокой топливной эффективности по сравнению с бензиновыми двигателями), кораблях, железнодорожных локомотивах и легких самолетах.Бензиновые двигатели используются в большинстве других дорожных транспортных средств, включая большинство автомобилей, мотоциклов и мопедов. Обратите внимание, что в Европе сложные автомобили с дизельным двигателем стали довольно распространенными с 1990-х годов, составляя около 40 процентов рынка. И бензиновые, и дизельные двигатели производят значительные выбросы. Есть также двигатели, работающие на водороде, метаноле, этаноле, сжиженном нефтяном газе (СНГ) и биодизеле. Парафиновые и тракторные двигатели с испарительным маслом (TVO) больше не встречаются.

Водород

Некоторые предполагают, что в будущем водород может заменить такое топливо.Кроме того, с внедрением технологии водородных топливных элементов использование двигателей внутреннего сгорания может быть прекращено. Преимущество водорода в том, что при его сгорании образуется только вода. Это не похоже на сжигание ископаемого топлива, которое производит двуокись углерода, главную причину глобального потепления, окись углерода в результате неполного сгорания, а также другие местные и атмосферные загрязнители, такие как двуокись серы и окислы азота, которые вызывают проблемы с дыханием в городах, кислотные дожди. , и проблемы с газом озоном.Однако свободный водород для топлива не возникает в природе, при его сжигании выделяется меньше энергии, чем требуется для получения водорода в первую очередь самым простым и распространенным методом — электролизом. Хотя существует несколько способов производства свободного водорода, они требуют преобразования горючих в настоящее время молекул в водород, поэтому водород не решает никаких энергетических кризисов, более того, он решает только проблему портативности и некоторые проблемы загрязнения. Большим недостатком водорода во многих ситуациях является его хранение.Жидкий водород имеет чрезвычайно низкую плотность — в 14 раз ниже плотности воды и требует обширной изоляции, в то время как газообразный водород требует очень тяжелых резервуаров. Хотя водород имеет более высокую удельную энергию, объемный запас энергии все еще примерно в пять раз ниже, чем у бензина, даже в сжиженном состоянии. (Процесс «Водород по запросу», разработанный Стивеном Амендола, создает водород по мере необходимости, но здесь есть и другие проблемы, например, относительно дорогое сырье.) К другим видам топлива, более благоприятным для окружающей среды, относится биотопливо.Это не может дать чистого прироста углекислого газа.

Одноцилиндровый бензиновый двигатель (ок. 1910 г.).

Цилиндры

Двигатели внутреннего сгорания могут содержать любое количество цилиндров с обычными номерами от одного до двенадцати, хотя было использовано до 36 (Lycoming R-7755). Наличие большего количества цилиндров в двигателе дает два потенциальных преимущества: во-первых, двигатель может иметь больший рабочий объем с меньшими отдельными возвратно-поступательными массами (то есть масса каждого поршня может быть меньше), что делает двигатель более плавным (поскольку двигатель имеет тенденцию к вибрируют в результате движения поршней вверх и вниз).Во-вторых, с большим рабочим объемом и большим количеством поршней может быть сожжено больше топлива, и может быть больше событий сгорания (то есть больше рабочих ходов) в заданный период времени, что означает, что такой двигатель может генерировать больший крутящий момент, чем аналогичный двигатель. с меньшим количеством цилиндров. Недостатком большего количества поршней является то, что в целом двигатель будет иметь больший вес и иметь тенденцию создавать большее внутреннее трение, поскольку большее количество поршней трутся о внутреннюю часть их цилиндров. Это имеет тенденцию к снижению топливной экономичности и лишению двигателя части его мощности.Для высокоэффективных бензиновых двигателей, использующих современные материалы и технологии (например, двигатели, используемые в современных автомобилях), кажется, есть точка разрыва около 10 или 12 цилиндров, после чего добавление цилиндров становится общим ущербом для производительности и эффективности, хотя есть исключения. например двигатель W16 от Volkswagen существуют.

  • Большинство автомобильных двигателей имеют от четырех до восьми цилиндров, некоторые высокопроизводительные автомобили имеют десять, двенадцать или даже шестнадцать, а некоторые очень маленькие легковые и грузовые автомобили имеют два или три цилиндра.В предыдущие годы некоторые довольно большие автомобили, такие как DKW и Saab 92, имели двухцилиндровые двухтактные двигатели.
  • Радиальные авиационные двигатели, ныне устаревшие, имели от трех до 28 цилиндров, такие как Pratt & Whitney R-4360. Строка содержит нечетное количество цилиндров, поэтому четное число указывает на двух- или четырехрядный двигатель. Самым большим из них был Lycoming R-7755 с 36 цилиндрами (четыре ряда по девять цилиндров), но он так и не был запущен в производство.
  • Мотоциклы обычно имеют от одного до четырех цилиндров, у некоторых высокопроизводительных моделей их шесть (хотя существуют «новинки» с 8, 10 и 12).
  • Снегоходы обычно имеют два цилиндра. У некоторых более крупных (не обязательно высокопроизводительных, но тоже туристических машин) их четыре.
  • Небольшие переносные приборы, такие как бензопилы, генераторы и бытовые газонокосилки, чаще всего имеют один цилиндр, хотя существуют двухцилиндровые бензопилы.

Система зажигания

Двигатели внутреннего сгорания можно классифицировать по системе зажигания. Точка цикла, в которой воспламеняется смесь топлива и окислителя, напрямую влияет на КПД и мощность ДВС.Для типичного 4-тактного автомобильного двигателя горящая смесь должна достичь максимального давления, когда коленчатый вал находится под углом 90 градусов после ВМТ (верхней мертвой точки). Скорость фронта пламени напрямую зависит от степени сжатия, температуры топливной смеси и октанового или цетанового числа топлива. Современные системы зажигания предназначены для зажигания смеси в нужное время, чтобы фронт пламени не касался опускающейся днища поршня. Если фронт пламени соприкасается с поршнем, это приводит к появлению детонации или детонации.Более бедные смеси и смеси с более низким давлением горят медленнее, что требует более точного момента зажигания. Сегодня в большинстве двигателей используется электрическая или компрессионная система нагрева для зажигания. Однако исторически использовались системы с внешним пламенем и горячими трубами. Никола Тесла получил один из первых патентов на механическую систему зажигания — патент США 609250 (PDF) «Электрический воспламенитель для газовых двигателей» 16 августа 1898 года.

Топливные системы

Топливо сгорает быстрее и полнее, если большая площадь его поверхности контактирует с кислородом.Чтобы двигатель работал эффективно, топливо должно испаряться в поступающий воздух в виде того, что обычно называется топливно-воздушной смесью. Обычно используются два метода испарения топлива в воздух: карбюраторный и впрыск топлива.

Часто для более простых поршневых двигателей используется карбюратор для подачи топлива в цилиндр. Однако точный контроль количества топлива, подаваемого в двигатель, невозможно. Карбюраторы — это самые распространенные в настоящее время устройства для смешивания топлива, используемые в газонокосилках и других двигателях малой мощности.До середины 1980-х карбюраторы также были распространены в автомобилях.

Более крупные бензиновые двигатели, такие как используемые в автомобилях, в основном перешли на системы впрыска топлива. В дизельных двигателях всегда используется впрыск топлива.

