Двигатель f1: 403 — Доступ запрещён

Содержание

Ракетный двигатель F-1 — Факты программы «Аполлон»

Двигатель F-1 — американский жидкостный ракетный двигатель (ЖРД), устанавливавшийся на первой ступени ракеты-носителя (РН) «Сатурн-5», отправлявшей к Луне корабли «Аполлон» и «лунные модули». Также устанавливался на первой ступени в единственном полете ракеты «Сатурн ИНТ-21». В качестве топлива использует керосин (горючее) и жидкий кислород (окислитель).

До сегодняшнего дня F-1 — самый мощный однокамерный ЖРД, когда-либо использовавшийся на летавших РН. По абсолютной мощности его превзошел советский ЖРД РД-170/171, использовавшийся на РН «Энергия» и использующийся до сих пор на РН «Зенит»; при этом РД-170/171 является 4-камерным двигателем. Однако F-1 (как и РД-170/171) не обладают рекордной тягой среди ракетных двигателей: твердотопливные двигатели «Спейс Шаттла» имеют почти вдвое большую тягу.

При большой абсолютной тяге F-1 имеет довольно умеренные удельные характеристики: его удельный импульс достаточно мал для современных ему керосиновых двигателей и значительно уступает удельному импульсу РД-170/171.

Разработчик:Rocketdyne
Тяга на уровне моря:около 680/690 тонн
Тяга в вакууме:около 780 тонн
Удельный импульс на уровне моря:    около 260/263 секунд
Удельный импульс в вакууме:около 304 секунд
Горючее:керосин RP-1
Окислитель:жидкий кислород O2
Соотношение компонентов:
в среднем около 2,34
Степень расширения:16:1 (без соплового насадка 10:1)
Давление в камере сгорания:около 67 атмосфер
Температура в камере сгорания:3300º C
Сухая масса:около 8400 кг
Высота:около 5,8 м
Ширина:около 3,8 м
Диаметр сопла:около 3,53 м
Время работы:150/163 секунды
Ракета/ступень:«Сатурн-5», первая ступень S-IC
Количество на ступени:5
Число успешных пусков ступени:13
Число летавших экземпляров:65
Первый пуск:9 ноября 1967 года, «Аполлон-4»
Последний пуск:14 мая 1973 года, «Скайлэб»

[1, 2]

Двигатель F-1 — жидкостный реактивный двигатель, работающий по открытой схеме. Часть топлива сжигается в газогенераторе, горячие газы приводят в движение турбонасосы, отработанные в турбонасосном агрегате (ТНА) газы выбрасываются в сопло, охлаждая сопловый насадок. Турбонасосы направляют компоненты топлива в камеру сгорания (КС), где они сжигаются, превращаясь в выхлоп. Выхлоп выбрасывается через сопло, производя тягу. Стенки сопла (кроме соплового насадка) и стенки КС собраны из тонких радиальных трубок, представляющих собой рубашку регенеративного охлаждения. Трубки рубашки скреплены внешними бандажами. Часть горючего, прежде чем попасть в КС, направляется в рубашку регенеративного охлаждения, тем самым отводя тепло от стенок камеры и сопла и предотвращая их прогар.

Пять двигателей F-1 установлены на первой ступени S-IC ракеты «Сатурн-5»: один по центру и четыре симметрично по краям. Центральный двигатель закреплен неподвижно, периферийные имеют карданов подвес, позволяющий им поворачиваться для управления полетом ракеты. Суммарная тяга двигателей на уровне моря составляет около 3,5 тыс. тонн.

Блок камеры сгорания состоит из карданова подвеса, головки, форсуночной головки, корпуса камеры, соплового насадка и изоляции. КС принимает компоненты топлива, смешивает их и сжигает, сообщая выхлопу большую скорость. Блок КС служит опорой остальному оборудованию двигателя.

Карданов подвес представляет собой сферический узел с вкладышем из тефлона и стекловолокна для уменьшения трения. Узел допускает отклонения на ±7 градусов в двух взаимно перпендикулярных направлениях. Он передает тягу двигателя на конструкцию ракеты и обеспечивает изменение вектора тяги.

Головка двигателя служит магистралью окислителя при его направлении в форсуночную головку, к ней монтируется карданов подвес, она передает тягу от двигателя к конструкции ракеты. Окислитель поступает в головку через два впускных отверстия с расходом около 1570 литров в минуту.

Форсуночная головка смешивает горючее с окислителем и направляет их в камеру в пропорциях, обеспечивающих оптимальное сгорание. Со стороны камеры головка содержит медные форсунки горючего и окислителя, расположенные в особом порядке. Поверхность головки разделена радиальными и круговыми медными перегородками, которые служат для уменьшения высокочастотных колебаний в КС. Головка вместе с отдельным воспламенителем помещены в стальной корпус.

Корпус КС имеет особую форму, близкую к соплу Лаваля: полость камеры, где происходит сгорание, сужается по направлению к соплу, образуя критическое сечение (самая узкая часть камеры), а затем снова расширяется, образуя сопло. Стенки камеры состоят из радиальных трубок и охлаждаются регенеративно. Трубки удерживаются и укрепляются усиленными круговыми бандажами. К бандажам крепится блок турбонасосного агрегата и сервоприводы для качания двигателя. Со стороны форсуночной головки к корпусу подходит магистраль горючего, сбоку — магистраль, через которую сбрасываемые с ТНА газы направляются к сопловому насадку. Корпус окружен термоизоляцией.

Горючее поступает к двигателю через две магистрали. 30 % горючего направляются сразу в форсуночную головку (что уменьшает общие потери давления и упрощает запуск). 70 % направляются в обход, попадая сначала в 89 профилированных трубок регенеративной рубашки. Это горючее протекает сначала вниз вдоль стенок КС, где попадает в нижнюю магистраль и возвращается по другим 89 трубкам вверх к форсуночной головке. Это горючее охлаждает стенки КС, отбирая от них избыточное тепло. На уровне, где степень расширения составляет 3:1, каждая из трубок расщепляется на две; это необходимо для сохранения поперечника трубок у широкого конца сопла. Форма трубок также меняется: в верхней части они уплощены в касательном направлении, в нижней части — в радиальном.

Магистраль выхлопа турбины представляет собой торообразную трубу в нижней части КС. Специальные соединения компенсируют ее температурное расширение. Из магистрали газы равномерно распределяются по сопловому насадку.

Сопловый насадок представляет собой съемный кольцевой элемент из нержавеющей стали, который прикрепляют к нижней части КС для увеличения степени расширения с 10:1 до 16:1. Внутренняя часть насадка защищается от горячих (3200º C) газов из сопла с помощью пленочного охлаждения выхлопными газами с турбины ТНА (их температура ниже 700º C). Газы с турбины с помощью особых направляющих образуют поверхностный слой между внутренней поверхностью насадка и горячими газами из сопла.

Ампула с самовозгорающимся топливом служит для запуска двигателя. Она представляет собой цилиндрическую капсулу, закрытую с двух сторон мембранами. Ампула содержит смесь из 85 % триэтилбора и 15 % триэтилалюминия. Эта смесь стабильна в закрытом виде, но подвержена самовозгоранию при контакте с кислородом в любой форме. При запуске двигателя давление топлива прорывает мембраны, и смесь топлива с самовозгорающейся смесью попадает в камеру через отдельный воспламенитель на форсуночной головке. В камере смесь вступает в контакт с кислородом, воспламеняется, и происходит запуск двигателя.

Пиротехнические воспламенители обеспечивают поджигание богатой горючем смеси в газогенераторе и поджигание газов, сброшенных с турбины, при их выходе из соплового насадка. Используют электрическую искру.

Термоизоляция защищает двигатель от высоких внешних температур (до 1400 градусов), создаваемых факелом выхлопа и обратным потоком от двигателей, работающих совместно. Используются два типа изоляции: многослойные листы на сложных поверхностях и пластины асбеста на обширных простых поверхностях. Изоляция изготовлена из легких материалов и имеет крепления: отверстия, штыри и др.

Турбонасосный агрегат (ТНА) представляет собой механизм с прямой передачей, состоящий из насоса окислителя, насоса горючего и турбины, смонтированных на общем валу. ТНА направляет горючее и окислитель в газогенератор и камеру сгорания. Жидкий кислород поступает в ТНА через единственную впускную магистраль, соосную валу, и выходит из ТНА по касательной к валу через две выпускных магистрали. Горючее поступает в ТНА радиально через две впускных магистрали и выходит по касательной через две выпускных магистрали. Двойные впускные и выпускные магистрали уравновешивают радиальные нагрузки насосов.

Вал опирается на три подшипника: 2 шариковых подшипника между насосами окислителя и горючего и роликовый подшипник между насосом горючего и колесом турбины. При работе ТНА подшипники охлаждаются горючим. Во время захолаживания насоса окислителя жидким кислородом шариковые подшипники подогреваются специальным устройством.

На валу установлен зубчатый венец, который используется совместно с редуктором для проворачивания вала вручную, а также с магнитным преобразователем для отслеживания скорости вращения вала.

На валу установлены девять углеродных уплотнения: первичное уплотнение окислителя, промежуточное уплотнение окислителя, уплотнение смазки первого шарикоподшипника, масляное уплотнение второго шарикоподшипника, первичное уплотнение горючего, уплотнение впускной магистрали горючего, масляное уплотнение магистрали горючего, вторичное уплотнение горячего газа, первичное уплотнение горячего газа.

Главный вал и детали, монтируемые на него, динамически балансируются перед окончательной сборкой ТНА.

Насос окислителя

Насос окислителя поставляет окислитель в камеру сгорания с расходом около 1670 литров в секунду. Насос состоит из входной магистрали, преднасоса, крыльчатки, корпуса-улитки, подшипников, уплотнений и прокладок. Окислитель поступает в насос через входную магистраль, соединенную с баком окислителя первой ступени. Чтобы предотвратить кавитацию, преднасос в магистрали повышает давление давление окислителя перед тем, как он попадает на крыльчатку. Крыльчатка ускоряет окислитель, повышая его давление до требуемых значений, а затем направляет его через две противоположно расположенные выходные магистрали в линии окислителя высокого давления, ведущие к газогенератору и камере сгорания.

Входная магистраль окислителя, соединенная с линией, ведущей к баку окислителя ступени, болтами привинчена к улитке насоса. Два поршневых кольца, расположенных между входной магистралью и улиткой, расширяются и сжимаются при изменении температуры, сохраняя надежное уплотнение между сторонами магистрали с высоким и низким давлениями.

Улитка насоса окислителя соединена штифтами и болтами с улиткой насоса горючего, что предотвращает осевые и вращательные сдвиги. Первичное уплотнение окислителя и прокладка в улитке окислителя предотвращают протечку горючего в дренажную полость первичного уплотнения окислителя. Промежуточное уплотнение окислителя направляет продувочный поток в дренажные полости первичного уплотнения и роликового подшипника, где продувка выполняет роль барьера, отделяющего окислитель от смазки подшипников.

Насос горючего

Насос горючего поставляет горючее в камеру сгорания и газогенератор с расходом около 1040 литров в секунду. Насос состоит из входной магистрали, преднасоса, крыльчатки, корпуса-улитки, подшипников, уплотнений и прокладок. Горючее поступает в насос через входную магистраль, соединенную с баком горючего первой ступени. Чтобы предотвратить кавитацию, преднасос в магистрали повышает давление давление горючего перед тем, как оно попадает на крыльчатку. Крыльчатка ускоряет горючее, повышая его давление до требуемых значений, а затем направляет его через две противоположно расположенные выходные магистрали в линии горючего высокого давления, ведущие к газогенератору и камере сгорания.

Улитка горючего привинчена болтами к входной магистрали горючего и к кольцу, штифтами прикрепленному к улитке насоса окислителя. Установленное на улитке кольцо для компенсации износа сопрягается с крыльчаткой. Полость между улиткой и крыльчаткой называется балансировочной полостью. Давление в балансировочной полости воздействует на на крыльчатку горючего и противостоит обратному давлению со стороны крыльчатки окислителя, удерживая в заданных пределах осевое воздействие на шарикоподшипники вала. Уплотнение, установленное между промежуточным уплотнением окислителя и шарикоподшипником со стороны насоса горючего, предотвращает контакт окислителя с горючим, смазывающим шарикоподшипники. Если горючее проникает сквозь уплотнение, дренажный поток со стороны промежуточного уплотнения изгоняет его. С топливной стороны второго шарикоподшипника масляное уплотнение № 4 содержит смазку внутри полости подшипника. Первичное уплотнение в улитке горючего удерживает горючее под высоким давлением в балансировочной полости, предотвращая его проникновение в область низкого давления.

Турбина

Турбина эффективной мощностью 41 МВт служит приводом для насосов горючего и окислителя. Двухступенчатая турбина имеет два активных колеса, разделенных статорами, она смонтирована на общем валу со стороны насоса горючего. Таким образом, два элемента турбонасосного агрегата, находящиеся при крайних температурах (820 ºC на турбине и -180 ºC на насосе окислителя) оказываются отделены друг от друга.

Горячий газ с газогенератора поступает на турбину через входной патрубок с расходом 77 кг/с и направляется через сопло первой ступени на колесо первой ступени, содержащее 119 лопастей. Затем горячий газ проходит через статоры второй ступени на колесо второй ступени, содержащее 107 лопастей, и затем направляется в теплообменник. Этот поток горячего газа вращает турбину, которая, в свою очередь, приводит приводит в движение топливные насосы. В установившемся режиме скорость вращения турбины составляет 5500 об/мин.

Регулирующий клапан хладагента для подшипников

Клапан, включающий три 40-микронных фильтра, три подпружиненных тарельчатых клапана, и ограничитель. Его основное назначение — регулирование снабжения хладагентом (горючим) подшипников ТНА. Вторичная функция клапана — сохранение подшипников ТНА между статическими огневыми испытаниями и во время хранения двигателя. Во время запуска двигателя тарельчатый клапан открывается и снабжает отфильтрованным топливом патрубки хладагента, а ограничитель поддерживает нужное давление в патрубках.

Газогенераторная система обеспечивает горячий газ, приводящий в действие турбину, вращающую топливные насосы. Система состоит из клапана газогенератора, форсунки, камеры сгорания и топливопроводов, соединяющих с газогенератором выходные магистрали горючего и окислителя № 2 из ТНА. Топливо поступает в газогенератор (ГГ) из ТНА через выходные магистрали № 2. Соотношение компонентов, поступающих в ГГ, сдвинуто в сторону горючего по сравнению с соотношением в камере сгорания двигателя. Этим обеспечивается более низкая температура в неохлаждаемом ГГ и на турбине.

Топливо поступает в ГГ через клапан и форсунку и зажигается в камере сгорания ГГ посредством двойного пиротехнического воспламенителя. Клапан ГГ управляется гидросистемой, где в качестве гидравлической жидкости используется горючее.

Клапан газогенератора

Клапан газогенератора управляется гидравлически и управляет поступлением компонентов топлива в ГГ. Горючее, используемое в качестве гидравлической жидкости, циркулирует по пропускному каналу корпуса клапана, чтобы сохранить герметичность уплотнения и предотвратить замерзание горючего в корпусе шарового клапана. Топливо также циркулирует по каналу в поршне между впускным и выпускным отверстиями, чтобы предотвратить замерзание кольца О поршня.

Форсунка газогенератора

Форсунка направляет горючее и окислитель в камеру сгорания газогенератора. Плоская форсунка с множеством отверстий включает в себя головку, пластину, круговую магистраль, пять колец с отверстиями для впуска окислителя, пять колец с отверстиями для впуска горючего, и диска с отверстиями для впуска горючего. На форсунке смонтированы клапан ГГ и тройник впускной магистрали горючего.

Горючее поступает из клапана ГГ в форсунку через тройник впускной магистрали горючего. Горючее направляется по внутренним каналам в пластине и впрыскивается в в камеру сгорания ГГ через отверстия в кольцах и диске горючего. Некоторые отверстия во внешнем кольце горючего обеспечивают охлаждающую пленку для стенки камеры сгорания. Окислитель поступает в форсунку через клапан ГГ по впускной магистрали окислителя. Окислитель направляется по внутренним каналам в пластине и впрыскивается в камеру сгорания ГГ через отверстия в кольцах горючего.

Камера сгорания газогенератора

Камера сгорания ГГ — это место, где сгорают компоненты топлива, и выделяющиеся газы направляются в магистраль турбины ТНА. Камера с одной стенкой расположена между форсункой и впускной магистралью ТНА.

Система расхода топлива направляет жидкий кислород и горючее из топливных баков к насосам, которые перекачивают их через магистрали высокого давления к газогенератору и камере сгорания. Система состоит из двух клапанов окислителя, двух клапанов топлива, расходного клапана охлаждающей жидкости для подшипников, двух клапанов контроля продувки в головке двигателя, клапана контроля продувки газогенератора и уплотнений насосов, выпускных магистралей ТНА, отверстий и магистралей, соединяющих все компоненты. Горючее под высоким давлением поступает из системы расхода топлива к системе управления вектором тяги.

Клапаны окислителя

Два одинаковых клапана, обозначенных номерами № 1 и № 2, управляют потоком жидкого кислорода от ТНА к головке двигателя и поступлением гидравлической жидкости (горючего) к впускному отверстию клапана ГГ. Каждый из клапанов тарельчатого типа управляется гидравлически. Подпружиненный вентиль допускает обратное течение для обеспечения циркуляции гидравлической жидкости при закрытом положении топливных клапанов, но перекрывает поток горючего до тех пор, пока клапан окислителя открыт менее чем до 16,4 %. При достижении клапаном этого уровня открытия, вал шестерни открывает путь для горючего, позволяя ему течь через клапан, управляющий открытием клапана газогенератора.

Клапаны горючего

Два одинаковых клапана, обозначенных номерами № 1 и № 2, расположены на входной топливной магистрали камеры сгорания и разнесены на 180 градусов. Они контролируют поток горючего от ТНА к КС. Когда клапаны открыты при установленных значениях давлений и расходов, они не закрываются при падении давления гидравлической жидкости. Позиционные указатели в топливных клапанах являются частью релейно-контактной логической схемы в управляющей электрической цепи двигателя, с их помощью фиксируется положение затворов.

Указатели нормального давления

Три указателя нормального давления расположены на единой магистрали, установленной на магистрали горючего КС, чтобы определять давление впрыска горючего. Эти три резервированных указателя используются для указания удовлетворительной работы всех пяти двигателей ракеты-носителя. Если давление в полости впрыска горючего падает, работа указателей прерывается, прерывая тем самым выдачу сигнала нормального давления.

Система наддува подогревает газообразный кислород и гелий для наддува бака ракеты-носителя. Система наддува состоит из теплообменника, контрольного клапана теплообменника, расходомера жидкого кислорода, и трубок теплообменника. Источником жидкого кислорода для теплообменника служит головка двигателя, гелий поступает из баллонов в баке окислителя первой ступени ракеты. Жидкий кислород поступает в теплообменник по магистрали из головки двигателя через контрольный клапан, расходомер.

Теплообменник

Теплообменник подогревает газообразный кислород и гелий, которые проходят через теплообменник по спиралям, с помощью горячих газов выхлопа турбины. Теплообменник состоит из четырех спиральных витков окислителя и двух витков гелия, расположенных внутри выхлопного канала турбины. Он расположен между выходной магистралью ТНА и входного канала выхлопа, ведущего в КС. Кожух теплообменника имеет сильфон, чтобы компенсировать температурное расширение при работе двигателя.

Контрольный клапан

Контрольный клапан предотвращает течение газообразного кислорода и газов наддува баков в головку двигателя. Он состоит из магистрали и контрольного клапанного затвора и установлен между головкой и входной магистралью жидкого кислорода, идущей в теплообменник.

Расходомер жидкого кислорода

Расходомер представляет собой измерительный прибор турбинного типа для измерения объема жидкости и содержит две измерительные катушки. Вращение турбинки расходомера приводит к генерированию переменного тока на выходах измерительных катушек.

Трубки теплообменника

Жидкий кислород и гелий направляются в теплообменник и из него через гибкие трубки. Трубки газообразного кислорода и гелия ведут к соединительным платам ракеты-носителя. Трубка жидкого кислорода соединяет теплообменник с контрольным клапаном.

Соединительная плата двигателя смонтирована поверх входных магистралей жидкого кислорода и топлива в ТНА, она обеспечивает электрическое соединение двигателя с ракетой-носителем. На ней также находятся точки крепления гибкой теплозащитной завесы. Трехсекционная плата отлита из жаропрочной нержавеющей стали, секции соединены между собой заклепками и болтами.

Электросистема состоит из гибкой армированной проводки, которая обеспечивает управление двигателем, и проводки для передачи измерительных данных во время полета.

Гидравлическая контрольная система управляет топливными клапанами двигателя во время его запуска и отсечки. Она состоит из трубопровода с самовоспламеняющейся жидкостью, контрольного клапана, контрольного клапана двигателя и соответствующих трубопроводов и монтажных элементов.

Линия с самовоспламеняющейся жидкостью

Линия с самовоспламеняющейся жидкостью направляет самовоспламеняющуюся жидкость к отдельной системе воспламенения горючего в форсунке камеры сгорания. Линия состоит из ампулы с самовоспламеняющейся жидкостью, управляющего клапана воспламенителя, позиционного переключателя и клапана воспламенителя горючего. Ампула с самовоспламеняющейся жидкостью, позиционный переключатель и клапан воспламенителя горючего являются внутренними составляющими частями линии.

В конструкцию линии входит подпружиненный кулачковый механизм, который предотвращает срабатывание управляющего клапана вплоть до момента прорыва верхней мембраны ампулы с самовоспламеняющейся жидкостью. Тот же механизм приводит в действие позиционный переключатель, который сигнализирует об установке ампулы. Клапан воспламенения горючего представляет собой подпружиненный управляющий клапан, который открывает доступ горючего к ампуле с самовоспламеняющейся жидкостью. Мембраны ампулы прорываются под воздействием нарастающего давления при открытии клапана воспламенения горючего.

Управляющий клапан воспламенителя

Управляющий клапан воспламенителя представляет собой управляемый давлением трехпозиционный клапан, установленный на линии с самовоспламеняющейся жидкостью. Он управляет открытием топливных клапанов и допускает их полное открытие только после установления процесса нормального горения в камере сгорания.

Когда ампула с самовоспламеняющейся жидкостью установлена в линии, кулачковый механизм предотвращает движение затвора управляющего клапана из положения «закрыто». Управляющий клапан имеет шесть входных отверстий: управляющее, входное, два выходных, возвратное и атмосферное. Управляющее отверстие связано давлением с камерой сгорания. Во входное поступает гидравлическая жидкость (горючее), которая открывает клапаны горючего. Когда затвор управляющего клапана находится в положении «закрыто», гидравлическая жидкость, поступающая из входного отверстия, останавливается затвором. Когда ампула с самовоспламеняющейся жидкостью прорывается, подпружиненный кулачковый механизм освобождается, делая возможным беспрепятственное движение затвора управляющего клапана. Когда возрастает давление в камере сгорания (воздействующее на управляющий вход клапана через посредство магистрали горючего), затвор клапана смещается в положение «открыто», и гидравлическая жидкость направляется через два выходных отверстия к топливным клапанам.

Проверочный клапан

Проверочный клапан состоит из шарика, затвора и привода. Проверочный клапан обеспечивает наземный контроль управляющего клапана и топливных клапанов и предотвращает поступление гидравлической жидкости (горючего), возвращающегося в наземную магистраль, в систему двигателя и затем в топливный бак.

При проверках и обслуживании двигателя шарик клапана расположен так, что горючее, поступающее в гидравлическую возвратную входную магистраль двигателя, направляется через шарик и далее в наземную возвратную магистраль GSE. При стендовых огневых испытаниях и во время полета шарик расположен так, что горючее направляется через шарик и далее в возвратную выходную магистраль двигателя.

Контрольный клапан двигателя

Контрольный клапан двигателя включает в себя магистраль фильтров, четерыехпозиционный соленоидальный клапан и два шарнирных проверочных клапана.

Магистраль фильтров содержит три фильтра. Один фильтр для системы питания и по одному на входе и выходе системы давления. Фильтры предотвращают попадание посторонних частиц в четырехпозиционный соленоидальный клапан и в двигатель. Два шарнирных проверочных клапана разветвляются в фильтр системы питания. Проверочные клапаны делают возможной работу системы от гидравлической жидкости, поступающей из наземной магистрали (во время проверок и обслуживания) и от гидравлической жидкости, поступающей от двигателя (во время нормальной работы двигателя).

Четырехпозиционный соленоидальный клапан состоит из основного канала и ниппелей, с его помощью обеспечивается двусторонний контроль потока жидкости к приводам главных клапанов горючего и окислителя, а также к клапану газогенератора. Канал управляется давлением с помощью трехпозиционных вторичных клапанов. Каждый из вторичных клапанов управляется первичным трехпозиционным первичным клапаном, который в рабочем положении открыт.

При выключенном положении контрольного клапана двигателя обеспечивается давление, закрывающее все топливные клапаны двигателя. Импульсное приложение постоянного напряжения в 28 вольт к пусковому соленоиду приводит в действие механизм клапана, в результате чего давление гидравлической жидкости поступает на входной порт, а давление, ранее приложенное к выходному порту, перенаправляется на возвратный порт.

Внутренний канал в кожухе обеспечивает приложение давления между входным портом и вентилем пускового соленоида. При запуске выключающей последовательности это давление поддерживает главный канал в открытом состоянии, тем самым обеспечивая давление на входном порте при отсутствии в дальнейшем электросигнала на пусковом соленоиде. Импульсное приложение постоянного напряжения в 28 вольт на останавливающем соленоиде приводит в действие механизм контрольного клапана, в результате чего давление перенаправляется с входного на выходной порт. В любой момент с помощью давления может быть задействован переключающий поршень, который, при потере электроснабжения, переключает главный канал для приложения гидравлического давления к выходному порту. При одновременной потере электроснабжения и гидравлического давления клапан останется в выключенном положении благодаря пружине. При повторном приложении гидравлического давления, давление будет приложено к выходному порту. Если электросигнал поступает одновременно на пусковой и останавливающий соленоиды, задействован будет останавливающий соленоид, который возвратит клапан в выключенное положение.

Шарнирный проверочный клапан

На контрольном клапане двигателя установлены два одинаковых шарнирных проверочных клапана. С их помощью прилагается давление гидравлического топлива из наземной магистрали во время переходного состояния при запуске двигателя, и давление гидравлического топлива из самого двигателя во время штатной работы двигателя и при его отсечке. Один клапан установлен на входной магистрали гидравлического топлива двигателя, второй — на входной наземной магистрали гидравлического топлива.

Полетная инструментальная система состоит из датчиков давления, температуры, позиционных указателей, устройства измерения потока, электрораспределительных коробок и сопутствующей электрической разводки. Система обеспечивает отслеживать работу двигателя. Основная инструментальная система состоит из основной и вспомогательной систем. Основная система критически важна для всех стендовых испытаний двигателя и последующих полетных операций; вспомогательная система используется в исследовательской, конструкторской и приемочной части программы стендовых испытаний, а также в первых полетах. Ниже перечислены компоненты инструментальной системы, включая основную и вспомогательную системы:

Компоненты основной инструментальной системы

  • Давление в первой входной магистрали насоса горючего
  • Давление во второй входной магистрали насоса горючего
  • Общее возвратное гидравлическое давление
  • Давление в струе подшипника насоса окислителя
  • Давление в камере сгорания
  • Давление во второй выходной магистрали насоса окислителя
  • Давление во второй выходной магистрали насоса горючего
  • Температура первого подшипника насоса окислителя
  • Температура второго подшипника насоса окислителя
  • Температура подшипника ТНА
  • Температура во входном патрубке ТНА
  • Скорость вращения ТНА

Компоненты вспомогательной инструментальной системы

  • Давление в полости насоса окислителя
  • Выходное давление турбины
  • Давление гелия во входной магистрали теплообменника
  • Давление в выходной магистрали теплообменника
  • Давление в первой выходной магистрали насоса окислителя
  • Давление жидкого кислорода во входной магистрали теплообменника
  • Давление газообразного кислорода в выходной магистрали теплообменника
  • Давление в первой выходной магистрали насоса горючего
  • Управляющее открывающее давление двигателя
  • Управляющее закрывающее давление двигателя
  • Температура во второй магистрали насоса горючего
  • Расход жидкого кислорода на входе в теплообменник

Основная и вспомогательная электрораспределительные коробки

Полетная инструментальная система включает в себя две электрораспределительные коробки. Главная коробка содержит восемь электрических разъемов, а вспомогательная — пять. Обе коробки герметично заварены, и в них закачан под давлением инертный газ. Это предотвращает попадание внутрь загрязнений и влаги.

Для непрерывной работы двигатель нуждается в источнике пневматического давления и электричества, а также в топливе. Для запуска двигателя необходим наземный источник гидравлического давления, предварительное заполнение камеры сгорания, воспламенители в камере сгорания и в газогенераторе, а также самовоспламеняющиеся жидкости.

При нажатии на кнопку запуска проверочный клапан принимает положение, при котором возврат гидравлической жидкости (топлива) переключается с наземной магистрали на входную магистраль ТНА низкого давления. Начинается усиленная продувка жидким кислородом головки двигателя и газогенератора. Срабатывают воспламенитель в газогенераторе и воспламенитель выхлопа турбины, на пусковой соленоид контрольного клапана подается ток. Гидравлическое давление направляется на открывающие порты клапанов окислителя. Клапаны окислителя начинают открываться, и гидравлическое давление направляется на открывающий порт клапана газогенератора. Клапан газогенератора открывается, компоненты топлива под воздействием внутрибакового давления поступают в камеру сгорания газогенератора, где зажигаются воспламенителями. Выхлопной газ направляется сквозь турбину ТНА, теплообменник и выхлопную магистраль на стенки соплового насадка; здесь переобогащенная топливом смесь поджигается воспламенителем выхлопа турбины. По мере того, как турбина разгоняет насосы горючего и окислителя, выходное давление насосов растет, и компоненты топлива поступают в газогенератор с все увеличивающимся расходом. Разгон ТНА продолжается, и по мере роста давления топлива топливный клапан воспламенителя открывается. Это вызывает рост давления топлива на диафрагму ампулы с самовоспламеняющейся жидкостью. Диафрагма прорывается, и самовоспламеняющаяся жидкость, за которой движется топливо, поступает в камеру сгорания. Когда жидкость попадает в камеру сгорания и соприкасается с окислителем, происходит самопроизвольное воспламенение, и в камере сгорания начинается процесс сгорания. Давление из камеры сгорания через магистраль воздействует на диафрагму управляющего клапана воспламенителя. По мере роста давления в камере сгорания управляющий клапан воспламенителя срабатывает и открывает доступ гидравлической жидкости к открывающим портам клапанов горючего. Клапаны горючего открываются, и горючее поступает в камеру сгорания.

Горючее поступает во входную магистраль камеры сгорания и проходит через трубки рубашки регенеративного охлаждения КС, а затем через форсунку попадает в зону горения КС. По мере роста давления в КС, индикаторы нормального давления срабатывают, указывая нормальную работу двигателя. Давление в КС продолжает расти до тех пор, пока газогенератор не выходит на номинальную мощность, которая определяется просветом отверстий в магистралях, питающих газогенератор. Когда давление горючего превышает давление в наземной линии, источник гидравлического давления переключается с наземной линии на сам двигатель. Гидравлическая жидкость (горючее) циркулирует по агрегатам двигателя, а затем возвращается через контрольный клапан двигателя и проверочный клапан во входную топливную магистраль ТНА. Клапан наземного источника гидравлического давления перекрывается, когда топливные клапаны полностью открываются. Это позволяет гидросистеме двигателя обеспечивать гидравлическое давление во время операций отсечки.

Когда подается сигнал на отсечку двигателя, инициируется продувка головки двигателя окислителем, и на останавливающий соленоид контрольного клапана двигателя подается ток. Гидравлическое давление удерживает открытым клапаны газогенератора и окислителя, клапаны горючего переключаются в возвратное положение. Одновременно гидравлическое давление направляется на закрывающие порты клапана газогенератора, клапанов окислителя и горючего. Приводится в действие проверочный клапан, и по мере падения давления компонентов топлива начинается интенсивная продувка окислителем. Затем топливный клапан воспламенителя и управляющий клапан воспламенителя закрываются. Давление в камере сгорания достигает нуля примерно в то же самое время, когда клапаны окислителя полностью закрываются.

F-1 (ракетный двигатель) — это… Что такое F-1 (ракетный двигатель)?
F-1
S-IC engines and Von Braun.jpg
Двигатели F-1 на ступени S-IC вместе с создателем ракеты Сатурн V, Вернером фон Брауном
Тип:ЖРД
Топливо:керосин
Окислитель:жидкий кислород
Камер сгорания:1
Страна:США
Использование:
Время эксплуатации:1967-1973 гг
Применение:«Сатурн V» (первая ступень, S-IC)
Развитие:F-1A
Производство:
Время создания:1959 год
Производитель:Rocketdyne
Массогабаритные
характеристики
Масса:9 115 (сухой — 8 353) кг
Высота:5,79 м
Диаметр:3,76 м
Рабочие характеристики
Тяга:Вакуум: 790 тс (7,77 МН)
Ур. моря: 690 тс (6,87 МН)
Удельный импульс:Ур.моря: 265 с
Время работы:165 с
Давление в камере сгорания:7 MPa (69.1 атм.)
Степень расширения:16
Отношение окислитель/топливо:2,27

F-1 — американский жидкостный ракетный двигатель, разработанный компанией Rocketdyne. Использовался в ракете-носителе Сатурн V. Пять двигателей F-1 использовались на первой ступени Сатурна V, S-IC. До создания жидкостного четырёхкамерного ракетного двигателя РД-170 (тягой 740 тc) ракеты-носителя «Энергия» и твердотопливного ракетного двигателя для бокового ускорителя «Спэйс Шаттла» являлся самым мощным ракетным двигателем. По сей день остаётся самым мощным однокамерным жидкостным ракетным двигателем из реально летавших.

История создания

S-IC engines and Von Braun.jpg F-1 в Космическом ракетном центре США в Хантсвилле

Первоначально F-1 был разработан Рокетдайн в соответствии с запросом ВВС США от 1955 года о возможности создания очень большого ракетного двигателя. Конечным результатом этого запроса стали два разных двигателя — E-1 и более крупный F-1. Двигатель E-1, хоть и успешно прошёл стендовые огневые испытания, но быстро был признан технологически тупиковым вариантом, и отменен в пользу крупного, более мощного F-1. Американские ВВС впоследствии остановили дальнейшую разработку F-1 из-за отсутствия приложений для такого крупного двигателя. Однако НАСА, созданное в этот период времени, оценило пользу, которую может принести двигатель такой мощности, и заключила с Рокетдайн контракт на завершение его разработки. Испытания компонентов F-1 были начаты уже в 1957 году. Первое огневое испытание полностью скомпонованного тестового F-1 было совершено в марте 1959 года.

Семь лет разработок и испытаний двигателей F-1 выявили серьёзные проблемы с нестабильностью процесса горения, которые иногда приводили к катастрофическим авариям.[1] Работы по устранению этой проблемы первоначально шли медленно, поскольку она проявлялась периодически и непредсказуемо. В конечном итоге инженеры разработали технику подрыва небольших зарядов взрывчатых веществ (которые они называли «бомбами») внутри камеры сгорания во время работы двигателя, что позволило им определить как именно работающая камера отвечает на флуктуации давления. Конструкторы теперь могли быстро экспериментировать с различными форсуночными головками, для выбора наиболее устойчивого варианта. Над этими задачами работали с 1959 по 1961 годы. В окончательной конструкции горение в двигателе было настолько стабильно, что он мог самостоятельно гасить искусственно вызванную нестабильность за десятую долю секунды.

Конструкция

S-IC engines and Von Braun.jpg Установка двигателей F-1 на ступень S-IC РН Сатурн-5. Сопловой насадок снимался на время монтажа двигателей.

На 2011 год, разработанный Rocketdyne двигатель F-1 является наиболее мощным однокамерным жидкостным ракетным двигателем в истории из когда-либо летавших (двигатель M-1 имел бо́льшую тягу, и был испытан на стенде, но никогда не использовался). Двигатель использовал в качестве топлива керосин RP-1 и жидкий кислород — в качестве окислителя. Для подачи топлива и кислорода в камеру сгорания использовался турбонасос.

Основной частью двигателя была камера сгорания, в которой смешивались и сгорали топливо и окислитель, создавая тягу. Куполообразная камера в верхней части двигателя служила в качестве распределительного трубопровода подводящего жидкий кислород к форсункам, а также служила как крепление для карданного подвеса, передававшего усилие на корпус ракеты. Ниже этого купола находились форсунки, по которым топливо и окислитель направлялись непосредственно в камеру сгорания, они были сконструированы таким образом, чтобы обеспечить хорошее смешивание и сгорание компонентов. Топливо подводилось к форсуночной головке из отдельного распределительного трубопровода; часть топлива направлялась по 178 трубкам проложенным по всей длине камеры сгорания — которая занимала почти всю верхнюю половину сопла — и возвращалась обратно охлаждая камеру.

Выхлопные газы из газогенератора использовались для вращения турбины приводившей в движение отдельные насосы для топлива и окислителя, питающие системы камеры сгорания. Газогенератор вращал турбину со скоростью 5 500 об/мин, давая мощность в 55 000 лошадиных сил (41 МВт). Топливный насос прокачивал 58 564 литров керосина RP-1 за минуту, в то время как насос окислителя 93 920 л жидкого кислорода за минуту. С точки зрения условий работы, турбонасос был способен выдерживать диапазон температур от температуры газогенераторного газа в 800 °C (1 500 °F), до температуры жидкого кислорода в −180 °C (-300 °F). Топливо использовалось также для смазки[источник не указан 787 дней] и охлаждения подшипников турбины.

S-IC engines and Von Braun.jpg Огневые испытания двигателя F-1 на базе ВВС Эдвардс.