Автогазовые двигатели (LPG) используют либо системы впрыска топлива, либо карбюраторы с открытым или закрытым контуром.

В других двигателях внутреннего сгорания, таких как реактивные двигатели, используются горелки, а в ракетных двигателях используются различные идеи, включая ударные струи, сдвиг газа / жидкости, форсажные камеры и многие другие идеи.

Конфигурация двигателя

Двигатели внутреннего сгорания можно классифицировать по их конфигурации, которая влияет на их физические размеры и плавность хода (более плавные двигатели производят меньшую вибрацию). Общие конфигурации включают прямую или линейную конфигурацию, более компактную V-образную конфигурацию и более широкую, но более гладкую плоскую или боксерскую конфигурацию. Авиационные двигатели также могут иметь радиальную конфигурацию, которая обеспечивает более эффективное охлаждение. Также использовались более необычные конфигурации, такие как «H», «U», «X» или «W».

Конфигурации с несколькими коленчатыми валами вовсе не обязательно нуждаются в головке блока цилиндров, но вместо этого могут иметь поршень на каждом конце цилиндра, что называется конструкцией с оппозитным поршнем. Эта конструкция использовалась в дизельном авиационном двигателе Junkers Jumo 205 с двумя коленчатыми валами, по одному на каждом конце одного ряда цилиндров, и, что наиболее заметно, в дизельных двигателях Napier Deltic, в которых использовались три коленчатых вала для обслуживания трех групп двусторонних цилиндров. цилиндры расположены в равностороннем треугольнике с коленчатыми валами по углам.Он также использовался в одноблочных локомотивных двигателях и продолжает использоваться для судовых двигателей, как для тяги, так и для вспомогательных генераторов. Двигатель Gnome Rotary, использовавшийся в нескольких ранних самолетах, имел неподвижный коленчатый вал и ряд радиально расположенных цилиндров, вращающихся вокруг него.

Объем двигателя

Рабочий объем двигателя — это рабочий объем или рабочий объем поршней двигателя. Обычно он измеряется в литрах (л) или кубических дюймах ( или куб. Дюймов) для двигателей большего размера и кубических сантиметрах (сокращенно куб. См) для двигателей меньшего размера.Двигатели большей мощности обычно более мощные и обеспечивают больший крутящий момент на более низких оборотах, но при этом потребляют больше топлива.

Помимо разработки двигателя с большим количеством цилиндров, есть два способа увеличить мощность двигателя. Первый — увеличить ход, а второй — увеличить диаметр поршня. В любом случае может потребоваться дополнительная регулировка подачи топлива в двигатель, чтобы обеспечить оптимальную производительность.

Заявленная мощность двигателя может быть больше вопросом маркетинга, чем инженерии.Morris Minor 1000, Morris 1100 и Austin-Healey Sprite Mark II были оснащены двигателем BMC серии A с одинаковым ходом и диаметром цилиндра в соответствии с их спецификациями и были от одного производителя. Однако в коммерческой литературе и на значках автомобиля объем двигателя был указан как 1000 куб. См, 1100 куб. См и 1098 куб. См соответственно.

Системы смазки

Используется несколько различных типов систем смазки. Простые двухтактные двигатели смазываются маслом, смешанным с топливом или впрыскиваемым в впускной поток в виде спрея.Первые тихоходные стационарные и судовые двигатели смазывались под действием силы тяжести из небольших камер, подобных тем, которые использовались в паровых двигателях в то время, с тендером, заполняющим их по мере необходимости. Поскольку двигатели были адаптированы для использования в автомобилях и самолетах, необходимость в высоком соотношении мощности к массе привела к увеличению скорости, повышению температуры и большему давлению на подшипники, что, в свою очередь, требовало смазки под давлением для шатунных подшипников и шейки шатуна, если либо за счет прямой смазки от насоса, либо косвенно посредством струи масла, направляемой на приемные чашки на концах шатуна, что имело то преимущество, что при увеличении частоты вращения двигателя создавалось более высокое давление.

Загрязнение двигателя

Обычно двигатели внутреннего сгорания, особенно поршневые двигатели внутреннего сгорания, производят умеренно высокие уровни загрязнения из-за неполного сгорания углеродсодержащего топлива, что приводит к образованию монооксида углерода и некоторого количества сажи, а также оксидов азота и серы и некоторых несгоревших углеводородов в зависимости от условий эксплуатации и соотношение топливо / воздух. Основными причинами этого являются необходимость работы бензиновых двигателей, близких к стехиометрическому, для достижения сгорания (топливо сгорает более полно в избытке воздуха) и «гашение» пламени относительно холодными стенками цилиндра.

Дизельные двигатели производят широкий спектр загрязняющих веществ, включая аэрозоли многих мелких частиц (PM10), которые, как считается, глубоко проникают в легкие человека. Двигатели, работающие на сжиженном нефтяном газе (LPG), имеют очень низкий уровень выбросов, поскольку LPG горит очень чисто и не содержит серы или свинца.

  • Многие виды топлива содержат серу, которая приводит к образованию оксидов серы (SOx) в выхлопных газах, что способствует кислотным дождям.
  • Высокая температура горения создает большую долю оксидов азота (NOx), которые, как доказано, опасны как для здоровья растений, так и для животных.
  • Чистое производство двуокиси углерода не является обязательной характеристикой двигателей, но, поскольку большинство двигателей работают на ископаемом топливе, это обычно происходит. Если двигатели работают на биомассе, то чистый углекислый газ не образуется, поскольку растущие растения поглощают столько же или больше углекислого газа во время роста.
  • Двигатели, работающие на водороде, должны производить только воду, но когда в качестве окислителя используется воздух, также образуются оксиды азота.

КПД двигателя внутреннего сгорания

КПД различных типов двигателей внутреннего сгорания различается.Принято считать, что большинство двигателей внутреннего сгорания, работающих на бензине, даже при использовании турбонагнетателей и вспомогательных средств повышения эффективности имеют механический КПД около 20 процентов. Большинство двигателей внутреннего сгорания тратят около 36 процентов энергии бензина в виде тепла, теряемого в системе охлаждения, и еще 38 процентов через выхлоп. Остальное, около шести процентов, теряется из-за трения. Большинству инженеров не удавалось успешно использовать потерянную энергию для каких-либо значимых целей, хотя существуют различные дополнительные устройства и системы, которые могут значительно повысить эффективность сгорания.

Впрыск водородного топлива, или HFI, представляет собой систему надстройки двигателя, которая, как известно, улучшает экономию топлива двигателей внутреннего сгорания путем впрыска водорода для улучшения сгорания во впускной коллектор. Можно увидеть прирост экономии топлива от 15 до 50 процентов. Небольшое количество водорода, добавляемого к всасываемому воздушно-топливному заряду, увеличивает октановое число комбинированного топливного заряда и увеличивает скорость пламени, тем самым позволяя двигателю работать с более продвинутой синхронизацией зажигания, более высокой степенью сжатия и более бедной воздушно-топливной смесью. к топливной смеси, чем это возможно в противном случае.В результате снижается уровень загрязнения, увеличивается мощность и эффективность. Некоторые системы HFI используют бортовой электролизер для выработки используемого водорода. Также можно использовать небольшой резервуар с водородом под давлением, но этот метод требует повторного заполнения.