Ниже камеры сгорания располагался сопловой насадок занимавший приблизительно половину длины двигателя. Этот насадок повышал степень расширения двигателя от 10:1 до 16:1. Выхлоп газогенератора турбонасоса выводился к насадку с помощью большого, суживающегося трубопровода, этот относительно холодный газ образовывал слой, защищавший сопловой насадок от горячих (3 200 °C, 5 800 °F) выхлопных газов из камеры сгорания.[2]

F-1 сжигал 1 789 кг (3 945 фунтов) жидкого кислорода и 788 кг (1 738 фунтов) керосина RP-1 каждую секунду работы, производя 6,7 МН (1 500 000 фунт-сил) тяги. Это равно скорости вытекания 1 565 л (413,5 галлонов) жидкого кислорода и 976 л (257,9 галлонов) керосина в секунду. В течение своих двух с половиной минут работы, пять двигателей F-1 поднимали ракету-носитель Сатурн-5 на высоту 68 км, придавая ей скорость 9 920 км/ч. Объединённый расход жидкости у пяти двигателей F-1 в РН Сатурн-5 составлял 12 710 л (3 357 галлонов) в секунду, что могло опустошить 110 000 литровый (30 000 галлонов) плавательный бассейн за 8,9 секунд[2]. Один двигатель F-1 имел бо́льшую тягу(690 т), чем все три главных двигателя шаттлов (SSME), вместе взятые.[3] И почти вдвое большую тягу, чем вся двигательная установка ракеты «Союз»(первая и вторая ступени,32 камеры сгорания), имеющая взлетную тягу 407 т

Интересные факты

  • Так как отработанный генераторный газ подавался внутрь сопла для охлаждения насадка, яркость пламени реактивной струи вблизи сопла двигателя была значительно снижена, что хорошо заметно на кадрах с запусков Сатурн-5 и с огневых испытаний F-1.

См. также

  • ЖРД J-2 — использовался в лунной программе
  • ЖРД РД-270 — аналогичный по классу советский двигатель 60-х годов XX века, не вышедший из стадии испытаний
  • ЖРД РД-170 — более мощный советский/российский четырехкамерный двигатель

Примечания

  1. Ellison, Renea & Moser, Marlow, «Combustion Instability Analysis and the Effects of Drop Size on Acoustic Driving Rocket Flow», Huntsville, Alabama: Propulsion Research Center, University of Alabama in Huntsville, <http://reap.uah.edu/publications/Ellison.pdf> 
  2. 1 2 «Saturn V News Reference: F-1 Engine Fact Sheet», National Aeronautics and Space Administration, December 1968, сс. 3-3,3-4, <http://history.msfc.nasa.gov/saturn_apollo/documents/F-1_Engine.pdf>. Проверено 1 июня 2008. 
  3. «NSTS 1988 News Reference Manual», NASA, <http://science.ksc.nasa.gov/shuttle/technology/sts-newsref/sts_overview.html#sts_overview>. Проверено 3 июля 2008. 

Ссылки

Пламенный мотор Сатурна-5 / Хабр

Так 16 июля 1969 в 13:32 по Гринвичу (UTC) начинался «маленький шаг для одного человека». Ракету с начальной массой 2 725 т подняли на высоту 67 км и разогнали до 2.75 км/сек пять двигателей 1-й ступени F-1 c тягой по 690 т на уровне Земли. Это — до сих пор самый мощный мотор в истории, т.к. советский РД-170 с тягой 740 т представляет собой четверку ЖРД в одной «упряжке». Массовое помешательство на отрицании лунных полетов, среди прочего, выражается в попытках оспорить существование F-1 или занизить его показатели.

Одно из таких исследований, если можно так назвать натяжку фактов на фантазии, принадлежит Геннадию Ивченкову с его статьей «Оценка характеристик F-1, основанная на анализе теплообмена и прочности трубчатой рубашки охлаждения» www.manonmoon.ru/articles/st65.pdf. Будучи к.т.н.-ом, изучавшим ракетные двигатели в бытность студентом и аспирантом МВТУ, он написал на первый взгляд серьезную работу, имея целью доказать, что главный мотор Сатурна-5 не мог развивать тягу выше 500 тонн. Отсюда следовало бы, что Аполлоны 8,10,11,12,13,14,15,16,17 к Луне не летали, а нога человека не ступала на ее пыльную поверхность. Но эта попытка притянуть реальность за уши к желаемому выводу, как и все остальные плоды лунной паранойи, оказалась безуспешной. Ниже статья www.manonmoon.ru/articles/st65.pdf подвергнута критическому анализу и всюду, где прямо не сказано иное, речь будет идти только о ней.

На стр. 1 автор демонстрирует свою предубежденность, которая задает тон публикации. «Первыми этот вопрос подняли сами американцы почти сразу после полетов “Аполлонов”. За последующие годы вскрылось большое количество прямых и косвенных свидетельств о том, что, как минимум часть из этих полетов была действительно инсценирована«. Автор дает понять читателю, что «сами американцы» были серьезными специалистами. Об отцах-основателях секты луноборцев — Кэйсинге и Рене можно прочитать в статье geektimes.ru/post/285236. Специалистами эти «сами американцы» были не то, что не совсем серьезными, а вовсе никакими!

На фоне других «разоблачителей», включая д.ф.-м.н. А.И. Попова (ему уделено внимание в статье geektimes.ru/post/274384), Геннадий Ивченков выглядит предпочтительней. Однако, его апломб эксперта при ближайшем рассмотрении не подтверждается. Как все луноборцы автор строит возражения на собственных ошибках и фактах, которые ему — Ивченкову непонятны. Как обычно, это наукообразное мессиво пропитано антиамериканизмом и приправлено публицистическим сарказмом.

На стр. 2 автор пишет. «Сейчас же накопилась своеобразная “критическая масса” свидетельств, включая те же фото и киноматериалы, рассказы астронавтов, якобы лунные камни, вызывающие удивление у исследователей, и несоответствий (и явныx глупостей) в конструкциях “Сатурна-5”, его двигателей, корабля “Аполлон” и посадочного модуля.» На самом деле в Сети накопился огромный массив квазинаучных измышлений, которые миллионы профанов принимают за твердые доказательства того, что «американцы не летали на Луну».

«В частности, кто догадался спроектировать служебный модуль “Аполлона” из секторов (как дольки апельсина) и сделать в служебном отсеке большой (50 градусов по окружности) продольный резервный отсек, который для баланса центра тяжести должен быть загружен балластом(??!!)?» Автор возмущен тем, что он — Ивченков, никогда не занимавшийся проектированием космических и других машин, не понимает технические решения, заложенные в Аполлоне? Три вопросительных и два восклицательных знака усиливают этот нелепый пафос.

И далее. «Кто догадался поставить туда избыточный по размерам и весу двигатель AJ-10-137 тягой 11 тонн, когда сами американцы пишут, что он был в два раза больше, чем необходимо, в то время как более подходящий двигатель был (AJ-10, тягой 5 тонн) и весил на 200 кг меньше? Ракетные двигатели с их проблемами — это только часть вопроса

Согласно данным из epizodsspace.airbase.ru/bibl/raketostr3/obl.html, тяга AJ-10-137 была несколько меньше — 9.76 т, а некоторые источники дают 9.3 т. Следуя Википедии автор утверждает, что тяга была вдвое больше, чем необходимо для выхода на окололунную орбиту. Очевидно, что для корабля с начальной массой больше 43 т лишние 200 кг веса ЖРД проблемой не являются. Примерно такую массу имел луномобиль, который возили с собой Аполлоны 15,16 и 17. Даже если эта избыточная тяга была не нужна, то данный факт не служит основанием для заявления о том, что «Ракетные двигатели с их проблемами — это только часть вопроса.» Как будет показано в дальнейшем эти проблемы — в голове у автора!

В англоязычной Википедии, на которую ссылается «эксперт по ЖРД» (стр. 3) en.wikipedia.org/wiki/Apollo_Command/Service_Module дано такое объяснение. Первоначальный профиль миссии предполагал посадку на Луну всего корабля Аполлон, поэтому двигатель проектировали с большей тягой. На момент, когда профиль изменили, работа над AJ-10-137 уже кипела, а графики лунной программы были очень жесткими. Но я думаю, что двигатель с запасом тяги поставили на Аполлон сознательно, т.к. главным приоритетом была надежность, а не оптимизация. Как это принято у луноборцев, Ивченков цепляется к мелочам, пытаясь раздувать из них принципиальные проблемы.


Двигатели F-1, которых «не было» (без сопловых насадков, которые крепились на готовую ракету)

Дальше на стр. 3 он утверждает. «В частности «трубчато–струйная» камера сгорания (далее КС) принципиально не могла обеспечить заявленное давление и тягу двигателей F-1. Это подробно показано в работе А. Велюрова.» Ниже будет показано совсем другое. А именно, что аргументы Ивченкова не выдерживают критики. Об этом виртуальном луноборце можно почитать apollofacts.wikidot.com/hoax:people-velyurov. Чтобы составить собственное мнение хватило беглого взгляда на статью free-inform.narod.ru/pepelaz/pepelaz-1.htm. Вот показательный фрагмент из этой буффонады.

«Зато второй полет 5 июля 1966г. был орбитальным! Американцы пишут, что целью миссии AS-203 было изучение «поведение жидкого водорода в невесомости». И не смотря как обычно на мелкие пустяки, полет прошел успешно… А вот ежегодник Большой Советской Энциклопедии (БСЭ) (3) за 1967г описывает результаты так:

«Последняя ступень (ракета S-4B) экспериментальной ракеты-носителя «Сатурн IB» SA-203 выведена на орбиту с не полностью израсходованным топливом. Основные задачи запуска — изучение поведения жидкого водорода в состоянии невесомости и испытания системы, ОБЕСПЕЧИВАЮЩЕЙ ПОВТОРНОЕ ВКЛЮЧЕНИЕ основного двигателя ступени. После проведения запланированных экспериментов в системе отвода паров водорода из бака были закрыты клапаны, и в результате повышения давления ступень ВЗОРВАЛАСЬ на седьмом витке».

«При этом ступень SA-203 разлетелась на 37 фрагментов! (2) Можно поздравить НАСА с успешным выполнением программы полета, почти как пелось в известной песне: за исключеньем пустяка, — сгорел ваш дом с конюшней вместе, когда пылало все поместье… А в остальном прекрасная маркиза, все хорошо, все хорошо!».

Ежегодник Большой Советской Энциклопедии за 1967 действительно так писал istmat.info/files/uploads/22100/17_str_496-540_nauka_i_tehnika_chast1.pdf. Но если прочитать это в оригинале, без комментариев Велюрова и истерически кричащих выделений цветом и размером, то станет ясно, что никакой аварии на самом деле не было. Ступень взорвали преднамеренно! Возможно из соображений секретности, чтобы она как-нибудь не досталась русским. Кто и как посчитал фрагменты? На этом риторическом вопросе мы с Велюровым расстанемся, вернувшись к Ивченкову на стр. 3.

«Кроме того, согласно приведённым в американских «рекламках» данным о ракете “Сатурн-5”, ее первая ступень является лучшей первой ступенью «для всех времен и народов». У нее 5 самых надежных и мощных в мире двигателей F-1 и, кроме того, ее весовое совершенство (отношение веса заправленной ступени к весу пустой ступени) – самое лучшее и непревзойденное до сих пор! Оно (опять же, согласно американским «рекламкам») составляет аж 17,5! В то время, как эта величина у 1-й ступени Н-1 была равна 14,4, у Протона — 15, у 2-й ступени Союза — 15,2, у Атласа II – 16, у Шаттла (если прибавить к весу бака вес двигателей и двигательного отсека) – 17 (для самой последней модификации).«

А собственно чему так удивляется «эксперт по ЖРД»? Тот факт, что отношение веса заправленной 1-й ступени Сатурна-5 к весу пустой является наибольшим естественно вытекает из того, что эта ракета была и остается самой большой из всех когда-либо летавших. Масса тонкостенной оболочки, каковой является ракета, пропорциональна квадрату, а масса топлива пропорциональна кубу ее линейного размера. Поэтому их отношение растет по мере возрастания размеров. Разумеется, это суждение не стоит воспринимать буквально, т.к. в реальности есть много других факторов. Но в целом оно объясняет ту особенность Сатурна-5, к которой прицепился Ивченков.


Главный мотор Сатурна-5 (с сопловым насадком)

Внутренние поверхности камеры сгорания и сопла F-1 были выполнены из продольных трубок, по которым протекало 70% керосина перед подачей в форсуночную головку, обеспечивая таким образом охлаждение. На снимке трубки хорошо видны — они направлены сверху-вниз. Сопловый насадок (заканчивается немного выше девушки) охлаждается потоком газов из выхлопа турбины топливопривода с температурой около 920 K, что намного ниже температуры в камере сгорания (около 3 500 К). Магистраль подачи выхлопных газов выглядит на фото, как толстый рукав, охватывающих сопловый насадок. Трубки охлаждения были изготовлены из жаропрочного, никелевого сплава Inconel X-750. Основным содержанием www.manonmoon.ru/articles/st65.pdf является попытка доказать, что трубки из этого сплава не могли работать под давлением в камере F-1 (70 атм).

Стоит заметить, что некоторые источники указывают меньшее давление, например 63 — 65 атм epizodsspace.airbase.ru/bibl/raketostr3/1-1.html. Там же дана температура 3 273 К, что несколько ниже того, чем пользуется Ивченков. Учитывая, что он «балансирует на краю», эти отличия существенны. Но мы будем использовать данные автора, т.к. они не помешают доказать несостоятельность его фантазий.

Автор сравнивает F-1 с H-1, который представлял собой уменьшенную копию, но с трубками охлаждения из нержавеющей стали 347. Сопоставляя свойства этих материалов и характеристики моторов Ивченков, как ему кажется, доказал, что F-1 не мог иметь тягу выше 500 т. На стр. 13 он пишет. «Проблемы со сплавами, подобными Inconel X-750 были подробно и высокопрофессионально описаны С. Покровским«. Покровский — это авторитетный среди луноборцев, ныне покойный конспиролог, написавший статью www.manonmoon.ru/addon/22/inkonel.doc.

То, что в ней сказано по поводу сплава Inconel X-750, на первый взгляд выглядит очень солидно с точки зрения физики твердого тела и металлургии. Но на стр. 2 своей статьи Покровский пишет «Так получилось, что автор данной работы — лазерщик, которому в своей лабораторной практике приходилось для текущих нужд практически оценивать поглощательную способность металлов на длине волны 1 мкм, приблизительно соответствующей спектральному максимуму излучения газов камеры сгорания Ф-1.» Таким образом, специалистом в данных областях он не являлся. Покровский сосредоточился на том, что ему было близко — на взаимодействии трубок из X-750 и припоя с излучением раскаленного газа.

На стр. 1 своей статьи он пишет. «Двигатель Ф-1 был построен по традиционной к тому времени схеме с охлаждаемой камерой сгорания из спаянных между собой трубок. Это решение – было как бы простым масштабированием достаточно отработанной схемы. Все верно, но дальше начинается безграмотная чепуха. «Но не все в нем допускало простое масштабирование. Рост размеров камеры сгорания в первом приближении пропорционально кубу линейных размеров, — ведет к такому же увеличению объема горячих излучающих газов. Площадь поверхности, воспринимающей излучение, — растет как квадрат линейных размеров. Таким образом, удельный поток лучистой энергии на поверхность стенки камеры с ростом размеров возрастает

Мощность излучения черного тела определяется площадью его поверхности и температурой, но отнюдь не объемом. Поэтому излучение на стенки камеры происходит не из всего объема газа, а только с внешней поверхности газового сгустка. Внутри же имеет место переизлучение — атомы поглощают и испускают фотоны с равными вероятностями, что отвечает термодинамическому (квази)равновесию. Согласно закону Стефана-Больцмана, при росте размеров камеры сгорания плотность потока излучения не изменится, будучи пропорциональной 4-й степени температуры. Если температура в F-1 была такая же, как в Н-1, то и поток лучистой энергии на стенки камеры был той же плотности.

В этом месте специалист по лазерам продемонстрировал не только апломб эксперта, но и незнание термодинамики излучения. Что привело его к грубой ошибке на стр. 4. «Плотность мощности в импульсе масштаба 10^4 Вт/см2 – близка к плотности мощности в двигателе Ф-1. А при пуске? А при пуске масштаб лучистых потоков на поверхность моментально возрастает до уровня 10^4 — 10^5 Вт/см2. Это типичные масштабы лазерного воздействия

Здесь утверждается, что плотность потока излучения с поверхности газового сгустка на стенки камеры сгорания превышает . Но при температуре 3 500 К интенсивность чернотельного излучения равна

Как видно, она была завышена Покровским более, чем в 10 раз. Таким образом, «высокопрофессиональные» претензии к двигателю F-1 основаны на его собственных ошибках. Все как всегда у конспирологов! Вернемся к статье Ивченкова www.manonmoon.ru/articles/st65.pdf.


Двигатель H-1, младший брат F-1

От стр. 4 до стр. 32 автор обсуждает устройство двигателя F-1 и сравнивает его с другими, но доказательства невозможности откладывает «на потом», ограничиваясь оценочными, категоричными суждениями.

На стр. 12 — 15 Ивченков приводит доводы в пользу того, что трубки охлаждения из сплава Inconel X-750 подвергались отжигу, в результате чего они приобретали предел упругости в 2 400 кг/кв.см ( МПа). В сущности это — лишь правдоподобные догадки. Единственный аргумент, который можно считать доказательством, предъявлен на стр. 15. «То, что материал трубок подвергался отжигу, а не термической закалке, полностью подтверждается снимками F-1 “со дна моря” (рис. 2 и 3), на которых видно, что трубки погнуты (то есть материал – пластичный.) Если бы они были подвергнуты термической закалке, то они не гнулись бы, а ломались (попробуйте погнуть пружину).» Но на рис. 3 трубок нет вообще, а на рис. 2 они выглядят скорей изломанными, чем погнутыми. На мой взгляд гипотеза о том, что «материал трубок подвергался отжигу, а не термической закалке«, этой фотографией не подтверждается. Более того — на ней явно запечатлен не F-1! Но даже если верно то, что предел упругости был равен 240 МПа, то и в этом случае доводы автора основаны на произвольных допущениях (см. ниже).

На стр. 15 Ивченков пишет. «Кроме того, особенности Inconel X-750 могут вызвать проблемы при кратковременном нагреве под давлением (в частности, при работе F-1.) При этом на огневой поверхности трубки начинается кристаллизация с некоторым упрочнением и, главное, повышением твердости и, соответственно, хрупкости, в то время как внутренние слои огневой стенки и другая стенка этому не подвержены. Давление в трубках повышается и идет пластическая деформация, на хрупкой поверхности могут появиться трещины

Но откуда автору известно, что при работе F-1 могут возникать эти проблемы? Допустим, что часть трубки, находящаяся в контакте с раскаленным газом, становится более твердой и хрупкой. При отсутствии деформаций это никак себя не проявит, а откуда взяться деформациям? Давление в 70 атм на 2 порядка меньше, чем предел упругости. Ивченков пишет, как о факте, что идет пластическая деформация, хотя на самом деле это лишь предположение. Видимо он считает, что неравномерная перестройка кристаллической структуры сплава вызовет изгибания трубки. Учитывая, что автор не является специалистом в физике твердого тела и металлургии, нет оснований доверять этим фантазиям.

Стоит также обратить внимание на слово «могут». Могут — это не значит, что появятся, учитывая краткость жизненного цикла F-1 (меньше 3 мин). Более того, на стр. 13 автор утверждает прямо противоположное. «Повышение yield strength при 1200-1300 F объясняется началом кристаллизации при эксплуатации сплава на данных температурах. Это не происходит при кратковременном воздействии таких температур (при кратковременном нагреве, например, в течение 168 сек работы F-1), так как процесс полной реструктуризации сплава идет медленно и занимает часы«. Геннадий Ивченков противоречит сам себе, как часто бывает с луноборцами.