Также обсуждались новые типы двигателей внутреннего сгорания, такие как Scuderi Split Cycle Engine, которые используют высокое давление сжатия, превышающее 2000 фунтов на квадратный дюйм, и сгорают после верхней мертвой точки (самая высокая и самая сжатая точка в ход поршня внутреннего сгорания).Ожидается, что такие двигатели будут иметь КПД 50-55%.

Банкноты

Список литературы

  • Харденберг, Хорст О. 1999. Средние века двигателя внутреннего сгорания . Варрендейл, Пенсильвания: Международное издательство SAE. ISBN 0768003911.
  • Хейвуд, Джон. 1988. Основы двигателя внутреннего сгорания. Нью-Йорк: McGraw-Hill Science / Engineering / Math. ISBN 007028637X.
  • Стоун, Ричард. 1999. Введение в двигатели внутреннего сгорания .Варрендейл, Пенсильвания: Международное издательство SAE. ISBN 0768004950.
  • Тейлор, Чарльз Файетт. 1985. Двигатель внутреннего сгорания в теории и практике . Кембридж, Массачусетс: MIT Press. ISBN 0262700263.

Внешние ссылки

Все ссылки получены 4 марта 2018 г.

  • Знакомство с автомобильными двигателями — изображения в разрезе и хороший обзор двигателя внутреннего сгорания
  • Библия по топливу и двигателям — хороший ресурс о различных типах двигателей и топливах
  • youtube — Анимация компонентов 4-цилиндрового двигателя
  • youtube — Анимация внутренних движущихся частей 4-цилиндрового двигателя

Кредиты

Энциклопедия Нового Света Писатели и редакторы переписали и дополнили статью Википедия в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников New World Encyclopedia, и на самоотверженных добровольцев, вносящих вклад в Фонд Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в New World Encyclopedia :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания
Гленн

Исследовательский центр

В течение сорока лет после первый полет братьев Райт использовались самолеты Двигатели внутреннего сгорания повернуть пропеллеры чтобы генерировать толкать. Сегодня большинство самолетов гражданской авиации или частных самолетов все еще находятся в эксплуатации. с пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель.На этой странице мы обсудим основы двигатель внутреннего сгорания с использованием Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера.

Обсуждая двигатели, мы должны учитывать как механическая работа машина и термодинамический процессы, которые позволяют машине производить полезные работай. Базовая механическая конструкция двигателя Райта такова: замечательно похож на современный, четырехтактный, четыре цилиндра автомобильные двигатели. Как следует из названия, процесс горения двигателя внутреннего сгорания происходит в закрытом цилиндр .Внутри цилиндра движется поршень, который компрессы смесь топлива и воздуха перед сгоранием, а затем принудительно возвращается вниз по цилиндру после сгорания. На рабочий ход поршень вращает кривошип, который преобразует линейное движение поршень в круговое движение. Поворот коленчатый вал затем используется для поворота воздушного винта. В движение поршня повторяется в термодинамический цикл называется Цикл Отто который был разработан немецким доктором Н. А. Отто в 1876 г. и используется до сих пор.

Хотя есть некоторые важные различия между современными авиационные двигатели и двигатель Wright 1903, простота конструкции двигателя Райта делает его хорошей отправной точкой для студентов. Индивидуальные веб-страницы для всех основных систем и части предоставляются так, чтобы вы можете детально изучить каждый пункт. Вот программа на Java, которую вы можете использовать, чтобы посмотреть на движок из разнообразие локаций:

На этой странице показан интерактивный Java-апплет, который позволяет вам изменять вид авиационного двигателя 1903 года путем нажатия кнопок для остановки, шага или поворота изображение.

Вы можете загрузить свою собственную копию этого апплета, нажав следующую кнопку:

Программа скачивается в формате .zip. Вы должны сохранить файл на диск и затем «Извлеките» файлы. Нажмите на «Engine.html» для автономной работы программы.


Действия:

Экскурсии с гидом

Навигация ..


Руководство для начинающих Домашняя страница

Двигатели внутреннего сгорания | IFPEN

Двигатель внутреннего сгорания автомобиля обычно содержит нескольких камер сгорания .Каждый из них ограничен головкой блока цилиндров, цилиндром и поршнем.

Архитектура двигателя также шарнирно закреплена вокруг системы коленчатого вала , что позволяет переводить возвратно-поступательное движение (движение поршня) во вращательное движение (вращение коленчатого вала).


Во время каждого цикла сгорание топливной смеси (воздушно-топливной смеси) в камере приводит к увеличению давления газа, который приводит в движение поршень и систему коленчатого вала. Поскольку коленчатый вал соединен с компонентами механической трансмиссии (коробки передач, приводные валы и т. Д.)), его движение приводит в движение колеса автомобиля.

Коробка передач позволяет адаптировать скорость вращения колеса к скорости вращения двигателя.

Характеристики двигателя зависят, прежде всего, от количества энергии, генерируемой при сгорании, следовательно, от количества топливной смеси, присутствующей в камере сгорания. Таким образом, он напрямую связан с объемом камеры (единичный рабочий объем), количеством камер или цилиндров в двигателе (общий объем) и количеством впрыскиваемого топлива.

Почему «4-х тактный»?

Термин относится к тому факту, что требуется 4 отдельных хода для преобразования химической энергии, содержащейся в топливе, в механическую энергию . Каждый ход соответствует половине оборота коленчатого вала (одно движение поршня вверх или вниз). Такты 1 и 4 предназначены для передачи газа (прием свежего газа и выбрасываемых выхлопных газов), а такты 2 и 3 необходимы для подготовки к сгоранию с последующим сгоранием и его преобразованием в механическую энергию.

Для двигателя с искровым зажиганием и непрямым впрыском топлива четыре такта имеют следующий вид:

  • 1 ход : Впуск (наполнение цилиндра)
    Поршень опускается и втягивает топливовоздушную смесь.
  • 2 nd ход : Сжатие
    Поршень снова поднимается, сжимая топливно-воздушную смесь. Возникает искра для воспламенения смеси.
  • 3 ряд ход : Сгорание — расширение
    Этот ход соответствует развитию сгорания и расширению сгоревших газов: поршень сжимается, и химическая энергия преобразуется в механическую энергию.
  • 4 -й ход : Выхлоп (Сгоревшие газы отводятся из цилиндра)
    Поршень снова поднимается и удаляет сгоревшие газы.

Для дизельного двигателя с воспламенением от сжатия и непосредственным впрыском топлива 4 такта работают одинаково, с двумя отличиями:

  • Чистый воздух всасывается и сжимается во время тактов 1 и 2 , затем топливо вводится непосредственно в цилиндр (путем впрыска) в конце сжатия.
  • Смесь самовозгорается без искры из-за высокой температуры воздуха в результате его сжатия.

Цетановое число / октановое число

Цетановое число указывает на способность дизельного топлива самовоспламеняться.

Октановое число указывает на способность бензина противостоять самовоспламенению и предотвращать неконтролируемое возгорание из-за электрической искры (ненормальное горение, детонация).

Что такое горение?

Теоретически для полного сгорания 1 г обычного топлива (бензина или дизельного топлива) требуется около 14,6 г воздуха. Эта идеальная смесь называется стехиометрической.