Дальше на стр. 15 автор еще раз формулирует свои фантазии, придав им форму твердо установленного факта. «Получается, что Inconel X-750 — материал проблемный, в частности, из-за возможности неконтролируемой реструктуризации во время эксплуатации«. Прием из арсенала конспирологов: порассуждав о том, что, как им кажется, могло бы иметь место, закончить категоричным выводом том, что так оно в реальности и было ))


Останки двигателя, который Ивченков называет F-1 (сравните с фотографией, где девушка)

На стр. 16 Ивченков пишет об еще одной, по его мнению, фатальной проблеме двигателя F-1. «Кроме того, при отработке двигателя Н-1 возникли дополнительные проблемы, связанные с взаимодействием никелевых сплавов с керосином RP-1«. Дальше он цитирует фрагмент на английском из архива NASA, где сказано о том, что специалисты подозревали (suspected) возможность химической реакции межу серой в керосине и сплавом Inconel X-750, которая могла бы привести к охрупчиванию трубок. Для исключения этой предполагаемой проблемы у вновь создаваемых H-1 их выполнили из сплава 347. Судя по тому, что слово «исправление» (fix) взято в кавычки, это было сделано из предосторожности, а не потому, что наблюдались реальные последствия реакции c керосином PR-1.

По-видимому в дальнейшем выяснилось, что эти опасения преувеличены и Inconel X-750 использовался в F-1. Но автор уверенно пишет о том, что серьезные проблемы были и перекочевали с «исправленного» Н-1 в двигатель F-1 (стр. 16). «Возникает вопрос, а как же с трубками из никелевого сплава в F-1? Ведь керосин RP-1 – тот же, сплав Inconel X750 – с большим содержанием никеля (70%), а температура и давление у F-1 выше, чем у Н-1«. Ставить вопросы луноборцы мастера, только искать ответы им не хочется, поэтому предпочитают те, что отвечают их «разоблачениям». А между тем, кроме реакции сплавления никеля с серой , идущей при температуре около 1200 К, реакция окисления при 900 — 1100 К выводит серу из металла. Не потому ли Rocketdyne вернулась к сплаву Inconel X-750, разрабатывая F-1?

Но Ивченков вопросами себя не затрудняет, ибо он «знает» точные ответы! Последний абзац на стр. 16. «Этот фактор, вместе с неконтролируемой кристаллизацией жаропрочных никелевых сплавов типа Inconel, ставит вопрос о возможности применения никелевых сплавов для огневых стенок КС, работающих на керосине. Вывод здесь однозначный – никелевые сплавы не могут (и не могли) быть материалом трубок охлаждения при заявленных для F-1 характеристиках.» Вот так, сначала «ставит вопрос» и сразу «Вывод здесь однозначный» )) Но, как показано выше, он далеко не однозначный, а скорее за уши притянутый к мифу о лунной афере.

На стр. 18 автор заявляет. «Стенки трубок рубашки охлаждения имеют толщину в доли миллиметра, например, толщина стенок трубок у Н-1 составляет 0,25 мм. В литературе указана толщина трубок F-1 в 0.457 мм, достоверность чего вызывает большие сомнения, так как такая толщина стенок совершенно не проходит по требованиям к охлаждению (это будет показано далее).» В оценках толщины стенок трубок Ивченков опирался на свои фантазии (см. ниже).

На стр. 21 — 22 автор считает трубки охлаждения, силясь найти противоречие и в этом. «Таким образом, в случае одинарного слоя, количество трубок после раздвоения (сопло от степени расширения 1/3 до 1/10) должно быть равным 356. Теперь взглянем на фото сопла F-1 на дне моря (рис.2), сделанное экспедицией Джефа Безоса. На фото можно насчитать 178 трубок расположенных ниже сечения 1/3 (просматривается до сечения 1/8, далее трубки смяты и погнуты). И сколько же трубок на самом деле и каков их реальный диаметр? В то же время на снимках NASA (Rocketdyne) четко можно насчитать 178 трубок, уложенных в один слой и раздваивающихся на 356 ниже сечения 1/36«.

Снимок Джефа Безоса, о котором идет речь, можно увидеть выше (останки на дне моря). Я лично не смог насчитать на обломке сопла больше, чем 60 трубок. Кроме того, нижняя часть этого обломка совершенно не похожа на F-1. Число поперечных (разорванных) колец явно не превышает 9. На снимке с девушкой видно, что таких колец было гораздо больше. Откуда вообще известно, что на этом фото изображены остатки F-1? Экспедиция Джефа Безоса находила обломки двигателей различных ракет, работая на том участке океана, над которым проходили их трассы после взлета с мыса Канаверал. Скорее всего на фото изображен обломок Н-1, которые ставили на первые модели Сатурнов в качестве бустеров. Но луноборцы выбирают из возможных объяснений только те, которые укладываются в их картину мира. Мира, в котором американцы не летали на Луну и в космосе, похоже, вовсе не были ))


Камера сгорания F-1 изнутри, видны трубки охлаждения и форсунки

Дальше, вплоть до стр. 27 Ивченков хвалит советскую технологию ракетных двигателей, основанную на использовании двойной стенки камеры сгорания, образующей рубашку охлаждения. При этом он критикует подход, избранный американцами в лунных ракетах — камера, составленная из трубок охлаждения. Вполне возможно, что все это справедливо… за одним исключением. Американская технология обеспечила меньший вес камеры сгорания и сопла, что для огромных двигателей имеет принципиальное значение. СССР так и не сумел создать ничего похожего на F-1 по размеру, пытаясь запрячь в свою ракету десятки сравнительно малых ЖРД. Итог известен — лунную гонку наша страна с треском проиграла.

Завершаются эти сравнения очередной порцией фантазий (стр. 27). «Все это говорит о том, что разработки двигателей в СССР и США шли разными путями. В то же время, практика показала, что «американская технология» является ущербной, тупиковой, не позволяющей получить удовлетворительные характеристики двигателя, такие как давление в камере (не больше 50 атм) и, соответственно, удельный импульс«. Какая практика показала? Полеты Аполлонов на Луну? Кто установил, что давление в камере F-1 было не больше 50 атм? Велюров и его последователь Ивченков? Ниже мы обсудим, как именно он оценил это давление, а пока еще одна струя желчи с ложью («горючее и окислитель») на стр. 27.

«Форсуночная головка, сделанная по «американской технологии» имеет струйные форсунки и напоминает стиральную доску с дырками (или плоскую доску с отверстиями, выполненными под углом – см. рис.11). Практика показала ущербность и этой технологии, не обеспечивающей удовлетворительный распыл и смешение компонентов. Факт применения струйных форсунок американцами, вообще-то, является странным, так как на двигателе известной им Фау-2 стояли все виды форсунок, а они выбрали наихудшие, преимуществом которых является только меньшее гидросопротивление

Слегка модифицируя заданный выше вопрос: «ущербность» этой технологии показала практика девяти пилотируемых полетов к Луне и запуска целиком станции Скайлэб? Хотя конечно, Скайлэба тоже не было, бдительных луноборцев не обманешь )) Что касается меньшего гидросопротивления «ущербных» форсунок F-1, то как раз это имело для него принципиальное значение, учитывая систему охлаждения и огромный расход топлива. Чуть забегая вперед заметим, что проблема с повышенной тепловой нагрузкой на трубки в двигателе F-1 по сравнению с Н-1, которую по Ивченкову можно было решить только за счет истончения стенок до неприемлемых по прочности 0.2 мм, решалась как раз за счет ускоренной циркуляции керосина в системе охлаждения. С форсунками другого типа это бы, вероятно, не сработало.


Орбитальная станция Скайлэб изнутри,… которой тоже не было

На стр. 33 автор переходит к оценке тепловой нагрузки на трубки охлаждения. Он берет за основу эмпирическую формулу из теплотехники, описывающую теплообмен между потоком газа и стенкой трубы, и применяет для сравнения коэффициентов теплообмена и между раскаленным газом и стенками камеры сгорания для двигателей F-1 и H-1 соответственно, так что:

(*)

где — давление в камере сгорания и — ее диаметр. Отсюда автор получает, что отношение находится в диапазоне 1.22 — 1.29. Как всегда бывает при «разоблачениях», это отношение завышено. Если принять давление в камере F-1 65 атм и считать, что , то получится . Учитывая, что формула (*) является эмпирической, а камера сгорания не является трубой, различие в коэффициентах теплообмена, по-видимому, близко к методической погрешности вычислений. Как обычно луноборцы балансируют на краю, пытаясь натянуть числовые данные на домыслы.

Но предположим, что оценка , которой оперирует в дальнейшем Ивченков, верна. Пусть — температура газа в камере сгорания (3 500 К), — температура поверхности стенки трубки, соприкасающейся с этим газом, — температура поверхности стенки, соприкасающейся с охладителем (керосином), и — плотности потоков тепла (Вт/кв.м) из газа в стенку трубки и через стенку в охладитель. Тогда

и (**)

где — коэффициент теплопроводности и — толщина стенки. Автор считает, что K. При той же разности величина для двигателя F-1 будет в 1.22 раза больше, чем для H-1. На стр. 34 отсюда делается ложный вывод о том, что для сохранения теплового потока неизменным достаточно было бы повысить с 1000 К до 1220 К. Из (**) следует, что за счет этого уменьшился бы не в 1.22, а только в 1.1 раза.

Чтобы сохранить «пропускную способность» стенки трубки, считая неизменной (1000 К), автор предлагает уменьшить толщину стенки в 1.22 раза. Но что произойдет, если не уменьшится, а увеличится с 0.254 мм в двигателе H-1 до 0.457 мм в F-1? Последнее значение Ивченков объявил плодом фантазии Technical Writer-ов, но именно его указывает NASA для F-1. В таком случае уменьшится в 1.8 раза. При этом мы предположили, что поток увеличился в 1.22 раза. В таком режиме, разумеется, система охлаждения работать не смогла бы.

Легко проверить, что тепловые потоки из газа в стенку и через стенку в охладитель будут динамические уравновешены (т.е. ), если K и K. Таким мог бы быть режим работы F-1 в предположении , если бы двигатель H-1 работал в режиме K и K. В этом случае температура керосина выше точки замерзания. Пониженную температуру охладителя в F-1 можно было обеспечить за счет большей скорости его прокачки через трубки. Температура 1 300 К, вероятно, была приемлемой для сплава Inconel X-750 с температурой плавления около 1 700 К, учитывая малую длительность работы двигателя (~165 сек). А также тот факт, что только огневая поверхность стенки была бы нагрета до 1 450 К, а внутри нее температура падала бы до 300 К на холодной поверхности (автор принимает K, что видно из расчета на стр. 35, где он получает К).

Нетрудно придумать еще более реалистичные режимы для систем охлаждения F-1 и H-1 при том же предположении о коэффициентах теплообмена. Например, для F-1 пусть K и K, а для H-1 пусть K и К. Температура огневой стенки 1 145 К для трубки из Inconel X-750, работающей меньше 3-х минут, явно не является большой проблемой. Разница температур охладителей всего лишь 85 К. Поскольку суть средние по системе охлаждения, эти температуры и не должны иметь «комнатные» значения вблизи 300 К, которые предполагались выше. Стоит также заметить, что при температурах свыше 1 000 К теплопроводность сплава Inconel X-750 несколько выше, чем у стали 347. Хотя различие невелико, в 1.1 — 1.2 раза, это дополнительно усиливает позицию двигателя F-1 в «соревновании» с Н-1.


Первая ступень Сатурна-5. Сопловые насадки сняты

До стр. 47 Ивченков мусолит тему якобы слишком тонких стенок, словно упиваясь свои «открытием». На стр. 47. «Подобные расчеты (конечно, более детальные, включая компьютерное моделирование) наверняка проводили американцы в процессе проектирования и получили вполне реальную величину рабочего давления в 46–50 атм и тягу двигателя порядка 450 тонн. Как они дальше пытались форсировать F-1 до 70 атм и 690 тонн и что из этого получилось – это большой секрет компании “Рокетдайн” (Rocketdyne)«. Откуда все это известно Ивченкову? Вопрос риторический — он самозабвенно фантазирует ))

На стр. 48 «Отличие конструкции двигателей, вытащенных со дна моря Джефом Безосом от представленных в перечисленных в статье источниках от NASA» выделено жирным шрифтом. Выше уже было сказано о том, что на снимке, который имеет ввиду автор (двигатель на морском дне) почти наверняка запечатлен H-1.

На стр. 49 — 53 автор пытается придраться к системе подачи выхлопных газов в сопловой насадок. Ничего серьезного он вроде бы здесь не выдумал. Доказывает, что советские ЖРД были лучшими, а у американцев вообще идей хороших не было. Кто бы с этим спорил? Россия — родина слонов.

На стр. 56 — 58 Ивченков пишет чепуху о том, что двигатель F-1 в полете горел (фото в начале статьи). Но если он горел, поскольку где-то прогорели трубки охлаждения с керосином, то почему так симметрично?

Столь эффектное расширение факела было связано, очевидно, с падением давления атмосферы при подъеме ракеты. Внешнее давление снижалось, поэтому огненный сгусток, вылетающий из сопла, радиально расширялся. Жутковатый выброс пламени выше уровня сопел объясняется подъемом части раскаленных газов в пустое пространство двигательного отсека. Этому не стоит удивляться, т.к. при пересечении факелов из различных двигателей (всего их было 5) неизбежно появляются частицы пламени, имеющие импульс по движению ракеты. Они-то и врываются в пустоты двигательного отсека, покидая его затем через отверстия в корпусе ракеты (на фото выше видны 4 продольных щели ниже буквы А). В плотной атмосфере этого не происходило, поскольку такие частицы пламени быстро тормозились воздухом. А в стратосфере часть факела, говоря более простыми словами, засасывало в пустое пространство двигательного отсека. И Сатурн-5 раскрывался огненным цветком во всем своем великолепии!

Это была потрясающая ракета, плод технического гения Вернера Фон Брауна, а также огромного труда немецких и американских инженеров. Но не стоит забывать о компании Rocketdyne, создавшей двигатель F-1, который доставил человека на Луну.

Самые мощные однокамерные ЖРД: honzales — LiveJournal

Вот скоро минет 50 лет со дня, когда первый человек ступил на поверхность нашего естественного спутника — Луны, а всё не утихают споры сторонников «теории заговора», высасывающих из пальца всё новые и новые аргументы в пользу версии, что космический полёт Аполлонов с высадкой человека на Луну был аферой.
Привлекаются мнения каких-то ученых (в основном — не имеющих никакого отношения к космонавтике в целом и проектированию ракет и их двигателей в частности).

ЖРД F-1 фирмы North American Rockwell, Rocketdyne (США),
использовался на 1 ступени носителя Saturn-5:

Снимаются какие-то фильмы, где всё это, умело «упакованное» с применением типичных демагогических приёмов, выдаётся на потребу ищущих сенсаций зрителей, благо уровень критического мышления подавляющего большинства из них гораздо ниже плинтуса, а общая эрудиция и познания в физике и ракетно-космической технике и того ниже.

Однажды я уже рассказывал, что в СССР тоже был свой «лунный проект», основывающийся практически на тех же принципах и технических решениях, что и американский, но «не взлетевший», описывал и причины того, отчего от него СССР отказался.

Однако сторонники фейковости американских лунных экспедиций приводят всё новые, как им кажется, аргументы, «обосновывающие» их точку зрения.

Один из них — «американцы не могли создать двигатель F-1«, который стоял на 1-ё ступени «Сатурна-5», якобы потому, что «теоретическую невозможность этого» будто бы доказал известный советский конструктор ракетных двигателей В.П.Глушко.

Эту версию вытащили из «Воспоминаний ракетчика» Н.В. Лебедева (по образованию — горного инженера, строившего подземные защитные сооружения, пусковые установки и ракетные шахты), в которой он приводит услышанный им разговор Королёва с Келдышем:

<Келдыш>: «…Браун нас не только догонит, но и первым окажется на Луне».
<Королёв>: «Ну, это исключено» – Королев уставился взглядом в возвышавшийся перед ним Протон. – «Он решил создать супердвигатель на 700-800 тонн тяги на криогенных компонентах топлива. Пусть поковыряется, пока не упрется в стену. Мы уже это проходили».
<Келдыш>: «Ну а если мы ошибаемся, и он сумеет преодолеть этот порог?»
<Королёв>: «Как? Пальчиками перед носом помашет? Не смеши… »

И вот на этом-то основании сторонники фейковости американского проекта делают вывод, что сам Королёв «теоретически обосновал невозможность создания двигателя тягой свыше 700 тонн».
Хотя, если внимательно посмотреть текст тех же «воспоминаний…», становится ясным, что фраза вырвана из контекста, речь идёт о космической гонке и неверие Королёва основано на предположении, что для победы над высокочастотной неустойчивостью горения при больших размерах камеры сгорания в однокамерном двигателе требуется значительное время.
Далее, в качестве аргумента, подтверждающего версию о «невозможности», приводится мнение В.П.Глушко.

Н.Лебедев пишет:
как теоретическая, так и практическая НЕВОЗМОЖНОСТЬ создания однокамерного двигателя (F1) на криогенных компонентах топлива тягой в 700 тонн. Об этом говорил Королев (смотри выше), об этом знали все ракетчики-практики.

Откуда взялась «теоретическая» — непонятно.
Однако, у «практической» невозможности, я полагаю, «ноги растут» от мнения В.П.Глушко, в своё время начинавшего работать с криогенными компонентами (советские аналоги V-2), уткнувшегося в проблему высокочастотной неустойчивости горения и решившего уйти от неё, перейдя к высококипящим компонентам, на которых ему практически удаётся создать однокамерный РД-270 по схеме «газ»-«газ» — к слову, с тягой в 630 т.

Такого же мнения придерживается и сайт www.lpre.de

…в 1960-х гг. В.П.Глушко считал, что разработка двигателей замкнутой схемы на топливной паре кислород—керосин связано с неприемлемо длительными сроками из-за неизученности рабочего процесса и сложности обеспечения его устойчивости.

Лебедев, как работавший у Глушко, конечно же, разделяет его мнение.

Однако же в тех же «воспоминаниях…» Н.В.Лебедев пишет:

В середине 1965 академик Глушко года помог Челомею, не меняя идеи, резко упростить конструкцию, предложив для создаваемой первой ступени ракеты УР-700 двигатель РД-270 с тягой в 630 тонн.

Однако тут есть несколько довольно интересных нюансов — изначально тот же В.П. Глушко говорил о невозможности создания двигателей с тягой свыше 100 тонн, и об этом упоминает тот же Лебедев:

Долгие годы создать одиночный ЖРД тягой (даже, Н.Л.) свыше ста тонн считалось весьма проблематичным.

Однако, Фон Браун, как мы с вами знаем, проблему высокочастотной неустойчивости решить сумел, и в основе его технического решения этой проблемы лежат следующие принципы:

Максимальное увеличение числа форсунок в головке, с пропорциональной минимизацией расхода через одну форсунку. (В форсуночной головке двигателя F-1 устанавливается 2600 форсунок для кислорода и 3700 форсунок для керосина).
Специальная геометрия расположения форсунок в головке и порядок чередования форсунок горючего и окислителя.
Специальная форма канала форсунки, благодаря которой при движении по каналу жидкости сообщается вращение, и при поступлении в камеру она разбрасывается в стороны центробежной силой.