Бензиновые двигатели с непрямым впрыском в основном работают на стехиометрической смеси . После подачи в двигатель однородной смеси воздуха и бензина сгорание (воспламенение смеси) инициируется искрой (искровое зажигание).Горение вызывает распространение фронта пламени, который проходит через камеру.

Современные бензиновые двигатели с прямым впрыском : воздух поступает через впускное отверстие, а топливо, как в дизельном двигателе, поступает непосредственно в камеру сгорания, что позволяет более точно управлять впрыском. Вместо топливовоздушной смеси двигатель работает на так называемом стратифицированном заряде. Горение по-прежнему инициируется искрой (искровое зажигание).

Дизельные двигатели работают с избытком воздуха .Дизель впрыскивается под давлением в предварительно сжатую воздушную массу. Возгорание инициируется самовоспламенением (воспламенение от сжатия). Сгорание называют расслоенным или неоднородным, поскольку оно происходит как в богатой топливом (расположенной рядом с форсункой), так и в бедной (рядом со стенкой цилиндра) зоне.

Топливо

В Европе используются бензиновые или дизельные двигатели с искровым зажиганием. Бензин и дизельное топливо — это два основных конечных продукта, получаемых в результате переработки сырой нефти, и их состав изменяется в зависимости от требований к двигателям и, что более важно, экологических норм, связанных с качеством воздуха и сокращением выбросов парниковых газов.

Биотопливо можно смешивать непосредственно с бензином и дизельным топливом в различных пропорциях без необходимости адаптации двигателей, тем самым извлекая выгоду из существующих распределительных сетей. Во Франции дизельное топливо B7, продаваемое на заправке, обычно содержит до 7% (по объему) биотоплива и бензина E10 до 10%.

Двигатель внутреннего сгорания | Encyclopedia.com

Обзор

Физики называют двигатель внутреннего сгорания «первичным двигателем», что означает, что он использует некоторую форму энергии (например.г., бензин) для перемещения предметов. Первые надежные двигатели внутреннего сгорания были разработаны в середине девятнадцатого века и почти сразу же стали использоваться для транспортировки. Развитие двигателя внутреннего сгорания помогло освободить людей от тяжелейшего ручного труда, сделало возможным создание самолетов и других видов транспорта и помогла произвести революцию в производстве электроэнергии.

Общие сведения

В 1698 году Томас Савери (ок. 1650-1715), британский военный инженер, построил «Друг шахтера», устройство, которое использовало давление пара для откачки воды из затопленных шахт.Несколько лет спустя Томас Ньюкомен (1663-1729) расширил дизайн Савери и создал первый настоящий двигатель. В двигателе Ньюкомена, в отличие от двигателя Христиана Гюйгенса (1629-1695) и Савери, использовался поршень, прикрепленный к самому двигателю. Следовательно, он мог производить постоянную (хотя и не плавную) мощность.

Три условия, существовавшие в девятнадцатом веке, способствовали развитию двигателя внутреннего сгорания. Главным условием был спрос на власть, представленный промышленной революцией.Во-вторых, физики начали понимать ключевые концепции, на которых построен двигатель внутреннего сгорания. В-третьих, топливо, необходимое для работы двигателя, становилось доступнее.

Между 1700 и 1900 годами ученые разработали область термодинамики, которая дала изобретателям инструменты для расчета КПД и выходной мощности различных типов двигателей. Эти расчеты показали, что внутренняя Двигатель внутреннего сгорания потенциально был намного эффективнее парового двигателя (который, напротив, был двигателем внешнего сгорания, то есть воспламенял топливо вне самого двигателя).

Самое важное событие в ранней истории двигателя внутреннего сгорания произошло в 1859 году под руководством бельгийского изобретателя Жана-Жозефа Этьена Ленуара (1822-1900). Двигатель Ленуара был одновременно прочным (некоторые из них отлично работали после 20 лет использования) и, что более важно, надежным. Более ранние версии двигателя были плохого качества и перестали работать без причины. Двигатель Ленуара выдавал постоянную мощность и работал плавно. В 1862 году Ленуар изобрел первый в мире автомобиль.

В 1860-х годах Николаус Отто (1832–1891) начал экспериментировать с двухтактными двигателями Ленуара и теоретическими четырехтактными двигателями Альфонса Бо де Роша (1815–1893). Отто был продавцом бакалеи; у него не было технического образования или опыта. В 1866 году Отто с помощью Ойгена Лангена (1833–1895), немецкого промышленника, разработал успешный, но тяжелый и шумный двигатель Отто и Лангена. Он продолжал экспериментировать с двигателями. В 1876 году он выпустил «Silent Otto», первый в мире четырехтактный двигатель.Silent Otto был не только более тихим, чем предыдущие двигатели, но и гораздо более экономичным.

Двигатель Отто установил стандарт времени. Фактически, основная конструкция современных двигателей остается такой же, как у Отто. Как и предсказывала термодинамика, двигатель внутреннего сгорания был намного более экономичным, чем паровой двигатель. Двигатели внутреннего сгорания, которые были тише, дешевле в эксплуатации и менее громоздкими, чем паровые, начали появляться на промышленных предприятиях по всей Северной Европе.

Чтобы двигатель внутреннего сгорания мог использовать жидкое топливо, он должен сначала перевести жидкость в парообразное состояние. Следующей задачей для производителей двигателей было найти способ осуществить это изменение. Между 1880 и 1900 годами были изобретены различные процессы для выполнения этой задачи. Между 1885 и 1892 годами были разработаны три метода: карбюрация, испарение горячей лампы и дизельный двигатель.

При карбюрации устройство, называемое карбюратором, смешивает воздух с парами жидкого топлива.Затем карбюратор подает смесь в двигатель. Искра или пламя внутри двигателя воспламеняют смесь. Это функция карбюратора в современных автомобилях. Для сравнения, двигатель с горячей лампой распыляет бензин на горячую поверхность рядом с цилиндром, а затем втягивает испаряющееся топливо в двигатель в виде пара. С двигателем с горячей лампой можно было использовать менее летучие виды топлива, такие как керосин. Третий метод — дизельный компрессорный двигатель. Вместо использования внешнего источника тепла для зажигания газа, как в первых двух методах, немецкий инженер Рудольф Дизель (1858-1913) изобрел процесс, при котором газ воспламеняется сам.У Дизеля был большой опыт в математике и естественных науках, и он знал, что когда газ сжимается, его температура повышается до точки, при которой топливо воспламеняется.

Impact

К началу века двигатели внутреннего сгорания стали неотъемлемой частью западной жизни. Промышленные предприятия по всей Европе и Америке широко использовали их, и открылись ворота для крупномасштабного производства автомобилей в 1900-х годах.

В области транспорта бензиновый двигатель внутреннего сгорания и его варианты (в основном дизельный двигатель) были адаптированы для использования в путешествиях по морю, суше и воздуху.В море большое количество небольших кораблей было и продолжает работать на дизельных двигателях, ускоряющих перемещение людей и товаров между любыми местами, связанными водой. Это сделало торговлю более быстрой и менее дорогой. Сочетание морских перевозок с более эффективной наземной перевозкой грузов делает эти преимущества еще более значительными. В свою очередь, расширение торговли ведет к большему благосостоянию и более высокому уровню жизни для обеих сторон, не говоря уже о создании новых рабочих мест.