Кроме того, в конструкции форсуночной камеры F-1 применялись антипульсационные перегородки, фактически поделившие одну большую камеру на ряд более мелких по размеру:

Аналогичные решения значительно позднее применялись на отечественных двигателях 14Д22, 14Д21:

Есть ряд отличий от американского решения в относительных размерах перегородок — но ведь существенно отличались и компоненты топлива, и их фазовое состояние, и давление в камере сгорания.

Приведём основные технические характеристики американского ЖРД F-1:

Тяга на уровне моря, т
Удельный импульс на уровне моря, сек
Состав смеси (окислитель/горючее)
Степень расширения сопла
Диаметр критического сечения, м
Диаметр выходного сечения сопла, м
Давление в камере сгорания, кг 1см2
Температуры газов в камере, °С
Охлаждение камеры сгорания и сопла
Охлаждение сопловой приставки

Угол отклонения ЖРД, от оси, град
Гидропривод отклонения ЖРД

691±1,5%
263
2,27±2%
16
0,92
3,66
63—65
3000
регенеративное, горючим
пленочное, выхлопными
газами турбины
±3
работает на горючем высокого давления

Для увеличения полетной нагрузки ракеты-носителя двигатель форсируется до 715 т с последующим переходом в полете на номинальный режим на 80-й сек для снижения перегрузок.

Сравнение однокамерных ЖРД F-1 и РД-270
ЖРД первой ступени «Сатурна-5» и УР-700 или Р-56

  1. Обозначение       F-1               РД-270


  2. Предназначение    Сатурн-5          УР-700/Р-56


  3. Страна            США               СССР


  4. Изготовитель      Rocketdyne        ОКБ-456 (сегодня НПО Энергомаш)


  5. Руководитель      Роберт Биггс      Валентин Глушко


  6. Разработка        1959-1971 гг.     1962-1969 гг.


  7. Эксплуатация      1967-1973 гг.     нет


  8. Топливо           керосин           гептил (несимметричный диметилгидразин)


  9. Окислитель        жидкий кислород   тетраоксид диазота


БОЛЬШОЙ КОСМИЧЕСКИЙ ОБМАН США. ГЛАВА 59.

ЖРД F1 вот оно чудо американской технологии, высшее никем неповторимое творение ЖРД с одной камерой , бери готовое, используй для ракет программы «Шаттл», бери его и запускай «Скайлэб 2» , да пошли эти русские дикари со своей «Зарей» и со своим МКС куда подальше! Пусть русские отсталые и не прогрессивные тупицы ползают на коленях перед США и умоляют доставить в космос грузы, спутники, космонавтов. Ну пожалуйста доставьте наших глупых космонавтов из отсталой России на МКС, без вас никак у нас ничего не получается. Но почему такого не случилось? Почему ситуация с ЖРД для космических ракет совершенно противоположная, это американцы покупают у России отсталой и не прогрессивной ЖРД, а не наоборот, это американцы ползают на коленях перед отсталыми русскими дикарями и умоляют, мол забросьте нас на МКС, за любые деньги. Почему американцы не используют это чудо технологии?
Читаем версию НАСА об этом «чуде»:
«F-1 — американский жидкостный ракетный двигатель, разработанный компанией Rocketdyne. Использовался в ракете-носителе Сатурн V. Пять двигателей F-1 использовались на первой ступени Сатурна V, S-IC. До создания жидкостного ракетного двигателя РД-170 (тягой 740 тc) и твердотопливного бокового ускорителя «Спэйс Шаттла» являлся самым мощным летавшим ракетным двигателем. По сей день остаётся вторым из жидкостных ракетных двигателей и самым мощным однокамерным жидкостным ракетным двигателем из реально летавших.»
И оказывается в 2013 году американцы попытались возродить это «чудо»:
«В 2013 году инженеры НАСА вновь решили обратиться к опыту предыдущего поколения инженеров, создавших F-1. В рамках программы разработки тяжелого носителя SLS проведены испытания газогенератора двигателя F-1».
http://www.nasa.gov/exploration/systems/sls/f1_sls.html
«NASA Engineers Resurrect And Test Mighty F-1 Engine Gas Generator: Testing Will Aid NASA’s Space Launch System Advanced Development
F-1 gas generator at Marshall test stand 116.
Imagine a young engineer examining an artifact from the Apollo era that helped send people on humankind’s first venture to another world. The engineer has seen diagrams of the rocket engine. She has even viewed old videos of the immense tower-like Saturn V rocket launching to the moon. Like any curious explorer, she wants to see how it works for herself. She wonders if this old engine still has the «juice.» Like a car mechanic who investigates an engine of a beloved antique automobile, she takes apart the engine piece by piece and refurbishes it.»
Инженеры NASA пытаются воскресить и тестируют могучий двигатель Ф-1 Двигатель газогенератор : тестирование поможет НАСА осуществить космический запуск системы опережающего развития
Ф-1 газовый генератор на Маршаловом тестовом стенде 116.
Представьте, молодой инженер изучает артефакт из эпохи Аполлона, который помог отправить людей на человечество первое проникновение в другой мир. Инженер видел схемы ракетного двигателя. Она даже просматривать старые видео огромные башни-как Сатурн V ракет на Луну. Как и любой любопытный исследователь, она хочет увидеть, как она работает для себя. Она задается вопросом, если это старый двигатель по-прежнему имеет «сок». Как автослесарь, который расследует двигатель любимого антикварного автомобиля, она разбирает двигатель по кусочкам и восстанавливает и ремонтирует его».

http://www.youtube.com/watch?v=1AD-DbC3e68
И что потом? Да ничего. Потом вот это:
http://rusevik.ru/news/246645
«США закупают у России ракетные двигатели на миллиард долларов.
РКК «Энергия» официально объявила о подписании контракта на поставку 60 ракетных двигателей РД-181 американской компании Orbital Sciences Corporation. Глава предприятия признался, что контракт стоимостью около 1 млрд долларов согласовывали три года. Эксперты называют сделку выгодной для обеих сторон и высоко оценивают перспективы проекта – если не вмешается политика.
Ракетно-космическая корпорация «Энергия» подписала контракт с американской Orbital Sciences Corporation на поставку в США двигателей РД-181 производства НПО «Энергомаш» на сумму около 1 млрд долларов».
«МОСКВА, 16 января. /ТАСС/. Российское НПО «Энергомаш» планирует поставить американской компании Orbital Sciences 60 новых ракетных двигателей РД-181″.
http://www.vz.ru/news/2015/9/10/766056.html
«13 августа американская компания Orbital Sciences Corporation сообщила, что новая партия российских ракетных двигателей РД-181 по контракту на 1 млрд долларов ожидается осенью 2015 года. В июле Россия поставила в США два первых ракетных двигателя РД-181.
22 июля начальник департамента коммуникаций и информации госкорпорации Ростех Василий Бровко заявил, что США не смогут отказаться от закупок российских ракетных двигателей в течение ближайших 10-15 лет
Проект с американской компанией «Орбитал» после аварии ракеты «Антарес» приостановлен. «
Интересное исследование приводил критик лунного обмана США «афон»:
http://mo—on.narod.ru/
«Первичной причиной отказа от высадки астронавтов была не способность Сатурна-5 выводить требуемый для этого вес полезной нагрузки. Давайте посмотрим, какова масса полезной нагрузки была в испытательных запусках Сатурна-5 (А-4, А-6) и полетах (А-8, А-9) до мифической высадки на Луну (ниже приведены массы КМ и ЛМ, либо весового макета ЛМ, без учёта переходника крепления КМ к ЛМ массой ~ 2 т).

Apollo 4 CSM 23,401 kg. LTA 13,381 kg.Mass: 36,782 kg.
Apollo 6 CSM 25,138 kg. LTA 11,794 kg. Mass: 36,932 kg.
Apollo 8 CSM 28,817 kg. LTA 9,026 kg. Mass: 37,843 kg. (см. также А-8 в НАУКА И ТЕХНИКА)
Apollo 9 Apollo CSM 104. Apollo LM-3. Mass: 36,511 kg. (см. также А-9 в НАУКА И ТЕХНИКА, Ракетостроение т3 4-2)
Таким образом, суммарная масса КМ Аполлон и ЛМ, которая могла быть выведена ракетой Сатурн-5 к Луне составляла около 38 тонн ( ~ 40 тонн с переходником), а для высадки на Луну требовалась масса 43 т (45 т с переходником ): КМ — 29т и ЛМ — 14т.
Вероятной причиной, что Сатурн-5 не обладал заявленными характеристиками, является удельный импульс двигателя F-1, который принципиально невозможно было довести до проектных значений из-за большого диаметра (99 см) камеры сгорания (КС). Советские двигателисты столкнулись с подобной проблемой при разработке двигателя для Р-1. Изначально планировалось использовать для камеры диаметр 60 см, но в итоге от этой идеи отказались, создав 4-х камерный РД-107 с поперечным размером КС 43 см:
«На начальном этапе проработок пятиблочной ракеты считалось, что двигатели будут однокамерными. Тяга на Земле каждого двигателя была задана 60 тонн, оптимальное давление газов в них было определено на уровне 60 ата; поэтому экспериментальные двигатели на этом этапе создавались именно с такими параметрами камер. Внутренний диаметр цилиндра был принят 600 мм, смесительная головка — плоская со стороны огня, форсунки — двухкомпонентные.
Итог испытаний такой камеры оказался неблагоприятным: никакими способами, известными двигателнстам в то время, не удалось обеспечить высокочастотную устойчивость процесса сгорания без его ухудшения, т.е. без снижения основной характеристики — удельного импульса тяги. Спонтанное развитие вч-колебаний давления газов в камере, за сотые доли секунды приводивших к большим разрушениям, — сложный процесс, который в то время только начинал проявляться и изучаться. Преодоление этого катастрофического явления было возможно в те годы, в основном, экспериментально. Было выяснено, что такой тип колебаний появляется чаше при увеличении давления в камере, при увеличении её диаметра, в большой степени зависит от системы смесеобразования, и чем оно лучше и полнота сгорания больше, тем вероятнее развитие таких колебаний. Далеко не сразу, но было, в частности, выяснено, что природа этих колебаний — в развитии ударных детонационных волн, распространяющихся со звуковой скоростью — отсюда и высокая частота. С особенностями этого явления, ставшего серьёзным препятствием в создании камер большой тяги, можно ознакомиться в специальной литературе. А при создании мощных ракет в 1950-е годы разработчики были вынуждены искать пути конструирования двигателей, используя камеры меньшего диаметра.» /ЭВОЛЮЦИЯ КАМЕРЫ РАКЕТНОГО ДВИГАТЕЛЯ ДЛЯ ОБЕСПЕЧЕНИЯ ПОЛЕТОВ В КОСМОС Анатолий Даром, Вячеслав Рахманин/
О том, что именно ВЧ-неустойчивость была главной проблемой, возникшей следствии большого размера камеры F-1, свидетельствует и документ НАСА:
«In the meantime, two more engines were lost in tests. D. Brainerd Holmes wanted a special briefing on the problem, which he received on 31 January 1963. At the end of the presentation, Holmes commented that the goal of beating the Russians to the moon seemed to be mired in F-1 problems. He asked if it was not time to start work on a backup scheme…
…In the course of F-1 engine development, Rocketdyne personnel consistently emphasized the combustion stability investigations as one of the company’s stiffest challenges, and its solution as one of its most satisfying achievements. Although engineers expected difficulties in this area because big engines with high chamber pressures inevitably developed random and unpredictable combustion instability, the size of the F-1 dramatically increased the size of the challenge. Rocketdyne managed to cope with the problem, although, as Brennan admitted in an address to the American Institute of Aeronautics and Astronautics in 1967, «the [116] causes of such instability are still not completely understood.» Even though the F-1 engine performed satisfactorily, uncertainty concerning combustion instability persisted a decade later.» /THE INJECTOR AND COMBUSTION INSTABILITY/
Посмотрим, какие методы известны сегодня для обеспечения высокочастотной устойчивости процесса горения:
«…для установления регулярных высокочастотных колебаний газа в камере ЖРД необходимо выполнение двух условий: временного и пространственного.
Временное условие может быть сформулировано в виде соотношения: tп=mT/2
tп — среднее за период колебания время преобразования топлива,
Т — период одной из форм собственных колебаний газа в камере,
m=1,3,5… — любое нечетное число.
Пространственное условие состоит в том, что горение топлива должно происходить вблизи пучностей волн давления.
Рассмотрим меры борьбы с этим видом аномального горения, вытекающие из рассмотренной выше качественной картины явления.
Чтобы не соблюдалось пространственное условие самовозбуждения высокочастотных колебаний, необходимо рассредоточивать (растягивать) горение топлива по всему объему камеры. Для этого головку двигателя рекомендуется оснащать форсунками с различными характеристиками распыления.
Чтобы нарушить временное условие самовозбуждения этих колебаний, можно воздействовать как на величину частот собственных колебаний газа в камере (т. е. на период колебаний Т), так и на величину времени преобразования топлива tп. Период собственных колебаний газа Т можно регулировать изменением соотношений между геометрическими размерами камеры. Например, для уменьшения Т при продольных колебаниях следует сокращать длину камеры, а для уменьшения Т при поперечных колебаниях целесообразно устанавливать перегородки внутри камеры вблизи головки и т. д.
Чтобы изменить время преобразования топлива, необходимо варьировать скорость впрыска и мелкость распыления жидких компонентов топлива, условия смесеобразования, химическую активность компонентов топлива и т. п. Заметим, что величина Т очень мала (например, при f = 1 000 гц, T/2 ~ 0,0005 сек). Поэтому указанные выше воздействия на tп сводятся обычно к тому, чтобы увеличить этот параметр снижением перепада давления на форсунках, ухудшением качества распыления и смесеобразования топлива, заменой топлива на химически менее активное и т.п.» /Е. Б. Волков, Л. Г. Головков, Т. А. Сырицын ЖИДКОСТНЫЕ РАКЕТНЫЕ ДВИГАТЕЛИ ОСНОВЫ ТЕОРИИ АГРЕГАТОВ ЖРД И ДВИГАТЕЛЬНЫХ УСТАНОВОК/

Камера сгорания и сопло ЖРД F-1

Смесительная головка инжектора ЖРД F-1 с антипульсационными перегородками

Отличие форсунок смесительной головки инжектора
1963г (слева) и 1965г (справа)

Схема подачи топлива через антипульсационные перегородками.
Из методов, которые можно увидеть примененными на двигателе F-1 — антипульсационные перегородки на смесительной головке инжектора, огрубление смесеобразования, снижение перепада давления на форсунках. Применялись дублетные струйные однокомпонентные форсунки со сталкивающимися струями, намеренно создавался разброс гидравлических характеристик форсунок. Тестируемая ранее триплетная схема (три отверстия для распыления кислорода), созданная в 1963г, отличалась меньшим диаметром отверстий, переход к более крупному диаметру осуществили в 1965 году, что обеспечило ВЧ-устойчивость:
«After careful calculations of the effect, enlarging the diameters of the fuel injection orifices was later judged one of the most important single contributions to improved stability. Other careful changes included readjustment of the angles at which the fuel and oxidizer impinged.» /THE INJECTOR AND COMBUSTION INSTABILITY/
Увеличение диаметра отверстий форсунок, при неизменном секундном расходе, ведет к увеличению толщины сталкивающихся струй, уменьшению их скорости и увеличению размера образующихся капель. Выбор в пользу форсунок с более грубым смесеобразованием, естественно, понижал полноту сгорания топлива:
«от тонкости распыла зависят качество смесеобразования, равномерность и скорость горения топлива.
…Тонкость распыла компонентов топлива является качественным критерием смесеобразования и характеризуется средневесовым диаметром образующихся капель. Чем меньше средний диаметр капель, тем лучше распыл и эффективнее процесс сгорание топлива. …Топливо, состоящее из наиболее крупных капель, будет запаздывать с завершением смесеобразования и, следовательно, с завершением процесса диффузионно-турбулентного сгорания.
…При прочих равных условиях смешение будет протекать тем интенсивнее, чем мельче газовые струйки компонентов топлива и больше скорость их относительно друг друга. Полнота сгорания топлива в конечном итоге определится отношением времени пребывания рабочего тела в камере сгорания ко времени, потребному для завершения процесса сгорания топлива. Местные отклонения коэффициента состава топлива в камере сгорания от расчетного всегда приводят к неполноте сгорания и, следовательно, к понижению удельной тяги двигателя.»/Жидкостные реактивные двигатели/
Антипульсационные перегородки охлаждались керосином, который через отверстия поступал в камеру сгорания (КС) и также ухудшали полноту сгорания топлива:
«антипульсационные перегородки наиболее эффективный способ повышения устойчивости горения в ЖРД по отношению к тангенциальным и радиальным модам поперечных колебаний. Однако перегородки не позволяют повысить устойчивость камеры по отношению к продольным колебаниям. При конструировании антипульсационных перегородок необходимо учитывать уменьшение полноты сгорания, а также вопросы охлаждения перегородок» /Г. С. Чо, Е. В. Лебединский/
Другой проблемой Ф-1 было появление трещин в паянных стыках инконелевых трубок, составляющих камеру сгорания и сопло F-1. Ответной мерой стало построение огромной печи в 1965 г, в которой осуществили пайку трубок, вместо применяемой ранее ручной пайки припоем на базе сплавов серебра:

«The greatly increased operational factors of the F-1 required more sophisticated fabrication methods, which led the company, finally, into the design and construction of the largest brazing furnace of its type in the world.
In the production of less powerful liquid-rocket tubular-walled thrust chambers, usually of pure nickel, manufacturing engineers depended on manual torch brazing with alloys of a silver-based type. With the F- 1’s thrust levels up to 10 times those of prior engines, investigators knew that the old procedures needed some rethinking if the big new engine was going to hold together during a launch. For the tubes themselves, the nickel-alloy Inconel X-750 provided the high strength-to-weight ratio that was needed, but it imposed certain restraints in the brazing process. After experimentation, designers realized that technical reasons prohibited the conventional technique of torch brazing, and dictated a furnace brazing process. Then a secondary set of problems cropped up. Inconel X-750 included enough aluminum and titanium to form refractory oxides under brazing temperatures, so that «the surface of the Inconel is not readily wet by most hazing alloys at elevated temperatures.» Thus the brazing procedures had to begin by electrolytically depositing a thin layer of pure nickel on the tubes to eliminate the refractory oxides on the brazing surface. Despite this minor drawback in the operation, furnace brazing promised several distinct advantages over the torch method by minimizing differences in thermal stresses, combining age-hardening of the tubes with the brazing operation, and eliminating the variables of hand methods.
With the furnace activated in 1965, furnace brazing for F-1 production proceeded in several carefully regulated sequences. After preliminary brazing operations to unite the thrust chamber tubes and other components, the scene was set for the final furnace brazing cycles to create a properly sealed thrust chamber.» /THE F-1 THRUST CHAMBER AND FURNACE BRAZING/
В работе С.Г.Покровского дано обоснование необходимости дополнительного охлаждения стенок КС и сопла Ф-1, спаянных по такой технологии:
«Проблемы возникли на их законном месте – на стыке серебряного припоя и инконелевой тонкостенной трубки. Действительно, при нормальных температурах коэффициент линейного расширения никеля и никелевых жаропрочных сплавов(НЖС) в полтора раза меньше, чем у серебра. При высоких температурах оба коэффициента возрастают, отношение сокращается до 1.25, но абсолютная разница остается весьма ощутимой. Оказавшиеся в контакте материалы совместно остывают. И при этом возникают напряжения, которые сопоставимы с масштабом прочности этих материалов. В технологической истории предлагается объяснение, что происходил разрыв собственно адгезионного соединения – спая. Эта неприятность была преодолена применением поверх инконелевой тонкостенной ( 0.3 мм ) трубки – слоя гальванического никеля. Который не позволил выделяться на поверхности окислам алюминия и титана.
Объяснение вполне правдоподобное. Но есть в нем и весьма сомнительный момент. Окислы алюминия и титана – хорошо отражают излучение. Впрочем, про это и в цитируемой фразе и говорится. А никель на самом деле весьма темный. Покрытие из гальванического никеля исключает выделение окислов не только при пайке, но и при штатной работе. И повышает общую поглощательную способность поверхности. Энергонапряженность стенки возрастает. Это довольно серьезные величины. Речь может идти о различиях в поглощающей способности в 1.15-1.3 раза. Так получилось, что автор данной работы — лазерщик, которому в своей лабораторной практике приходилось для текущих нужд практически оценивать поглощательную способность металлов на длине волны 1 мкм, приблизительно соответствующей спектральному максимуму излучения газов камеры сгорания Ф-1. Глаз моментально цепляется за такие вроде бы малозначимые вопросы, которые на самом деле выливаются в большие проблемы. Серьезное увеличение поглощательной способности поверхности означает, что системе охлаждения требуется отводить тепла в соответствующее количество раз больше. Если этого не сделать, то конечная температура теплоносителя и стенки оказывается больше – на добрую сотню градусов. А это выход на пределы расчетной жаропрочности стенок. Или требуется полное перепроектирование системы охлаждения с увеличением потока теплоносителя, изменением проходного сечения трубок. Это, с очевидностью, не делалось. Но гальваническое покрытие трубок никелем просто требовало либо увеличения теплосъема, либо… уменьшения лучистого потока на стенку.»
Таким образом, меры по обеспечению надежности и ВЧ устойчивости двигателя повлекли ухудшение полноты сгорания топлива в КС (из-за охлаждения антипульсационных перегородок, загрубления качества распыла), а переход к новой технологии пайки стенок, осуществленный в 1965г, потребовал и увеличения завесного охлаждения. Эти факторы и стали причиной падения УИ на ~4,5% относительно значений, полученных в 1962г на огневых тестах двигателя, положенных в основу проектирования ракеты:
«The F-1 engine has been undergoing development testing since June 1961. Success was encountered in testing the first engine in mid 1961 and improvement continued in the subsequent eight engines tested.
The first test at full thrust for the programmed duration of 150 s was made on 26 May 1962. The high reliability goal before delivery of flight engines will be met this year».
Соответственно декларируемое для F-1 в официальных документах значение удельного импульса намеренно завышено. Проектирование ракеты, начатое в 1961г опиралось на параметры двигателей 1961-1962г. Когда F-1 был доведен к 1965 г до требуемой надежности, но с потерей УИ, готовая первая ступень S-IC уже проходила статические испытания:
«Although MSFC conducted the first static tests of the S-IC in the summer of 1965, the MTF stand for the S-IC began operations about a year later and became the focus of the static test firing program. It seemed quite appropriate that the howling, thunderous roar of the S-IC cluster could so often be heard at an area originally known as Devil’s Swamp.»
Времени на новое проектирование не оставалось, в итоге лунная ПН ракеты оказалась ниже на ~11%. Следует отметить, что падение УИ при неизменном секундном расходе (dm/dt) приводит к аналогичному проценту снижения тяги, что требует недолива топлива, для сохранения тяговооруженности ракеты. Для падения тяги на ~4,5% снижение заправки составит ~6,5% от общей массы топлива ступени (M).
Время работы первой ступени ракеты 162 с зафиксировано на видеороликах НАСА. Как же удалось ступени с недоливом в ~135 тонн топлива проработать по времени столько же, как если бы она была полностью заправленной? Это возможно только при условии досрочного, не декларированного отключения (или дросселирования) двигателей, дающего экономию топлива, как раз на величину недолива (двигатель за счет досрочного отключения потребит топлива меньше на T*dm/dt ~135 т, где Т- время недекларированного простоя). Поскольку секундный расход двигателя известен и равен 2.577 т/c, то время досрочно отключения составляет T~52c. Реализовать такое условие можно различными способами, например:

1. Досрочно выключить центральный двигатель (на 52 с раньше).
2. Вместо центрального отключить два периферийных двигателя, но на 13 сек раньше (согласно официальной версии центральный двигатель был выключен за 26 с до завершения работы ступени, если вместо центрального выключили на 13 с раньше два периферийных, то один из них экономит топливо в течение 13с, а второй в течение 13+26 с, итого 52с).
3. Выключить три двигателя за 26 с до завершения работы ступени (работают два периферийных, вместо четырех 26с*2=52с) или, что эквивалентно, отключить один центральный и дросселировать периферийные на 50%
Второй вариант имеет преимущества перед первым, поскольку набор высоты и скорости происходит быстрее — на момент завершения работы ступени достигается высота 63 км, в то время как случай отключения центрального двигателя дает набор высоты в 56 км (декларируемая высота 66 км). Третий вариант имеет самые эффективные характеристики, высота на момент завершения работы ступени равна 66 км, т.е. совпадает с официально заявленной (недобор скорости около 290 м/c).»

Другой исследователь лунного обмана США «Велюров» подошел к проблеме более грамотно и научно , его исследования доступно изложены здесь:
http://www.free-inform.ru/pepelaz/pepelaz-13.htm
«Глава №13. «Великий карбюратор» ( обновлено, июль 2015г. )
Новая, полностью переработанная редакция главы №13 посвящена вопросам теплового расчета ЖРД F-1 и путей реализации ЖРД с трубчатой камерой.
№13-1 О недостатках трубчатых камер
№13-2 Тепловой расчет ЖРД F-1
№13-3 Карбюраторный вариант F-1″

http://www.free-inform.ru/pepelaz/pepelaz-14.htm
№14. «В защиту Глушко, или снова про F-1». Новая, полностью переработанная редакция главы №14 (первая часть).Мы расскажем о том, как американцы перепутали продольные колебания с поперечными, почему антипульсационные перегородки оказались полной профанацией и почему при создании двигателей для «Спейс Шаттл» американцы отреклись от F-1 и встали полностью на путь Глушко.

http://www.free-inform.ru/pepelaz/pepelaz-13-0.htm
«Великий карбюратор» (краткий конспект статьи)
Выводы статьи вполне обоснованы:
«Вместо номинальной тяги 690тс на старте, ЖРД F-1 по нашим оценкам обеспечивает на 35% меньше — всего около 450тс.
Реальная стартовая масса «Сатурн-5» на 1000 тонн меньше официальной!»
Исследования Велюрова сделаны на основе знаний по теоретическим обоснованиям работы ЖРД человеком много лет проработавшем в этой отрасли на ЮЖМАШе.

Ну и куда теперь девать эти двигатели?

Недавняя публикация о возрождении и развитии двигателя SSME (RS-25) вызвала в ЖЖ наплыв лунных конспирологов в комментариях — судьбу двигателя шаттла они сравнивали с F-1 от Saturn V. Так что сегодня мы сыграем в игру «почувствуй себя руководителем Rocketdyne» и поговорим об извилистом жизненном пути технологий.

01.jpeg
Двигатели F-1 и J-2 ракеты Saturn V в музее

В чужой шкуре


Один из «аргументов» конспирологов звучит примерно так: «Двигатели Saturn V (F-1 и/или J-2) были плохими, нужных характеристик не достигали, и после фальсификации лунной программы от них быстро избавились». К сожалению, очень часто сторонникам конспирологических теорий банально не хватает знаний — несмотря на то, что двигатели лунной программы после ее прекращения не летали, они предлагались для множества проектов и до сих пор полностью не умерли. А для того, чтобы наиболее наглядно увидеть, почему их не получилось пристроить на другие ракеты, давайте сыграем в мысленную игру. Итак, мы — лицо, принимающее решения в компании Rocketdyne, которая производит двигатели F-1 и J-2 для Saturn V.

Представим себе, что на дворе 1970 год. В январе отменили Apollo 20, но вскоре сокращения бюджета достигли таких величин, что в сентябре пришлось отменять 18 и 19. Контракт на 15 штук Saturn V близок к выполнению, и становится очевидно, что продолжения не будет. Возникает закономерный вопрос — что делать?

Больше и лучше


Первый вариант очевиден «А давайте сделаем Saturn V еще лучше и попытаемся использовать двигатели там». Еще в середине 60-х были предложены варианты компоновки на базе Saturn V под общим названием Saturn MLV («Modified Launch Vehicle», модифицированная ракета-носитель). С форсированием двигателей, увеличением запаса топлива, добавлением твердотопливных ускорителей или заменой двигателей на HG-3 (из него потом вырастет RS-25) разные варианты MLV могли бы вывести на низкую орбиту от 118 до 160 тонн.

02.jpeg
Разные варианты компоновки Saturn MLV, есть даже с ядерной верхней ступенью

Однако вся эта красота не вызвала никакого энтузиазма. Тем более, что в апреле 1972 Палата представителей Конгресса США окончательно принимает решение (и выделяет деньги) на разработку Спейс Шаттла. Крылатый космоплан никак не сочетается с MLV, а огромная стоимость обоих проектов означает, что деньги дадут только на один.

План Б


Хорошо, следующая идея практически очевидна — «А давайте попробуем пролезть в проект шаттла». В качестве первой ступени можно использовать первую ступень Saturn V, а второй ступенью поставить внешний топливный бак шаттла и сам шаттл сбоку. Первую ступень можно оснастить крыльями и сажать обратно на землю, чтобы система получалась полностью многоразовой. У такого варианта есть даже один очень серьезный плюс, которого не было у шаттла в его итоговом варианте — можно запускать модули орбитальной станции или другие очень тяжелые полезные нагрузки в одноразовом варианте второй ступени (грузоподъемность ~100 тонн), а обслуживать орбитальную станцию или спутники уже многоразовым шаттлом (грузоподъемность ~30 тонн). Так появился проект Saturn-Shuttle.

03.jpeg
Старт Saturn-Shuttle, рисунок NASA

Увы, и здесь нас ждет неудача. Двигатели F-1 не разрабатывались для многоразового использования, поэтому даже в случае мягкой посадки первой ступени их придется менять. А твердотопливные ускорители кажутся и проще и дешевле, к тому же, их можно будет использовать повторно. Так что наша первая ступень конкурс эскизных проектов проиграла.

Любой ценой


Итак, у нас нет «своей» ракеты и нет возможности встроиться в большой проект шаттла. А «Можно ли поставить наши двигатели на уже летающие ракеты»? Для ответа на этот вопрос давайте посмотрим, что стартует с американских космодромов в районе 1972 года.

04.jpeg
РН «Тор» в варианте Торад-Аджена

На базе баллистической ракеты «Тор» есть семейство «Тор-Бёрнер», «Тор-Аджена», «Торад-Аджена», «Тор-Дельта». Из него уже появляется семейство ракет «Дельта». Варианты различаются верхними ступенями и боковыми твердотопливными ускорителями. И, увы, для ракет с начальной массой в районе ста тонн F-1 с тягой 700 тонн не подойдет никак — даже если бы он поместился в ступень «Тора» меньшего диаметра, то уже на старте обеспечил бы перегрузку в 7 «же», сломав ракету на первых секундах полета.

05.jpeg
«Атлас-Центавр» с межпланетной станцией «Пионер-10», 1972 год

Семейство РН «Атлас» немного потяжелее. Здесь тоже все еще сохраняется разнообразие верхних ступеней — «Атлас-Аджена», «Атлас-Центавр», но даже в самом тяжелом варианте ракета имеет массу в районе 150 тонн, и наш F-1 никак на нее не влезет.

06.jpeg
Старт Titan-IIIC

Ну и, наконец, самая тяжелая ракета — Titan-III. Начальная масса в районе 600 тонн, может вывести на низкую орбиту целых 13 тонн. Однако и тут нам ловить нечего. Базовый двигатель RL-87 имеет тягу в районе 200 тонн, и заменить на 700 тонн F-1 не получится не только по причинам прочности. На центральном блоке «Титана» используется другое топливо — гидразин и тетраоксид диазота. И если RL-87 отличался всеядностью — были версии для кислорода/керосина, гидразина/АТ, даже кислорода/водорода, то про варианты F-1 под другие виды топлива ничего не известно. А на перекомпоновку ракеты под другое топливо с увеличением баков и снятием боковых твердотопливных ускорителей (иначе опять слишком большая перегрузка) нам никто средств не даст.

07.jpeg
Разгонный блок «Центавр»

J-2 в качестве двигателя верхней ступени тоже не везет. Уже создан кислородно-водородный разгонный блок Centaur, но там стоят двигатели RL-10 с тягой в десять раз меньше, при этом
более эффективные, так что менять их на J-2 нет никакого смысла. А первых водородных ступеней нет.

Что любопытно, по другую сторону океана произошла похожая история, которая, однако, имела позитивный исход — двигатель РД-170, который разрабатывали для боковых ускорителей РН «Энергия» был четырехкамерный, поэтому его сначала порезали пополам, и получившийся двухкамерный РД-180 стали продавать американцам на первую ступень подросшего и ставшего более тяжелым «Атласа». А затем еще раз пополам, поставив однокамерный РД-191 на «Ангару» и предложив почти такой же РД-193 для «Союза-2.1в».

08.jpeg
Схема развития семейства РД-170

Гибернация


Увы, F-1 с J-2 однокамерные, и снижать размеры и тягу простыми и дешевыми действиями мы не можем. Так что нам остается один вариант — положить чертежи с двигателями на склад, по возможности проводить модернизации в инициативном порядке и предлагать их в любом конкурсе на сверхтяжелые ракеты. Как показала практика, схема оказалась вполне рабочей, подарив несколько шансов (пусть и не реализовавшихся в итоге) на возвращение «скакунов Аполлона».

J-2 получил шанс первым, но в результате от него осталось только название. Двигатель J-2X, который сначала хотели сделать на базе J-2, предлагался для разгонного блока Earth Departure Stage ракеты Ares программы Constellation. Но из-за возросших требований получился фактически новый двигатель, с тягой на 30% больше, на новых материалах и заметно более тяжелый.

В 2009 программу Constellation закрыли, и с J-2X пока что повторяется история J-2. Для разгонного блока ракеты SLS он был сочтен слишком мощным, и один J-2X тягой 130 тонн решили заменить на 4 RL-10 общей тягой 44 тонны. Но если SLS потребуется двигатель с большей тягой, J-2X получит новый шанс.

F-1 пришлось ждать дольше. В Constellation он не попал, но, когда объявили конкурс на двигатели для SLS, забрезжила надежда и для него. Дошло даже до очень поучительной истории — инженеры достали со склада двигатель номер F-6049, снятый с «Сатурна-5» для «Аполлона-11» из-за глюка на испытаниях, и стали разбираться, как он работает, и как его можно улучшить. В 2013 году, спустя десятилетия хранения, испытали газогенератор (приводит в действие турбонасос, качающий топливо в двигатель).

Двигателестроение, материаловедение и способы производства ракетных двигателей не стояли на месте. Новая модификация под названием F-1B должна иметь в 50 раз меньше деталей и заметно упрощенную конструкцию. Например, выхлоп газогенератора больше не направлялся в сопло для дополнительной теплоизоляции его завесой избытка топлива, а банально сбрасывался параллельно соплу, возвращая красивые картины зари космонавтики, когда рядом с основным выхлопом хлестало пламя газогенератора.

08.jpeg

Но пока что шанс не реализовался — конкурс на двигатели для SLS F-1B проиграл и снова отправился на склад.

Заключение


В истории космонавтики есть случай, когда двигатели десятилетиями лежат на складе а потом начинают использоваться с минимальными доработками. Сохранившийся запас советских двигателей НК-33 стали ставить на американскую РН Antares и российский «Союз-2.1в». Но производство их возобновлять не будут — доверие к двигателю подорвано аварией Antares 2014 года, похожей на аварии советской лунной ракеты Н-1, для которой изначально и делался НК-33. Antares уже перешел на РД-181, а «Союзу-2.1в» переход на родственный РД-193 предстоит после исчерпания складского запаса НК-33. Несмотря на то, что теоретически возможно возобновить производство точных копий двигателей американской лунной программы, практического смысла в этом уже нет. Технологии не стоят на месте — 3D печать заменяет множество деталей одной, а современная электроника проще и надежней «гидравлической логической машины», открывавшей и закрывавшей клапаны при запуске двигателя F-1. Но прямые потомки легендарных лунных двигателей вполне могут вернуться к активной жизни, если окажутся подходящими для будущих задач.

В качестве эксперимента запущены пуш-уведомления. Нажмите эту кнопку, и вам будет приходи

F-1 (ракетный двигатель) — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

F-1

Двигатели F-1 на ступени S-IC вместе с создателем ракеты Сатурн V, Вернером фон Брауном
Тип: ЖРД
Топливо: керосин
Окислитель: жидкий кислород
Камер сгорания: 1
Страна: США
Использование:
Время эксплуатации: 1967-1973 гг
Применение: «Сатурн V» (первая ступень, S-IC)
Развитие: F-1A
Производство:
Время создания: 1959 год
Производитель: Rocketdyne
Массогабаритные
характеристики
Масса: 9 115 (сухой — 8 353) кг
Высота: 5,79 м
Диаметр: 3,76 м
Рабочие характеристики
Тяга: Вакуум: 790 тс (7,77 МН)
Ур. моря: 690 тс (6.77 МН)
Удельный импульс: Ур.моря: 265 с
Время работы: 165 с
Давление в камере сгорания: 7 MPa (69.1 атм.)
Степень расширения: 16
Отношение окислитель/топливо: 2,27

F-1 — американский жидкостный ракетный двигатель (ЖРД), разработанный компанией Rocketdyne. Использовался в ракете-носителе Сатурн V. Пять двигателей F-1 использовались на первой ступени Сатурна V, S-IC. До создания жидкостного ракетного двигателя РД-170 (тягой 740 тc) и твердотопливного бокового ускорителя «Спэйс Шаттла» являлся самым мощным летавшим ракетным двигателем. По сей день остаётся вторым по мощности из жидкостных ракетных двигателей и самым мощным однокамерным ЖРД из реально летавших.

История создания

Первоначально F-1 был разработан Rocketdyne в соответствии с запросом ВВС США от 1955 года о возможности создания очень большого ракетного двигателя. Конечным результатом этого запроса стали два разных двигателя — E-1 и более крупный F-1. Двигатель E-1, хоть и успешно прошёл стендовые огневые испытания, но быстро был признан технологически тупиковым вариантом, и отменен в пользу крупного, более мощного F-1. Американские ВВС впоследствии остановили дальнейшую разработку F-1 из-за отсутствия приложений для такого крупного двигателя. Однако НАСА, созданное в этот период времени, оценило пользу, которую может принести двигатель такой мощности, и заключила с Рокетдайн контракт на завершение его разработки. Испытания компонентов F-1 были начаты уже в 1957 году. Первое огневое испытание полностью скомпонованного тестового F-1 было совершено в марте 1959 года.