Самолеты тоже обязаны своим существованием развитию бензинового двигателя. Многие изобретатели пытались летать с двигателями в конце девятнадцатого века, но только после того, как появились легкие и мощные бензиновые двигатели, возникла область авиации. Фактически, бензиновые двигатели преобладали в авиации в первой половине двадцатого века и даже сегодня играют важную роль в частной, коммерческой и военной авиации.

Также необходимо учитывать влияние на сельское хозяйство и производство продуктов питания.Тракторы и другое современное сельскохозяйственное оборудование, обычно работающее с дизельными или бензиновыми двигателями, играет значительную роль в изобилии продуктов питания в развитых и некоторых частях развивающегося мира. Использование тракторов для обработки почвы, посадки и сбора урожая, а также для буксировки тяжелых грузов помогло увеличить количество земли, которое может обработать один фермер, а также увеличение урожайности с гектара. Это двойное повышение эффективности отдельных фермеров приводит к увеличению количества продуктов питания по более низким ценам. В развитом мире это означает не только больше и более дешевую еду, доступную для граждан, но и больше еды, доступную для экспорта во все страны.

Как упоминалось ранее, дизельный двигатель является развитием двигателя внутреннего сгорания. Дизельные двигатели мощные, требуют меньшего обслуживания и используют менее очищенное топливо, чем бензиновые двигатели. Эти факторы делают их менее дорогими, и они стали предпочтительным двигателем для путешествий по железной дороге, больших лодок и малых судов, а также грузовиков. Дизельные двигатели также широко используются для выработки электроэнергии, особенно в качестве аварийных резервных источников питания для таких объектов, как больницы и атомные электростанции.В обоих случаях дизельные двигатели зарекомендовали себя как надежные и недорогие в обслуживании и эксплуатации.

Последним воздействием, которое необходимо обсудить, является воздействие двигателя внутреннего сгорания на окружающую среду. Все двигатели внутреннего сгорания работают за счет сжигания некоторой формы углеводорода и выпуска выхлопных газов. Эти углеводороды обычно получают из нефти, и они горят с образованием диоксида углерода, монооксида углерода и воды. Хотя были разработаны водородные двигатели, которые сжигают водород и производят водяной пар в качестве выхлопного газа, на момент написания этой статьи они были редкостью.

С точки зрения топлива, запасы нефти ограничены, и их становится все труднее обнаружить и добыть. Процесс добычи неизменно приводит к определенному воздействию на окружающую среду не только на буровой, но и на маршруте транспортировки. Поскольку большая часть нефти добывается в регионах, удаленных от нефтеперерабатывающих заводов и промышленных стран, большая часть ее транспортируется океанскими танкерами, которые иногда вызывают разливы с потенциально серьезными последствиями.

После сжигания в двигателях углеводородное топливо выделяет много газов, большая часть которых способствует загрязнению воздуха.До запрета в США многие виды топлива также содержали соединения свинца, которые были причастны к случаям отравления свинцом. Однако даже без свинца углекислый газ, основной выхлопной газ сгорания, по всей видимости, производится в достаточно больших количествах, и было отмечено, что его уровни в атмосфере увеличиваются во всем мире. Поскольку известно, что углекислый газ улавливает солнечное тепло, есть много предположений, что широкое использование двигателей внутреннего сгорания вызывает повышение температуры во всем мире с потенциально катастрофическими результатами.Однако следует подчеркнуть, что данные, которые были интерпретированы как показывающие глобальное потепление, могут быть интерпретированы по-разному, и не все ученые считают, что глобальное потепление действительно происходит. Кроме того, следует помнить, что на протяжении большей части истории Земли температуры были намного выше, чем в настоящее время. Таким образом, даже если глобальное потепление происходит, оно может быть связано или не быть связано с сжиганием ископаемого топлива в двигателях внутреннего сгорания.

ТОДД ДЖЕНСЕН И П. ЭНДРЮ КАРАМ

Дополнительная литература

Гребни, Гарри. Убить Дьявольский холм. Бостон: Компания Houghton Mifflin, 1979.

Харденберг, Хорст О. Средние века двигателей внутреннего сгорания 1794–1886. Детройт: Общество автомобильных инженеров, 1999.

Робертс, Питер. Ветераны и старинные автомобили. Лондон: Drury House, 1967.

Наука и ее времена: понимание социальной значимости научных открытий

Двигатель внутреннего сгорания | Engineering

Двигатель внутреннего сгорания — это тепловой двигатель, в котором сгорание происходит в замкнутом пространстве, называемом камерой сгорания.Сгорание топлива создает газы с высокой температурой / давлением, которые могут расширяться. Расширяющиеся газы используются для прямого перемещения поршня, лопаток турбины, ротора (ов) или самого двигателя, выполняя полезную работу.

Двигатели внутреннего сгорания могут работать на любом топливе, которое может сочетаться с «окислителем» в камере.

Напротив, двигатель внешнего сгорания, такой как паровой двигатель, действительно работает, когда в процессе сгорания нагревается отдельная рабочая жидкость, такая как вода или пар, который, в свою очередь, работает.

Реактивные двигатели, большинство ракет и многие газовые турбины строго классифицируются как двигатели внутреннего сгорания, но термин двигатель внутреннего сгорания также используется для обозначения поршневых двигателей, двигателей Ванкеля и аналогичных конструкций, в которых сгорание является прерывистым.

Сегодня двигатель внутреннего сгорания сокращается до аббревиатуры ICE.

Четырехтактный цикл (или цикл Отто)

Без сжатия [править | править источник]

Леонардо да Винчи [1] в 1509 году и Христиан Гюйгенс [2] в 1673 году описали двигатели постоянного давления.(Описание Леонардо не может подразумевать, что идея исходила от него или что она действительно была сконструирована.)

Непрямое внутреннее сгорание или принцип всасывания может не соответствовать определению двигателя, так как процесс не повторяется.

Первые двигатели внутреннего сгорания использовались для питания сельскохозяйственного оборудования.

Английский изобретатель сэр Сэмюэл Морланд [3] использовал порох [4] для привода водяных насосов в 17 веке. В 1794 году Роберт Стрит построил двигатель без сжатия, принцип работы которого будет доминировать почти столетие.

Первый двигатель внутреннего сгорания, который будет применяться в промышленности, был запатентован Самуэлем Брауном в 1823 году. Он был основан на том, что Харденберг называет «циклом Леонардо», который, как следует из этого названия, к тому времени уже был устаревшим. Как и сегодня, раннее крупное финансирование в области, где стандарты еще не были установлены, шло к лучшим шоуменам раньше, чем к лучшим работникам. Итальянцы Эухенио Барсанти [5] и Феличе Маттеуччи [6] запатентовали первый работающий эффективный двигатель внутреннего сгорания в 1854 году в Лондоне (pt.Num. 1072), но в производство не попал. Он был похож по концепции на успешный двигатель непрямого действия Отто Лангена, но не так хорошо проработан в деталях.