Семь лет разработок и испытаний двигателей F-1 выявили серьёзные проблемы с нестабильностью процесса горения, которые иногда приводили к катастрофическим авариям.[1] Работы по устранению этой проблемы первоначально шли медленно, поскольку она проявлялась периодически и непредсказуемо. В конечном итоге инженеры разработали технику подрыва небольших зарядов взрывчатых веществ (которые они называли «бомбами») внутри камеры сгорания во время работы двигателя, что позволило им определить как именно работающая камера отвечает на флуктуации давления. Конструкторы теперь могли быстро экспериментировать с различными форсуночными головками, для выбора наиболее устойчивого варианта. Над этими задачами работали с 1962 по 1965 годы.[2] В окончательной конструкции горение в двигателе было настолько стабильно, что он мог самостоятельно гасить искусственно вызванную нестабильность за десятую долю секунды.

В 2013 году инженеры НАСА вновь решили обратиться к опыту предыдущего поколения инженеров, создавших F-1. В рамках программы разработки тяжелого носителя SLS проведены испытания газогенератора двигателя F-1.[3]

Конструкция

На 2015 год, разработанный Rocketdyne двигатель F-1 является наиболее мощным однокамерным жидкостным ракетным двигателем в истории из когда-либо летавших (двигатель M-1[en] имел бо́льшую тягу, и был испытан на стенде, но никогда не использовался). Двигатель использовал в качестве топлива керосин RP-1 и жидкий кислород — в качестве окислителя. Для подачи топлива и кислорода в камеру сгорания использовался турбонасос.

Основной частью двигателя была камера сгорания, в которой смешивались и сгорали топливо и окислитель, создавая тягу. Куполообразная камера в верхней части двигателя служила в качестве распределительного трубопровода подводящего жидкий кислород к форсункам, а также служила как крепление для карданного подвеса, передававшего усилие на корпус ракеты. Ниже этого купола находились форсунки, по которым топливо и окислитель направлялись непосредственно в камеру сгорания, они были сконструированы таким образом, чтобы обеспечить хорошее смешивание и сгорание компонентов. Топливо подводилось к форсуночной головке из отдельного распределительного трубопровода; часть топлива направлялась по 178 трубкам проложенным по всей длине камеры сгорания — которая занимала почти всю верхнюю половину сопла — и возвращалась обратно охлаждая камеру.

Выхлопные газы из газогенератора использовались для вращения турбины приводившей в движение отдельные насосы для топлива и окислителя, питающие системы камеры сгорания. Газогенератор вращал турбину со скоростью 5 500 об/мин, давая мощность в 55 000 лошадиных сил (41 МВт). Топливный насос прокачивал 58 564 литров керосина RP-1 за минуту, в то время как насос окислителя 93 920 л жидкого кислорода за минуту. С точки зрения условий работы, турбонасос был способен выдерживать диапазон температур от температуры газогенераторного газа в 800 °C (1 500 °F), до температуры жидкого кислорода в −180 °C (-300 °F). Топливо использовалось также для охлаждения подшипников турбины, а вместе с присадкой RB0140-006 (диалкилдитиофосфат цинка) — для смазки зубчатых колёс турбонасоса[4].

Ниже камеры сгорания располагался сопловой насадок занимавший приблизительно половину длины двигателя. Этот насадок повышал степень расширения двигателя от 10:1 до 16:1. Выхлоп газогенератора турбонасоса выводился к насадку с помощью большого, суживающегося трубопровода, этот относительно холодный газ образовывал слой, защищавший сопловой насадок от горячих (3 200 °C, 5 800 °F) выхлопных газов из камеры сгорания.[5]

F-1 сжигал 1 789 кг (3 945 фунтов) жидкого кислорода и 788 кг (1 738 фунтов) керосина RP-1 каждую секунду работы, производя 6,7 МН (1 500 000 фунт-сил) тяги. Это равно скорости вытекания 1 565 л (413,5 галлонов) жидкого кислорода и 976 л (257,9 галлонов) керосина в секунду. В течение своих двух с половиной минут работы, пять двигателей F-1 поднимали ракету-носитель Сатурн-5 на высоту 68 км, придавая ей скорость 9 920 км/ч. Объединённый расход жидкости у пяти двигателей F-1 в РН Сатурн-5 составлял 12 710 л (3 357 галлонов) в секунду, что могло опустошить 110 000 литровый (30 000 галлонов) плавательный бассейн за 8,9 секунд[5]. Один двигатель F-1 имел бо́льшую тягу(690 т), чем все три главных двигателя шаттлов (SSME), вместе взятые.[6] Тяга одного F-1 примерно равна тяге всей двигательной установки первой ступени из 9 двигателей современной ракеты «Falcon 9» при несколько меньшей эффективности: удельный импульс Merlin 1D+ 282 сек. при давлении в камере 97 атм. против 265 сек. при 69 атм. у F-1.

Интересные факты

  • Так как отработанный генераторный газ подавался внутрь сопла для охлаждения насадки, яркость пламени реактивной струи вблизи сопла двигателя была значительно снижена, что хорошо заметно на кадрах с запусков Сатурн-5 и с огневых испытаний F-1.

См. также

  • ЖРД J-2 — использовался в лунной программе
  • ЖРД РД-270 — аналогичный по классу советский двигатель 60-х годов XX века, не вышедший из стадии испытаний
  • ЖРД РД-170 — более мощный советский четырехкамерный двигатель

Напишите отзыв о статье «F-1 (ракетный двигатель)»

Примечания

  1. Ellison, Renea & Moser, Marlow, [reap.uah.edu/publications/Ellison.pdf Combustion Instability Analysis and the Effects of Drop Size on Acoustic Driving Rocket Flow], Huntsville, Alabama: Propulsion Research Center, University of Alabama in Huntsville, <reap.uah.edu/publications/Ellison.pdf> 
  2. [history.nasa.gov/SP-4206/ch5.htm THE INJECTOR AND COMBUSTION INSTABILITY], <history.nasa.gov/SP-4206/ch5.htm> 
  3. [www.nasa.gov/exploration/systems/sls/f1_sls.html NASA — NASA Engineers Resurrect And Test Mighty F-1 Engine Gas Generator]. Проверено 22 января 2013. [www.webcitation.org/6E8M4bmi3 Архивировано из первоисточника 2 февраля 2013].
  4. agentdc.uah.edu/homepages/dcfiles/UAHDC/h2rockengi_010509142633.pdf
  5. 1 2 [history.msfc.nasa.gov/saturn_apollo/documents/F-1_Engine.pdf Saturn V News Reference: F-1 Engine Fact Sheet], National Aeronautics and Space Administration, December 1968, сс. 3-3,3-4, <history.msfc.nasa.gov/saturn_apollo/documents/F-1_Engine.pdf>. Проверено 1 июня 2008. 
  6. [science.ksc.nasa.gov/shuttle/technology/sts-newsref/sts_overview.html#sts_overview NSTS 1988 News Reference Manual], NASA, <science.ksc.nasa.gov/shuttle/technology/sts-newsref/sts_overview.html#sts_overview>. Проверено 3 июля 2008. 

Ссылки

  • [www.astronautix.com/engines/f1.htm F-1 в Encyclopedia Astronautica]
  • [history.nasa.gov/SP-4206/sp4206.htm Ступени Сатурна]
  • [www.apollosaturn.com/ Apollo Saturn Reference Page]
  • [www.youtube.com/watch?v=f3sVuFjJlp4 Видео наземных испытаний F-1 на YouTube]

Отрывок, характеризующий F-1 (ракетный двигатель)

– И пусть он знает, что я это сделаю, – сказал Наполеон, вставая и отталкивая рукой свою чашку. – Я выгоню из Германии всех его родных, Виртембергских, Баденских, Веймарских… да, я выгоню их. Пусть он готовит для них убежище в России!
Балашев наклонил голову, видом своим показывая, что он желал бы откланяться и слушает только потому, что он не может не слушать того, что ему говорят. Наполеон не замечал этого выражения; он обращался к Балашеву не как к послу своего врага, а как к человеку, который теперь вполне предан ему и должен радоваться унижению своего бывшего господина.
– И зачем император Александр принял начальство над войсками? К чему это? Война мое ремесло, а его дело царствовать, а не командовать войсками. Зачем он взял на себя такую ответственность?
Наполеон опять взял табакерку, молча прошелся несколько раз по комнате и вдруг неожиданно подошел к Балашеву и с легкой улыбкой так уверенно, быстро, просто, как будто он делал какое нибудь не только важное, но и приятное для Балашева дело, поднял руку к лицу сорокалетнего русского генерала и, взяв его за ухо, слегка дернул, улыбнувшись одними губами.
– Avoir l’oreille tiree par l’Empereur [Быть выдранным за ухо императором] считалось величайшей честью и милостью при французском дворе.
– Eh bien, vous ne dites rien, admirateur et courtisan de l’Empereur Alexandre? [Ну у, что ж вы ничего не говорите, обожатель и придворный императора Александра?] – сказал он, как будто смешно было быть в его присутствии чьим нибудь courtisan и admirateur [придворным и обожателем], кроме его, Наполеона.
– Готовы ли лошади для генерала? – прибавил он, слегка наклоняя голову в ответ на поклон Балашева.
– Дайте ему моих, ему далеко ехать…
Письмо, привезенное Балашевым, было последнее письмо Наполеона к Александру. Все подробности разговора были переданы русскому императору, и война началась.

После своего свидания в Москве с Пьером князь Андреи уехал в Петербург по делам, как он сказал своим родным, но, в сущности, для того, чтобы встретить там князя Анатоля Курагина, которого он считал необходимым встретить. Курагина, о котором он осведомился, приехав в Петербург, уже там не было. Пьер дал знать своему шурину, что князь Андрей едет за ним. Анатоль Курагин тотчас получил назначение от военного министра и уехал в Молдавскую армию. В это же время в Петербурге князь Андрей встретил Кутузова, своего прежнего, всегда расположенного к нему, генерала, и Кутузов предложил ему ехать с ним вместе в Молдавскую армию, куда старый генерал назначался главнокомандующим. Князь Андрей, получив назначение состоять при штабе главной квартиры, уехал в Турцию.
Князь Андрей считал неудобным писать к Курагину и вызывать его. Не подав нового повода к дуэли, князь Андрей считал вызов с своей стороны компрометирующим графиню Ростову, и потому он искал личной встречи с Курагиным, в которой он намерен был найти новый повод к дуэли. Но в Турецкой армии ему также не удалось встретить Курагина, который вскоре после приезда князя Андрея в Турецкую армию вернулся в Россию. В новой стране и в новых условиях жизни князю Андрею стало жить легче. После измены своей невесты, которая тем сильнее поразила его, чем старательнее он скрывал ото всех произведенное на него действие, для него были тяжелы те условия жизни, в которых он был счастлив, и еще тяжелее были свобода и независимость, которыми он так дорожил прежде. Он не только не думал тех прежних мыслей, которые в первый раз пришли ему, глядя на небо на Аустерлицком поле, которые он любил развивать с Пьером и которые наполняли его уединение в Богучарове, а потом в Швейцарии и Риме; но он даже боялся вспоминать об этих мыслях, раскрывавших бесконечные и светлые горизонты. Его интересовали теперь только самые ближайшие, не связанные с прежними, практические интересы, за которые он ухватывался с тем большей жадностью, чем закрытое были от него прежние. Как будто тот бесконечный удаляющийся свод неба, стоявший прежде над ним, вдруг превратился в низкий, определенный, давивший его свод, в котором все было ясно, но ничего не было вечного и таинственного.
Из представлявшихся ему деятельностей военная служба была самая простая и знакомая ему. Состоя в должности дежурного генерала при штабе Кутузова, он упорно и усердно занимался делами, удивляя Кутузова своей охотой к работе и аккуратностью. Не найдя Курагина в Турции, князь Андрей не считал необходимым скакать за ним опять в Россию; но при всем том он знал, что, сколько бы ни прошло времени, он не мог, встретив Курагина, несмотря на все презрение, которое он имел к нему, несмотря на все доказательства, которые он делал себе, что ему не стоит унижаться до столкновения с ним, он знал, что, встретив его, он не мог не вызвать его, как не мог голодный человек не броситься на пищу. И это сознание того, что оскорбление еще не вымещено, что злоба не излита, а лежит на сердце, отравляло то искусственное спокойствие, которое в виде озабоченно хлопотливой и несколько честолюбивой и тщеславной деятельности устроил себе князь Андрей в Турции.
В 12 м году, когда до Букарешта (где два месяца жил Кутузов, проводя дни и ночи у своей валашки) дошла весть о войне с Наполеоном, князь Андрей попросил у Кутузова перевода в Западную армию. Кутузов, которому уже надоел Болконский своей деятельностью, служившей ему упреком в праздности, Кутузов весьма охотно отпустил его и дал ему поручение к Барклаю де Толли.
Прежде чем ехать в армию, находившуюся в мае в Дрисском лагере, князь Андрей заехал в Лысые Горы, которые были на самой его дороге, находясь в трех верстах от Смоленского большака. Последние три года и жизни князя Андрея было так много переворотов, так много он передумал, перечувствовал, перевидел (он объехал и запад и восток), что его странно и неожиданно поразило при въезде в Лысые Горы все точно то же, до малейших подробностей, – точно то же течение жизни. Он, как в заколдованный, заснувший замок, въехал в аллею и в каменные ворота лысогорского дома. Та же степенность, та же чистота, та же тишина были в этом доме, те же мебели, те же стены, те же звуки, тот же запах и те же робкие лица, только несколько постаревшие. Княжна Марья была все та же робкая, некрасивая, стареющаяся девушка, в страхе и вечных нравственных страданиях, без пользы и радости проживающая лучшие годы своей жизни. Bourienne была та же радостно пользующаяся каждой минутой своей жизни и исполненная самых для себя радостных надежд, довольная собой, кокетливая девушка. Она только стала увереннее, как показалось князю Андрею. Привезенный им из Швейцарии воспитатель Десаль был одет в сюртук русского покроя, коверкая язык, говорил по русски со слугами, но был все тот же ограниченно умный, образованный, добродетельный и педантический воспитатель. Старый князь переменился физически только тем, что с боку рта у него стал заметен недостаток одного зуба; нравственно он был все такой же, как и прежде, только с еще большим озлоблением и недоверием к действительности того, что происходило в мире. Один только Николушка вырос, переменился, разрумянился, оброс курчавыми темными волосами и, сам не зная того, смеясь и веселясь, поднимал верхнюю губку хорошенького ротика точно так же, как ее поднимала покойница маленькая княгиня. Он один не слушался закона неизменности в этом заколдованном, спящем замке. Но хотя по внешности все оставалось по старому, внутренние отношения всех этих лиц изменились, с тех пор как князь Андрей не видал их. Члены семейства были разделены на два лагеря, чуждые и враждебные между собой, которые сходились теперь только при нем, – для него изменяя свой обычный образ жизни. К одному принадлежали старый князь, m lle Bourienne и архитектор, к другому – княжна Марья, Десаль, Николушка и все няньки и мамки.
Во время его пребывания в Лысых Горах все домашние обедали вместе, но всем было неловко, и князь Андрей чувствовал, что он гость, для которого делают исключение, что он стесняет всех своим присутствием. Во время обеда первого дня князь Андрей, невольно чувствуя это, был молчалив, и старый князь, заметив неестественность его состояния, тоже угрюмо замолчал и сейчас после обеда ушел к себе. Когда ввечеру князь Андрей пришел к нему и, стараясь расшевелить его, стал рассказывать ему о кампании молодого графа Каменского, старый князь неожиданно начал с ним разговор о княжне Марье, осуждая ее за ее суеверие, за ее нелюбовь к m lle Bourienne, которая, по его словам, была одна истинно предана ему.