В 1860 году Этьен Ленуар [7] (1822-1900) создал газовый двигатель внутреннего сгорания, внешне не отличающийся от парового двигателя. Он очень напоминал горизонтальный паровой двигатель двойного действия с цилиндрами, поршнями, шатунами и маховиком, в котором газ по существу заменял пар. Это был первый серийный двигатель внутреннего сгорания.Американец Сэмюэл Мори [8] получил патент 1 апреля 1826 г. на «газовый или паровой двигатель».

Его первый (1862 год) двигатель со сжатием, разошедшийся на части, Николаус Отто [9] разработал двигатель непрямого действия со свободным поршнем без сжатия, чья большая эффективность получила поддержку Лангена, а затем и большей части рынка, который в то время в основном предназначался для небольших стационарных двигателей, работающих на газовом топливе. В 1870 году в Вене Зигфрид Маркус [10] поставил на ручную тележку первый передвижной бензиновый двигатель.

Сжатие [править | править источник]

Наиболее существенное различие между современными двигателями внутреннего сгорания и ранними конструкциями заключается в использовании сжатия, в частности сжатия в цилиндре. Термодинамическая теория идеализированных тепловых двигателей была основана Николя Леонардом Сади Карно [11] во Франции в 1824 году. Это научно установило необходимость сжатия для увеличения разницы между верхней и нижней рабочими температурами, но неясно, были ли разработчики двигателей знали об этом до того, как сжатие уже стало широко использоваться.Фактически, это могло ввести в заблуждение дизайнеров, которые пытались имитировать цикл Карно бесполезными способами.

Первым зарегистрированным предложением компрессии в цилиндре был патент, выданный Уильяму Барнету (англ.) В 1838 году. Он, очевидно, не осознавал его преимуществ, но его цикл был бы большим достижением, если бы был достаточно развит.

Отто, работая с Готлибом Даймлером [12] и Вильгельмом Майбахом [13] в 1870-х годах, разработал практический четырехтактный двигатель (цикл Отто).Немецкие суды, однако, не удержали его патент на все двигатели с цилиндрическим компрессором или даже на четырехтактный цикл, и после этого решения внутрицилиндровое сжатие стало универсальным.

Двигатели внутреннего сгорания чаще всего используются в мобильных силовых установках. В мобильных сценариях внутреннее сгорание является преимуществом, поскольку оно может обеспечить высокое соотношение мощности к весу вместе с превосходной плотностью энергии топлива. Эти двигатели используются почти во всех автомобилях, мотоциклах, многих лодках, а также в самых разных самолетах и ​​локомотивах.Там, где требуется очень большая мощность, например, реактивные самолеты, вертолеты и большие корабли, они появляются в основном в виде газовых турбин. Они также используются в электрических генераторах и в промышленности.

Для маломощных мобильных и многих немобильных приложений электродвигатель является конкурентоспособной альтернативой. В будущем электродвигатели также могут стать конкурентоспособными для большинства мобильных приложений. Однако высокая стоимость, вес и низкая удельная энергия батарей PbA и даже NiMH, а также отсутствие доступных по цене бортовых электрических генераторов, таких как топливные элементы, в значительной степени ограничивают их использование в специализированных приложениях.Однако недавние достижения в области легких литий-ионных и литий-полимерных аккумуляторов позволили довести безопасность, удельную мощность, срок службы и стоимость до приемлемых или даже желаемых уровней. Например, недавно аккумуляторные электромобили начали демонстрировать дальность действия 300 миль на литиевой основе, теперь улучшенная мощность делает их привлекательными для подключаемых к сети гибридных электромобилей, запас хода на которых менее критичен, имея внутреннее сгорание для неограниченного диапазона .

Все двигатели внутреннего сгорания зависят от экзотермического химического процесса сгорания: реакции топлива, обычно с воздухом, хотя могут использоваться другие окислители, такие как закись азота.См. Также стехиометрию [14].

Наиболее распространенные виды топлива, используемые сегодня, состоят из углеводородов и получают из нефти. К ним относятся такие виды топлива, как дизельное топливо, бензин и сжиженный нефтяной газ. Большинство двигателей внутреннего сгорания, разработанных для бензина, могут работать на природном газе или сжиженном нефтяном газе без каких-либо модификаций, за исключением компонентов подачи топлива. Также можно использовать жидкое и газообразное биотопливо соответствующего состава.

Некоторые предполагают, что в будущем водород может заменить такое топливо.Кроме того, с внедрением технологии водородных топливных элементов использование двигателей внутреннего сгорания может быть прекращено. Преимущество водорода в том, что при его сгорании образуется только вода. Это не похоже на сжигание углеводородов, при котором также образуется двуокись углерода, основная причина глобального потепления, а также окись углерода, возникающая в результате неполного сгорания. Большим недостатком водорода во многих ситуациях является его хранение. Жидкий водород имеет чрезвычайно низкую плотность — в 14 раз ниже плотности воды и требует обширной изоляции, в то время как газообразный водород требует очень тяжелых резервуаров.Хотя водород легкий и поэтому имеет более высокую удельную энергию, объемный КПД все же примерно в пять раз ниже, чем у бензина. Вот почему водород необходимо сжимать, чтобы сохранить полезное количество энергии.

Все двигатели внутреннего сгорания должны иметь средства зажигания, способствующие сгоранию. В большинстве двигателей используется электрическая система зажигания или система зажигания с подогревом от сжатия. В системах электрического зажигания обычно используются свинцово-кислотная батарея и индукционная катушка, которые создают электрическую искру высокого напряжения для воспламенения топливовоздушной смеси в цилиндрах двигателя.Эту батарею можно заряжать во время работы с помощью генератора с приводом от двигателя. Системы зажигания с компрессионным нагревом (дизельные двигатели и двигатели HCCI) полагаются на тепло, создаваемое в воздухе за счет сжатия в цилиндрах двигателя, для воспламенения топлива.

После успешного воспламенения и сгорания продукты сгорания (горячие газы) имеют больше доступной энергии, чем исходная сжатая топливно-воздушная смесь (которая имела более высокую химическую энергию). Доступная энергия проявляется в виде высокой температуры и давления, которые могут быть переведены в работу двигателем.В поршневом двигателе газы продукта высокого давления внутри цилиндров приводят в движение поршни двигателя.

После того, как доступная энергия удалена, оставшиеся горячие газы удаляются (часто путем открытия клапана или выхода выхлопных газов), что позволяет поршню вернуться в свое предыдущее положение (верхняя мертвая точка — ВМТ). Затем поршень может перейти к следующей фазе своего цикла (который зависит от двигателя). Любое тепло, не переведенное в работу, является отходом и выводится из двигателя с помощью системы воздушного или жидкостного охлаждения.

Иллюстрация нескольких ключевых компонентов типичного четырехтактного двигателя.

Составные части двигателя различаются в зависимости от типа двигателя. Для четырехтактного двигателя ключевыми частями двигателя являются коленчатый вал (фиолетовый), один или несколько распределительных валов (красный и синий) и клапаны. Для двухтактного двигателя вместо клапанной системы могут быть просто выпускной патрубок и впускное отверстие для топлива. В обоих типах двигателей имеется один или несколько цилиндров (серый и зеленый), и для каждого цилиндра есть свеча зажигания (темно-серый), поршень (желтый) и кривошип (фиолетовый).Однократное движение поршня вверх или вниз по цилиндру называется ходом, а ход вниз, который происходит непосредственно после воспламенения топливовоздушной смеси в цилиндре, известен как рабочий ход.

Двигатель Ванкеля имеет треугольный ротор, который вращается в эпитроихоидной камере (в форме фигуры 8) вокруг эксцентрикового вала. Четыре фазы работы (впуск, сжатие, мощность, выпуск) происходят в разных местах, а не в одном месте, как в поршневом двигателе.

В двигателе Bourke используется пара поршней, встроенных в кулису, которая передает возвратно-поступательное усилие через специально разработанный подшипниковый узел для поворота кривошипно-шатунного механизма. Впуск, сжатие, мощность и выпуск — все это происходит при каждом такте вилки.

Существует широкий спектр двигателей внутреннего сгорания, соответствующих их многочисленным применениям. Аналогичным образом существует множество способов классификации двигателей внутреннего сгорания, некоторые из которых перечислены ниже.

Хотя термины иногда вызывают путаницу, реальной разницы между «двигателем» и «мотором» нет.«Когда-то слово« двигатель »(от латинского [15], через старофранцузское [16], ingenium ,« способность ») означало любую часть механизма.« Двигатель »(от латинского motor ,« двигатель ») — это любая машина, которая производит механическую энергию. Традиционно электродвигатели не называют« двигателями », но двигатели внутреннего сгорания часто называют« двигателями ».

Принципы работы [править | править источник]

Поршневой:

Поворотный:

Непрерывное горение:

Цикл двигателя [править | править источник]

Двигатели, основанные на двухтактном цикле, используют два хода (один вверх, один вниз) для каждого рабочего хода.Поскольку не существует специальных тактов впуска или выпуска, необходимо использовать альтернативные методы очистки цилиндров. Наиболее распространенный метод в двухтактных двигателях с искровым зажиганием заключается в использовании движения поршня вниз для создания давления свежего заряда в картере, который затем продувается через цилиндр через отверстия в стенках цилиндра. Двухтактные двигатели с искровым зажиганием маленькие и легкие (для их выходной мощности) и очень просты в механическом отношении. Общие области применения включают снегоходы, газонокосилки, цепные пилы, водные мотоциклы, мопеды, подвесные моторы и некоторые мотоциклы.К сожалению, они, как правило, громче, менее эффективны и загрязняют больше, чем их четырехтактные аналоги, и плохо масштабируются до больших размеров. Интересно, что самые большие двигатели с воспламенением от сжатия являются двухтактными и используются в некоторых локомотивах и больших кораблях. Эти двигатели используют принудительную индукцию для продувки цилиндров.

Двигатели, основанные на четырехтактном цикле или цикле Отто, имеют один рабочий ход на каждые четыре хода (вверх-вниз-вверх-вниз) и используются в автомобилях, больших лодках и многих легких самолетах.Как правило, они тише, эффективнее и крупнее своих двухтактных собратьев. Есть несколько разновидностей этих циклов, в первую очередь циклы Аткинсона и Миллера. В большинстве дизельных двигателей грузовиков и автомобилей используется четырехтактный цикл, но с системой зажигания с подогревом от сжатия можно отдельно говорить о дизельном цикле. Двигатель Ванкеля работает с тем же разделением фаз, что и четырехтактный двигатель (но без ходов поршня, правильнее было бы назвать четырехфазным двигателем), поскольку фазы расположены в разных местах двигателя; однако, как и двухтактный поршневой двигатель, он обеспечивает один «ход» мощности на оборот на ротор, что дает ему такую ​​же пространственную и весовую эффективность.Фаза сгорания в цикле Бурка более точно соответствует сгоранию с постоянным объемом, чем четырехтактный или двухтактный цикл. В нем также используется меньше движущихся частей, поэтому необходимо преодолевать меньшее трение, чем у двух других типов возвратно-поступательного движения. Кроме того, его более высокий коэффициент расширения также означает, что используется больше тепла от его фазы сгорания, чем используется в четырехтактных или двухтактных циклах.

Типы топлива и окислителя [править | править источник]

Используемые виды топлива включают бензин (британский термин: бензин), сжиженный нефтяной газ, испаренный нефтяной газ, сжатый природный газ, водород, дизельное топливо, JP18 (реактивное топливо), свалочный газ, биодизель, арахисовое масло, этанол, метанол (метил или древесный алкоголь).Даже псевдоожиженные металлические порошки и взрывчатые вещества нашли применение. Двигатели, в которых в качестве топлива используются газы, называются газовыми двигателями, а двигатели, в которых используются жидкие углеводороды, называются масляными двигателями. Однако, к сожалению, бензиновые двигатели также часто называют «газовыми двигателями».

Основные ограничения для топлива заключаются в том, что топливо должно легко транспортироваться через топливную систему в камеру сгорания, и что топливо выделяет достаточно энергии в виде тепла при сгорании, чтобы можно было использовать двигатель на практике.

Окислитель, как правило, представляет собой воздух, и его преимущество заключается в том, что он не хранится в транспортном средстве, что увеличивает удельную мощность. Однако воздух можно сжимать и переносить на борту транспортного средства. Некоторые подводные лодки предназначены для перевозки чистого кислорода или перекиси водорода, что делает их независимыми от воздуха. Некоторые гоночные автомобили содержат закись азота в качестве окислителя. Другие химические вещества, такие как хлор или фтор, нашли экспериментальное применение; но в основном непрактичны.

Дизельные двигатели обычно тяжелее, шумнее и мощнее на более низких оборотах, чем бензиновые двигатели.Они также более экономичны в большинстве случаев и используются в тяжелых дорожных транспортных средствах, некоторых автомобилях (в большей степени из-за их более высокой топливной эффективности по сравнению с бензиновыми двигателями), кораблях и некоторых локомотивах и легких самолетах. Бензиновые двигатели используются в большинстве других дорожных транспортных средств, включая большинство автомобилей, мотоциклов и мопедов. Обратите внимание, что в Европе сложные автомобили с дизельным двигателем стали довольно распространенными с 1990-х годов, составляя около 40% рынка. И бензиновые, и дизельные двигатели производят значительные выбросы.Есть также двигатели, работающие на водороде, метаноле, этаноле, сжиженном нефтяном газе (СНГ) и биодизеле. Парафиновые двигатели и двигатели с испарительным маслом для тракторов (TVO) больше не используются.

Цилиндры [править | править источник]

Двигатели внутреннего сгорания могут содержать любое количество цилиндров, обычно с номерами от одного до двенадцати, хотя было использовано целых 28 цилиндров. Наличие большего количества цилиндров в двигателе дает два потенциальных преимущества: Первое. двигатель может иметь больший рабочий объем с меньшими индивидуальными возвратно-поступательными массами (то есть масса каждого поршня может быть меньше), что обеспечивает более плавную работу двигателя (поскольку двигатель имеет тенденцию вибрировать в результате движения поршней вверх и вниз).Во-вторых, с большим рабочим объемом и большим количеством поршней может быть сожжено больше топлива, и может быть больше событий сгорания (то есть больше рабочих ходов) в заданный период времени, что означает, что такой двигатель может генерировать больший крутящий момент, чем аналогичный двигатель. с меньшим количеством цилиндров. Недостатком большего количества поршней является то, что в целом двигатель будет иметь больший вес и иметь тенденцию создавать большее внутреннее трение, поскольку большее количество поршней трутся о внутреннюю часть их цилиндров. Это имеет тенденцию к снижению топливной экономичности и лишению двигателя части его мощности.Для высокоэффективных бензиновых двигателей, использующих современные материалы и технологии (например, двигатели, используемые в современных автомобилях), кажется, что существует точка разрыва около 10 или 12 цилиндров, после чего добавление цилиндров становится общим ущербом для производительности и эффективности, хотя есть исключения. такие как двигатель W-16 от Volkswagen.