90000 Formula One engines — F1technical.net 90001 By Steven De Groote on 90002 90003 18 Jul 2009 15:28 90004 90005 Although F1 racing engines have lost some of the attractiveness they used to have when the regulations allowed more freedom, every single design currently in use is still a highly advanced piece of engineering that has required lots of time and thought. An engine is the only power source of a Formula One car — apart from the KERS systems in 2009 which are indirectly charged by the power generated by the engine — and is a structural part of the chassis.90006 90007 Facts and figures 90008 90005 90010 Because of the regulations and engineering optimisations, all current engines are of a similar type, and feature the following similarities: 90006 90012 90013 All F1 engines are naturally aspirated V8’s of 2400cc 90014 90013 Engines are limited to 18,000rpm 90014 90013 The weight is exactly 95kg (each manufacturer easily reaches this regulated minimum weight) 90014 90013 Engine blocks are constructed of forged aluminium alloy, because of the weight advantages it gives in comparison to steel.Other materials would maybe give some extra advantages, but to limit costs, the FIA ​​has forbidden all non-ferro materials. 90014 90013 Crankshaft and piston rods are Iron based for strength. 90014 90013 At its maximum pace the current V8 engines consume around 60 litres of petrol for 100km of racing. 90014 90013 It’s not exactly known how much oil such a top engine contains, but this oil is for 70% in the engine, while the other 30% is in a dry-sump lubrication system that changes oil within the engine three to four times a minute .90014 90013 Before its first track time and after each race, each engine is tested on an engine dyno to validate its performance and identify problems. A video clip of Renault’s RS24 on the dyno can be found here. 90014 90029 90007 Evolution of engine design 90008 90005 All current engines run by the competing F1 teams are very similar due to the very stringent regulations that have increasingly come into play since 2006. Until that time, all car manufacturers involved in F1 were effectively out-racing each other in a spending race.It is not a lie to claim that in the years after 1995 року, the manufacturer who invested most and could hire most people could produce the best engine. 90006 90005 Back in тисяча дев’ятсот дев’яносто сім, Ford Cosworth started a furious battle for weight reduction as their CR1 at the time was at least 25kg lighter than any other. 90035 Although they suffered some reliability problems throughout the season, the engine was an example for the others, as it allowed the team to shift ballast in the car to benefit the car’s handling.90006 90005 As a reaction to this weight shedding, the the 1998 Mercedes-Benz engine was possibly one of the most revolutionary engines ever built, making performance gains and drastic weight cuts at the same time. It quickly proved good enough to be the basis of Mika Hakkinen’s two consecutive world titles with McLaren Mercedes. When in 2000, the FIA ​​decided to limit the use of Beryllium alloys — to a maximum of 5 mass percentage — due to being poisonous in high quantities, Mercedes struggled for years to recover from that setback — they could not match any more the power of the at that time mighty Ferrari and BMW engines.90006 90039 90040 90005 By the end of 2005, most of the teams had converged their designs to 3 litre V10’s with an internal angle of 90 °. The teams ‘designers had come to the conclusion that 90 ° was the best compromise between performance and stiffness of the engine itself. 90006 90005 That same year, some 3l V10 engines were producing more than 980hp and running very close to the 1000hp mark, a figure that was never reached since the ban on turbo engines. It was a sign for F1’s governing body to change the regulations as top speeds at Monza of 370km / h were deemed hazardous for the drivers as well as the spectators.The maximum capacity was thus reduced to 2.4l and the cylinder count to 8. Additionally, the FIA ​​ruled that an engine freeze would come into effect a year later to put an end to the spending race. 90006 90005 Only 2 years later however, halfway through 2008, the FIA ​​and several teams who strictly followed the rules — including the likes of Toyota and Renault — found that the regulations still allowed too much freedom. It appeared that over the last year, Mercedes and Ferrari had been able to add up to 40hp to their engines as so called «reliability updates», while others had followed the engine freeze more strictly.Several meetings with FIA officials and the teams ‘principals then resulted in an equalisation of the engines, in which the less powerful could put on several updates to be on par in the next years. 90006 90005 Even so, without fiercely looking for improvements, a current F1 engine is a highly interesting piece of engineering, in total consisting of 5000 separate parts 1500 of which are moving. It is estimated that when in operation, a new F1 engine can produce around 720hp, but would be able to reach up to 780hp and above 20,000rpm if there would not be a limit on engine revolutions.90006 90007 Difference with road engines 90008 90012 90013 Higher 90053 volumetric efficiency 90054. VE is used to describe the amount of fuel / air in the cylinder in relation to regular atmospheric air. If the cylinder is filled with fuel / air at atmospheric pressure, then the engine is said to have 100% volumetric efficiency. Turbo chargers for instance can increase VE to above 100% while normally aspirated engines typically run anywhere between 80% and 100%. In this region however, a Formula One engine usually can achieve a higher VE than normal road engines because of their highly optimised intake manifolds.90014 90013 Unfortunately, from the total fuel energy that is put into the cylinders, averagely less than 1/3 ends up as usable horsepower. Ignition timing, thermal coatings, plug location and chamber design all affect the 90053 thermal efficiency 90054 (TE). Low compression street engines may have a TE of approximately 0.26, a racing engine may reach approximately 0.34. This seemingly small difference results in a difference of about 30% (0.34 — 0.26 / 0.26) more horsepower than before. 90014 90013 From all that power generated, part of it is used by the engine to run itself.The left over power is what you would measure on a dynamometer. The difference between what you would measure on the dyno and the workable power in the cylinder is the 90053 mechanical efficiency 90054 (ME). Mechanical efficiency is affected by rocker friction, bearing friction, piston skirt area, and other moving parts, but it is also dependent on the engine’s RPM. The greater the RPM, the more power it takes to turn the engine. This means limiting internal engine friction can generate a large surplus in power output, and where in F1 the stress is on power, on the road it is also on fuel consumption.90014 90029 90005 These main optimization necessities are what makes Formula One engine design difficult. At the end of the line, an F1 engine revs much higher than road units, hence limiting the lifetime of such a power source. It is especially the mechanical efficiency that causes Formula One engines to be made of different materials. These are necessary to decrease internal friction and the overall weight of the engine, but more importantly, limit the weight of internal parts, e.g. of the valves, which should be as light as possible to allow incredibly fast movement of more than 300 movements up and down a second (this at 18.000 rpm). 90006 90005 Another deciding point trying to reach a maximum of power out of an engine is the exhaust. The minor change of length or form of an exhaust can influence the horsepower drastically. Although variable outlet systems are not allowed, the exhaust system on a race car does not feature a muffler, lacks a katalysator and is specially made to withstand temperatures as high as 1200 ° C, a lot more than what is achieved with a regular road engine . 90006 90007 Engine design philosophies 90008 90005 Considering internal combustion engines (thus leaving out oscillating and Wankel rotary combustion engines), there are basically three different ways of building an engine.The difference here is how the cylinders are placed compared to each other. 90006 90012 90013 Inline engines, where all cylinders are placed next to (or after) each other are not used in Formula One since the 60’s. While the engines are small, they are long and therefore require a heavy crankshaft. 90014 90013 Boxer engines are actually one of the best ways to build an engine, if all external factors allow it. Two cylinder rows are placed opposed to each other. You could consider a boxer engine as being a 180 ° V-angle engine design.These engines became popular in F1 because of the low centre of gravity and the average production costs, but later on disappeared out of the picture as this type of engine is not sufficiently stiff enough to withstand the car’s G-forces in cornering conditions. Ferrari for instance have run 12 cylinder boxer engines from 1970 to 1980 before moving to a 120 ° V-angle engine. 90014 90013 V-type engines, as currently used in all F1 cars. The V is in fact the geometrical angle that separated the two cylinder banks from each other where the crankshaft can be considered the origin of the angle.Obviously for this type of engine the size of the V is a major factor and must be decided in the first phases of the engine design. Previously, engines have been designed with angles such as 60 ° V12 or 72 ° V10. Although it has historically been an interesting evolution to see the differences between the teams ‘engines, the FIA ​​have fixed the engine type to 90 ° V8 models. 90014 90029 90005 Since the introduction of the Ford Cosworth DFV, an engine in a F1 car is a stressed member of the chassis, meaning that it is an integral part of the car.Before that idea, a chassis was built as a tube frame with the engine placed in it afterwards, while now a chassis would fall apart if no engine was fitted. A current engine is bolted in between the rear end of the monocoque and the frontal side of the gearbox. As of that time, V-type engines have gradually pushed out any other engine type because they are compact and can be constructed very rigidly without requiring further strengthening to the chassis to ensure stiffness. 90006 90005 Contrary to boxer or flat engines, V-angled combustion engines pose an extra design problem, as it is crucial for an engine’s performance that the V-angle is chosen wisely.This angle important to ensure a correct firing sequence and hence also influences its primary balance. 90006 90005 Calculating possible V angles for a specific number of cylinders is fortunately not a daunting task. If you consider that every combustion cycle takes 2 turns — intake and combustion phase — of the crankshaft, and a full circle is 360 °, the engine’s included V-angle x the number of cylinders must be a function of 720 in order to achieve evenly spaced cylinder firing and primary balance.90006 90005 That is also why a boxer engine is an ideal layout. The cylinders are opposed at 180 ° so having 2 or 4 or 6 or 8 or 10 or 12 is not that big. Perfect primary balance is easy to achieve, as long as the reciprocating and rotating parts are in balance and, the firing order is always evenly spaced. A few examples make it clear why several specific angles have been very popular in F1 engine design: 90006 90012 90013 As mentioned earlier, Ferrari have used a 60 ° V12 or 120 ° V12 engine.As for the first option, divide 720 ° by 12 cylinders and you get 60. You get 120 ° when you imagine a V12 as two aligned V6 engines. 90014 90013 Renault’s extremely successful 72 ° V10 engines share the same thoughts. It is the perfect bank angle for any V10 engine if a boxer is not an option. One cylinder is fired every time the crankshaft has completed 72 ° so that after 2 turns every single piston has gone through one complete cycle. 90014 90013 Currently every team runs 90 ° V8 engines but not only because the regulations prescribe so.Also this is a perfect angle and meets the size requirements set by the aerodynamicists. 90014 90013 90097 Contrary to these optimal choices, there have also been unusual uses. For instance the 2005 90 ° V10 engines that everyone but Renault were using. While they may have been more interesting for other reasons, it’s performance could theoretically not beat Renault’s RS25 that was a 72 ° V10. The 90 ° V10 engines hence had either offset crank pins or a funny firing order. 90014 90013 Before their RS24 Renault was trying a revolutionary design as they designed a 112 ° V10.Although the engine evolved from RS21 to RS23 and was beneficial in terms of the centre of gravity it was finally abandoned. The engine could not reach competitively high rpms since the uneven firing order introduced unwanted vibrations in the engine. 90014 90029 90007 Crankshaft design 90008 90005 Although the V8 with the now compulsory cylinder angle of 90 degrees may look like a sawn-off V10, technically it is an entirely separate concept with its own specific requirements. The V8 has a distinct firing sequence and demands a fundamentally different crankshaft design.Whereas a 72-degree offset crankshaft was used in most V10 Formula One engines, V8 powerplants can feature crankshafts with either four throws spaced at 90 degrees or four throws spaced at 180 degrees. Standard production engines are fitted with 90-degree crankshaft variants due to their better dynamic attributes, but a 180-degree crankshaft is favoured in racing car engine design. The improved performance this allows offsets the disadvantages in terms of dynamics. 90006 90007 Cooling 90008 90005 With such a low thermal efficiency, cooling of any internal combustion engine is vital for its correct operation.Basically, an F1 cooling system is the same as in any regular road car, as engine coolant and oil is pumped through a radiator to cool down before completing another cycle through the engine. 90006 90005 However, due to the space restrictions and aerodynamic requirements of a race car, the positioning of these components is completely different. The following shows the internals of a championship winning Renault R25 of 2005, included with its Renault RS25 engine (2). The flat panels located nearly vertically in the front of the side pods are the radiators (4).While in this picture the radiator is covered with a protective hose, it is not during running as air passes through the aluminium fins of the radiator. Their position however varies considerably in different cars as they are influenced by the aerodynamic and weight distribution requirements of a car. 90006 90112 90005 Contrary to popular belief, the air inlet above the driver’s head is not part of the cooling system but instead provided the engine’s cylinders with air to be mixed with fuel for combustion.It is commonly thought that the purpose of this is to ‘ram’ air into the engine like a supercharger, but the 90053 airbox 90054 does the opposite. The carbon fibre duct (1) gradually widens out as it approaches the engine, effectively creating a venturi and a suction effect on the small air inlet. The shape of this ducts and inlet however must be carefully designed to both fill all cylinders equally and not harm the exterior aerodynamics of the engine cover, all to optimize the volumetric efficiency.90006 90005 Marked with (3) is the engine exhaust system while (5) and (6) identify the rear suspension that is fitted onto the gearbox. 90006 90007 Transmission 90008 90005 The transmission of any car is considered to be all intermediate gears and systems to get the engine rotational power to the wheels. In reality this comes down to the gearbox and differential, which are both assembled into the gearbox casing. Just as with the engine, this casing — often made of titanium or carbon fibre — is also a structural part of the chassis and is firmly bolted onto the rear end of the engine.More can be found in the specific article about F1 transmissions. 90006 90007 Regulations 90008 90005 The current regulations on Formula One engines can be summarised as follows. These specifications have become more strict during recent years in an attempt to limit costs and decrease performance. You can find an evolution of the most important regulations per era in the safety section. As this is only an excerpt of the most important regulations on engines, you would need to see the official FIA technical regulations before you start to design a Formula One engine yourself.90006 90053 Specification 90054 90005 Only 4-stroke engines with reciprocating pistons are permitted. 90130 Engine capacity must not exceed 2400 cc. 90130 Crankshaft rotational speed must not exceed 18,000rpm. 90130 Supercharging is forbidden. 90130 All engines must have 8 cylinders arranged in a 90 degree V configuration and the normal section of each cylinder must be circular. 90130 Engines must have two inlet and two exhaust valves per cylinder. 90130 Only reciprocating poppet valves are permitted.90130 The sealing interface between the moving valve component and the stationary engine component must be circular. 90006 90053 Dimensions, weight and centre of gravity 90054 90005 Cylinder bore diameter may not exceed 98mm. 90130 Cylinder spacing must be fixed at 106.5mm (+/- 0.2mm). 90130 The crankshaft centreline must not be less than 58mm above the reference plane. 90130 The overall weight of the engine must be a minimum of 95kg. 90130 The centre of gravity of the engine may not lie less than 165mm above the reference plane.90130 The longitudinal and lateral position of the centre of gravity of the engine must fall within a region that is the geometric centre of the engine, +/- 50mm. The geometric centre of the engine in a lateral sense will be considered to lie on the centre of the crankshaft and at the mid point between the centres of the forward and rear most cylinder bores longitudinally. 90130 Variable geometry systems are not permitted 90006 90053 Materials 90054 90005 Magnesium based alloys, Metal Matrix Composites (MMCs) and inter-metallic materials may not be used anywhere in an engine Coatings are free provided the total coating thickness does not exceed 25% of the section thickness of the underlying base material in all axes.In all cases the relevant coating must not exceed 0.8mm. 90130 Pistons must be manufactured from an aluminium alloy which is either Al-Si; Al-Cu; Al-Mg or Al-Zn based. 90130 Piston pins, crankshafts and camshafts must be manufactured from an iron based alloy and must be machined from a single piece of material. 90130 A supplementary device temporarily connected to the car may be used to start the engine both on the grid and in the pits. 90006 90130 Mechanics 90002 previous | next 90002.90000 New F-1B rocket engine upgrades Apollo-era design with 1.8M lbs of thrust 90001 90002 NASA has spent a lot of time and money resurrecting the F-1 rocket engine that powered the Saturn V back in the 1960s and 1970s, and Ars recently spent a week at the Marshall Space Flight Center in Huntsville, Alabama, to get the inside scoop on how the effort came to be. But there’s a very practical reason why NASA is putting old rocket parts up on a test stand and firing them off: its latest launch vehicle might be powered by engines that look, sound, and work a whole lot like the legendary F-1.90003 90002 This new launch vehicle, known as the Space Launch System, or SLS, is currently taking shape on NASA drawing boards. However, as is its mandate, NASA will not be 90005 building 90006 the rocket itself-it will allow private industry to bid for the rights to build various components. One potential design wrinkle in SLS is that instead of using Space Shuttle-style solid rocket boosters, SLS could instead use liquid-fueled rocket motors, which would make it the United States ‘first human-rated rocket in more than 30 years not to use solid-fuel boosters.90003 90002 The contest to suss this out is the Advanced Booster Competition, and one of the companies that has been down-selected as a final competitor is Huntsville-based Dynetics. Dynetics has partnered with Pratt Whitney Rocketdyne (designers of the Saturn V’s F-1 engine, among others) to propose a liquid-fueled booster featuring an engine based heavily on the design of the famous F-1. The booster is tentatively named 90005 Pyrios 90006, after one of the fiery horses that pulled the god Apollo’s chariot; the engine is being called the F-1B.90003 90012 The F-1B and how it differs 90013 90002 Ars was on-hand to observe one of the fiery F-1 gas generator tests in Huntsville, and after the test I was able to speak at length with the Dynetics / PWR folks about the engine. Dynetics had set up a display next to the test viewing area featuring a small model of the proposed F-1B rocket engine, along with a chart highlighting the differences between the F-1B and the F-1 and a small model of an SLS rocket with two Pyrios boosters hanging from its sides.90003 90002 Available to answer my questions were Kim Doering and Andy Crocker, the program manager and assistant program manager for Dynetics ‘space launch systems group. What would the F-1B look like, I asked them? 90003 Enlarge / The chart Dynetics had on hand at the gas generator test, showing major differences between the F-1 and the proposed F-1B. 90002 Lee Hutchinson / NASA 90003 90002 «The first thing you’d notice is that it’s large. It’s just going to be a very, very large piece of machinery,» explained Doering.»In the F-1, they needed every bit of performance they could get, and so they took the exhaust from the turbine and dumped it into the nozzle and got a little extra performance out of that. That made the engine a bit bigger. ..but when you look at the intricate way they had to build that, it was really, really difficult, and very expensive. » 90003 Enlarge / A small model of the proposed F-1B design, on display at the gas generator test firing. Visible in foreground and middle are Pyrios stickers with logo.I grabbed a bunch of these. 90002 Lee Hutchinson 90003 90024 No more exhaust recycling 90025 90002 «One major difference that most people would notice right away is that … we’ve decided to do away with that turbine exhaust that feeds into the nozzle, and that part of the nozzle that comes after where the turbine exhaust manifold would dump in, «Doering continued. The gas generator’s rocket exhaust, which I’d just watched, was used to drive the fuel pump turbine, but then had to be directed somewhere; the exhaust manifold took those gasses and 90005 coated 90006 the inside of the thrust chamber with them.This turbine exhaust was still fuel-rich and so did not burn as quickly as the more balanced fuel / oxidizer mixture being sprayed into the F-1’s thrust chamber. The slower-burning turbine exhaust rolled down the inside of the nozzle, protecting it from the much hotter thrust reaction and keeping it cool. This dense, slower-burning exhaust is easily visible in the F-1’s thrust pattern-it is the darker-colored plume exiting the nozzle for a short distance before the much brighter primary exhaust. 90003 90002 The turbine exhaust manifold is one of the F-1’s most distinctive features-it branches off of the side of the nozzle and then wraps around the nozzle at approximately its visual midpoint.Doing away with it would change the look of the engine significantly. «So the chamber nozzle would be smaller-would look smaller even to the common person, even though it’s still huge,» he continued. «That specifically will save a lot of money and complexity in the way we’re deciding to build the engine to address NASA’s specific goals of affordability and performance.» 90003 90002 «This will be somewhat different,» finished Doering. «You’ll see the hot exhaust coming out of a tube right 90005 next 90006 to the nozzle, and then you’ll have the big nozzle plume coming out of the main nozzle.»90003 Enlarge / A real F-1 engine firing, from 1960. The dark jet emerging directly from the nozzle is the fuel-rich turbopump exhaust, which protects the nozzle extension from the heat of the actual rocket exhaust. 90002 Fortunately, the removal of the turbopump exhaust manifold and its complex series of ducts and baffles and tubes does not particularly compromise the engine’s performance. Doering is quick to point out that even without ducting in the turbopump exhaust, the F-1B is being designed to have as much thrust as the uprated F-1A concept from the 1960s: about 1.8M lbs of thrust, with the goal of being able to loft 150MT of cargo into low Earth orbit with four engines on two boosters (coupled with the other RS-25 and J-2X engines in the SLS stack). There’s also enough head-room in the overall booster design to add another 20MT of total lift capacity without requiring significant engineering changes, to meet other SLS design goals a bit down the road. 90003 90002 Dynetics and PWR are trying to hew as closely as possible to the operating characteristics of the old engine’s uprated F-1A variant, which was extensively tested in the 1960s but never actually flown.The original hardware worked very well, and changes are only being made where it’s necessary to cut costs. «The flow paths will be the same,» as the F-1A, Doering elaborated when I asked for details. «The chamber pressure will be about the same, and the thrust will be about the same. It’s about a 1.8 million pound thrust engine, and if you look at the F-1A specs, it’s going to be about the same.» 90003 90002 «This is even after ditching the recycling of the gas generator exhaust?» I asked. 90003 90002 «You lose very little thrust,» confirmed Doering.»You lose a little bit of specific impulse, but you lose very little thrust. The booster flies for just a couple of minutes and drops off and then the vehicle flies on, so specific impulse matters very little.» 90003 90024 No longer a series of tubes 90025 90002 Another clear difference is the construction of the exhaust nozzle itself. The F-1’s nozzle was made up of two parts: the first portion was actually an extremely complex series of tubes brazed together and bound by hoops, like staves in a barrel.Kerosene fuel was circulated through the tubes to absorb heat and cool the exhaust. The tubes stretched down to the distinctive turbopump exhaust manifold, and then looped back up. Below the manifold, which wrapped around the engine like a pair of fingers, was a removable nozzle extension that focused the engine’s combustion and helped the engine deliver additional thrust. 90003 Enlarge / Detail on the upper thrust chamber of an F-1 engine. Note tightly packed series of tubes, bound together with barrel-like hoops.90002 Lee Hutchinson 90003 90002 Advances in manufacturing techniques will allow the F-1B to dispense with the complicated upper nozzle tubing; as it’s currently envisioned, the new rocket will feature a much simpler thrust chamber and nozzle made of steel-according to Andy Crocker of Dynetics, the nozzle will consist of an inner liner and outer jacket, brazed together, with cooling provided by fuel flowing through simple slots in the inner liner. This is far easier and less expensive to build than the labor intensive «barrel hoop» tube wall design of the original F-1.90003 .

Ваш электронный адрес не будет опубликован.