  • Большинство автомобильных двигателей имеют от четырех до восьми цилиндров, некоторые высокопроизводительные автомобили имеют десять, двенадцать или даже шестнадцать, а некоторые очень маленькие легковые и грузовые автомобили имеют два или три цилиндра.В предыдущие годы некоторые довольно большие автомобили, такие как DKW и Saab 92, имели двухцилиндровые двухтактные двигатели.
  • Радиальные авиационные двигатели, ныне устаревшие, имели от пяти до 28 цилиндров. Строка содержит нечетное количество цилиндров, поэтому четное число указывает на двух- или четырехрядный двигатель.
  • Мотоциклы обычно имеют от одного до четырех цилиндров, а в некоторых высокопроизводительных моделях их шесть.
  • Снегоходы обычно имеют два цилиндра. У некоторых более крупных (не обязательно высокопроизводительных, но тоже туристических машин) их четыре.
  • Небольшие переносные приборы, такие как бензопилы, генераторы и бытовые газонокосилки, чаще всего имеют один цилиндр, хотя существуют двухцилиндровые бензопилы.

Система зажигания [редактировать | править источник]

Двигатели внутреннего сгорания можно классифицировать по системе зажигания. Сегодня в большинстве двигателей используется электрическая или компрессионная система нагрева для зажигания. Однако исторически использовались системы с внешним пламенем и горячими трубами. Никола Тесла получил один из первых патентов на механическую систему зажигания с патентом США « Электрический воспламенитель для газовых двигателей » 16 августа 1898 года.

Топливные системы [править | править источник]

Часто в более простых поршневых двигателях для подачи топлива в цилиндр используется карбюратор. Однако точный контроль количества топлива, подаваемого в двигатель, невозможно.

Более крупные бензиновые двигатели, используемые в автомобилях, в основном перешли на системы впрыска топлива. В двигателях на сжиженном нефтяном газе используется смесь систем впрыска топлива и карбюраторов с обратной связью. В дизельных двигателях всегда используется впрыск топлива.

В других двигателях внутреннего сгорания, таких как реактивные двигатели, используются горелки, а в ракетных двигателях используются различные идеи, включая ударные струи, сдвиг газа / жидкости, форсажные камеры и многие другие идеи.

Конфигурация двигателя

[править | править источник]

Двигатели внутреннего сгорания можно классифицировать по их конфигурации, которая влияет на их физические размеры и плавность хода (более плавные двигатели производят меньшую вибрацию). Общие конфигурации включают прямую или линейную конфигурацию, более компактную V-образную конфигурацию и более широкую, но более гладкую плоскую или боксерскую конфигурацию. Авиационные двигатели также могут иметь радиальную конфигурацию, которая обеспечивает более эффективное охлаждение. Также использовались более необычные конфигурации, такие как «H», «U», «X» или «W».

Конфигурации с несколькими коленчатыми валами вовсе не обязательно нуждаются в головке блока цилиндров, но вместо этого могут иметь поршень на каждом конце цилиндра, что называется конструкцией с оппозитным поршнем. Эта конструкция использовалась в дизельном авиационном двигателе Junkers Jumo 205 с двумя коленчатыми валами, по одному на каждом конце одного ряда цилиндров, и, что наиболее заметно, в дизельных двигателях Napier Deltic, в которых использовались три коленчатых вала для обслуживания трех групп двусторонних цилиндров. цилиндры расположены в равностороннем треугольнике с коленчатыми валами по углам.Он также использовался в одноблочных локомотивных двигателях и продолжает использоваться для судовых двигателей, как для тяги, так и для вспомогательных генераторов. Двигатель Gnome Rotary, использовавшийся в нескольких ранних самолетах, имел неподвижный коленчатый вал и ряд радиально расположенных цилиндров, вращающихся вокруг него.

Объем двигателя [править | править источник]

Рабочий объем двигателя — это рабочий объем или рабочий объем поршней двигателя. Обычно он измеряется в литрах или кубических дюймах для двигателей большего размера и в кубических сантиметрах (сокращенно кубических сантиметрах) для двигателей меньшего размера.Двигатели большей мощности обычно более мощные и обеспечивают больший крутящий момент на более низких оборотах, но при этом потребляют больше топлива.

Помимо разработки двигателя с большим количеством цилиндров, есть два способа увеличить мощность двигателя. Первый — увеличить ход, а второй — увеличить диаметр поршня. В любом случае может потребоваться дополнительная регулировка подачи топлива в двигатель, чтобы обеспечить оптимальную производительность.

Заявленная мощность двигателя может быть больше вопросом маркетинга, чем инженерии.Morris Minor 1000, Morris 1100 и Austin-Healey Sprite Mark II имели двигатели с одинаковым ходом и диаметром цилиндра в соответствии с их спецификациями и были от одного производителя. Однако объем двигателя был указан как 1000 куб. См, 1100 куб. См и 1098 куб. См соответственно в торговой литературе и на значках автомобиля.

Загрязнение двигателя [править | править источник]

Обычно двигатели внутреннего сгорания, особенно поршневые двигатели внутреннего сгорания, производят умеренно высокие уровни загрязнения из-за неполного сгорания углеродсодержащего топлива, что приводит к образованию оксида углерода и некоторого количества сажи, а также оксидов азота и серы и некоторых несгоревших углеводородов в зависимости от условий эксплуатации и соотношение топливо / воздух.

Дизельные двигатели выделяют широкий спектр загрязняющих веществ, включая аэрозоли из множества мелких частиц, которые, как считается, глубоко проникают в легкие человека.

  • Многие виды топлива содержат серу, которая приводит к образованию оксидов серы (SOx) в выхлопных газах, что способствует кислотным дождям.
  • Высокая температура горения создает большую долю оксидов азота (NOx), которые, как доказано, опасны как для здоровья растений, так и для животных.
  • Чистое производство двуокиси углерода не является обязательной характеристикой двигателей, но, поскольку большинство двигателей работают на ископаемом топливе, это обычно происходит.Если двигатели работают на биомассе, то чистый углекислый газ не образуется, поскольку растущие растения поглощают столько же или больше углекислого газа во время роста.
  • Двигатели, работающие на водороде, должны производить только воду, но когда в качестве окислителя используется воздух, также образуются оксиды азота.
  • Зингер Чарльз Джозеф; Рэпер, Ричард, История технологии: Двигатель внутреннего сгорания , отредактированный Чарльзом Сингером … [и др.], Clarendon Press, 1954-1978. стр. 157–176 [20]
  • Hardenberg, Horst O., Средние века двигателя внутреннего сгорания , Общество инженеров автомобильной промышленности (SAE), 1999

Шаблон: Commons

.

Ваш электронный адрес не будет опубликован.